
2  The Differential Evolution Algorithm 

2.1 Overview 

2.1.1 Population Structure 

DE’s most versatile implementation maintains a pair of vector populations, 
both of which contain Np D-dimensional vectors of real-valued parame-
ters. The current population, symbolized by Px, is composed of those vec-
tors, xi,g, that have already been found to be acceptable either as initial 
points, or by comparison with other vectors: 
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Indices start with 0 to simplify working with arrays and modular arithme-
tic. The index, g = 0, 1, ..., gmax, indicates the generation to which a vector 
belongs. In addition, each vector is assigned a population index, i, which 
runs from 0 to Np − 1. Parameters within vectors are indexed with j, which 
runs from 0 to D − 1. 

Once initialized, DE mutates randomly chosen vectors to produce an in-
termediary population, Pv,g, of Np mutant vectors, vi,g:
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Each vector in the current population is then recombined with a mutant to 
produce a trial population, Pu, of Np trial vectors, ui,g:
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During recombination, trial vectors overwrite the mutant population, so a 
single array can hold both populations. 
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2.1.2 Initialization 

Before the population can be initialized, both upper and lower bounds for 
each parameter must be specified. These 2D values can be collected into 
two, D-dimensional initialization vectors, bL and bU, for which subscripts 
L and U indicate the lower and upper bounds, respectively. Once initializa-
tion bounds have been specified, a random number generator assigns each 
parameter of every vector a value from within the prescribed range. For 
example, the initial value (g = 0) of the jth parameter of the ith vector is

( ) .)1,0(rand L,L,U,0,, jjjjij bbbx +−⋅= (2.4)

The random number generator, randj(0,1), returns a uniformly distributed 
random number from within the range [0,1), i.e., 0 ≤ randj(0,1) < 1. The 
subscript, j, indicates that a new random value is generated for each pa-

rameter. Even if a variable is discrete or integral, it should be initialized 
with a real value since DE internally treats all variables as floating-point 
values regardless of their type. 

2.1.3 Mutation 

Once initialized, DE mutates and recombines the population to produce a 
population of Np trial vectors. In particular, differential mutation adds a 
scaled, randomly sampled, vector difference to a third vector. Equation 2.5 
shows how to combine three different, randomly chosen vectors to create a 
mutant vector, vi,g:

( ).,2,1,0, grgrgrgi F xxxv −⋅+= (2.5)

The scale factor, F ∈ (0,1+), is a positive real number that controls the rate 
at which the population evolves. While there is no upper limit on F, effec-
tive values are seldom greater than 1.0. 

The base vector index, r0, can be determined in a variety of ways, but 
for now it is assumed to be a randomly chosen vector index that is differ-
ent from the target vector index, i. Except for being distinct from each 
other and from both the base and target vector indices, the difference vec-

tor indices, r1 and r2, are also randomly selected once per mutant. Figure 
2.1 illustrates how to construct the mutant, vi,g, in a two-dimensional pa-
rameter space. 
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vi,g = xr0,g+F⋅(xr1,g-xr2,g)
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Fig. 2.1. Differential mutation: the weighted differential, F⋅(xr1,g− xr2,g), is added 
to the base vector, xr0,g, to produce a mutant, vi,g.

2.1.4 Crossover 

To complement the differential mutation search strategy, DE also employs 
uniform crossover. Sometimes referred to as discrete recombination,
(dual) crossover builds trial vectors out of parameter values that have been 
copied from two different vectors. In particular, DE crosses each vector 
with a mutant vector: 
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The crossover probability, Cr ∈ [0,1], is a user-defined value that con-
trols the fraction of parameter values that are copied from the mutant. To 
determine which source contributes a given parameter, uniform crossover 
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compares Cr to the output of a uniform random number generator, 
randj(0,1). If the random number is less than or equal to Cr, the trial pa-
rameter is inherited from the mutant, vi,g; otherwise, the parameter is cop-
ied from the vector, xi,g. In addition, the trial parameter with randomly 
chosen index, jrand, is taken from the mutant to ensure that the trial vector 
does not duplicate xi,g. Because of this additional demand, Cr only ap-
proximates the true probability, pCr, that a trial parameter will be inherited 
from the mutant. Figure 2.2 plots the possible trial vectors that can result 
from uniformly crossing a mutant vector, vi,g, with the vector xi,g.
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F⋅(xr1,g-xr2,g)
xr0,g

x0

x1

xi,g

u''
i,g

u
'
i,g

vi,g=ui,g

Fig. 2.2. The possible additional trial vectors u′i,g , u″i,g when xi,g and vi,g are uni-
formly crossed 

2.1.5 Selection 

If the trial vector, ui,g, has an equal or lower objective function value than 
that of its target vector, xi,g, it replaces the target vector in the next genera-
tion; otherwise, the target retains its place in the population for at least one 
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more generation (Eq. 2.7). By comparing each trial vector with the target 
vector from which it inherits parameters, DE more tightly integrates re-
combination and selection than do other EAs: 
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Once the new population is installed, the process of mutation, recombina-
tion and selection is repeated until the optimum is located, or a pre-
specified termination criterion is satisfied, e.g., the number of generations 
reaches a preset maximum, gmax.

2.1.6 DE at a Glance 

Here are three different ways to describe the DE algorithm known as 
“classic DE”. 

Generate-and-Test 

The simplicity of DE’s generate-and-test loop becomes apparent once Eqs. 
2.5–2.7 are combined: 
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C-Style Pseudo-code 

Figure 2.3 presents C-style pseudo-code for classic DE. The vector indices 
r0, r1 and r2 are all different and distinct from the target index, i. In addi-
tion, selection is delayed until the trial population is complete. 
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// initialize...

do // generate a trial population
{
   for (i=0; i<Np; i++)  // r0!=r1!=r2!=i
   {
      do r0=floor(rand(0,1)*Np); while (r0==i);
      do r1=floor(rand(0,1)*Np); while (r1==r0 or r1==i);
      do r2=floor(rand(0,1)*Np); while (r2==r1 or r2==r0 or r2==i);

jrand=floor(D*rand(0,1));

      for (j=0; j<D; j++)  // generate a trial vector
      {
         if (rand(0,1)<=Cr or j==jrand)
         {

uj,i=xj,r0+F*(xj,r1-xj,r2);  //check for out-of-bounds ?

         }
         else
         {

uj,i=xj,i;

         }
      }
   }

   // select the next generation

   for (i=0; i<Np; i++)
   {
      if ( f(ui)<=f(xi) ) xi=ui;

   }
} while (termination criterion not met);

Fig. 2.3. Classic DE; 0 ≤ rand(0,1) < 1 so that indices never equal Np. 

Flow Chart 

Figure 2.4 shows a flow chart of DE. That r0, r1, r2 and i are distinct indi-
ces is not made explicit in this figure. 
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Fig. 2.4. A flow chart of DE’s generate-and-test loop 

2.1.7 Visualizing DE 

The Difference Vector Distribution 

Figure 2.5a shows the difference vectors formed by all possible pairings of 
nine vectors. Transporting the difference vectors to a common origin more 
clearly shows their distribution (Fig. 2.5b). Because all difference vectors 
have both a negative counterpart and an equal chance of being chosen, 
their distribution’s mean is zero. 
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Fig. 2.5. Nine vectors a, and their corresponding difference distribution b

Scaling vector differences ensures that trial vectors do not duplicate ex-
isting points (Fig. 2.6a). In addition, scaling can shift the focus of the 
search between local and global. Figure 2.6b illustrates that the difference 
vector distribution contains a substantial number of vectors whose consid-
erable length reduces the probability that vectors will become trapped in a 
local minimum. 
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Fig. 2.6. The effects of scaling a, and large vector differences b

Contour Matching 

One of the biggest advantages that difference vectors afford is that both a 
step’s size and its orientation automatically adapt to the objective function 
landscape. The series of plots in Figs. 2.7–2.13 demonstrate this property 
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for the “peaks” function (Eq. 1.16). For clarity, the difference vector dis-
tribution plot only shows the difference vector endpoints. 

As it evolves, the population coalesces around competing minima (Figs. 
2.7–2.10). During this phase, the difference distribution is multi-modal, 
like the function itself. It contains not only steps adapted to searching 
within each basin, but also larger steps capable of transporting vectors be-
tween basins and beyond. Once the population settles into the optimal ba-
sin (Figs. 2.11–2.13), the difference vector distribution becomes uni-modal 
and steps exhibit both a scale and an orientation that is appropriate for a 
local search. 
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Fig. 2.7. Generation 1: DE’s population and difference vector distributions 
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Fig. 2.8. Generation 6: The population coalesces around the two main minima 
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Fig. 2.9. Generation 12: The difference vector distribution contains three main 
clouds – one for local searches and two for moving between the two main minima. 
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Fig. 2.10. Generation 16: The population is concentrated on the main minimum. 
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Fig. 2.11. Generation 20: Convergence is imminent. The difference vectors auto-
matically shorten for a fine-grained, local search. 
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Fig. 2.12. Generation 26: The population has almost converged. 
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Fig. 2.13. Generation 34: DE finds the global minimum. 

2.1.8 Notation 

The technical name for the method illustrated in this overview is 
“DE/rand/1/bin” because the base vector is randomly chosen, 1 vector dif-
ference is added to it and because the number of parameters donated by the 
mutant vector closely follows a binomial distribution. More often, how-
ever, this book refers to this method simply as “classic DE”. This version 
will probably suffice for most applications, but a number of variations are 
possible, each with its own strengths and weaknesses. The most successful 
of these alternative strategies will be explored later in this chapter, but first 
the next few sections examine the details missing from this brief overview. 
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2.2 Parameter Representation 

DE encodes all parameters as floating-point numbers, regardless of their 
type. Even integer and discrete variables are encoded as real values to add 
diversity to their difference distributions. Specific advice for handling in-
teger and discrete variables is given in Sect. 4.2. The point being made 
here is that encoding continuous parameters as floating-point numbers and 
manipulating them with arithmetic operators offer several significant ad-
vantages over the traditional GA “bit flipping” approach to continuous pa-
rameter optimization. Advantages include: 

• ease of use 
• efficient memory utilization 
• lower computational complexity – scales better on large problems 
• lower computational effort – faster convergence 
• greater freedom in designing a mutation distribution. 

The next subsection exposes the shortcomings of the standard GA coding 
scheme, while the subsequent subsection elaborates the advantages that 
floating-point arithmetic confers on a real-parameter optimizer. 

2.2.1 Bit Strings 

Standard GA Encoding 

Typically, GAs encode a continuous parameter, x, as an integer string of q
bits, ak, k = 0, 1, … q − 1, each of which is a coefficient for a power of 2: 
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When decoded, integers are normalized by a factor of 2q − 1 and multiplied 
by bU− bL so that values span the range between a parameter’s upper and 
lower bounds, bU and bL, respectively. Assuming that equal resources are 
devoted to each parameter, a vector of D parameters will require l = q⋅D
bits in all. 

For functions with independent parameters, both theory and experiment 
suggest that the optimal mutation rate, i.e., the probability that a bit should 
be inverted, or “flipped”, is pm= 1/ l (Mühlenbein 1992; Potter and DeJong 
1994). The problem with the GA approach is that even on uni-modal ob-
jective functions, the computational effort to optimize a parameter is a 
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function of l that depends on a parameter’s value. For example, if the ini-
tial parameter value is x = 15 (x = 01111 binary) and the optimal value is x
= 16 (x = 10000 binary), then 5 bits must simultaneously be flipped to 
make the final improving move. When pm= 1/l, the probability of this event 
is p = (1/l)5. Because this “Hamming cliff” prevents incremental improve-
ment, x = 15 is one of many local optima even if the objective function is 
uni-modal. In effect, the function that maps bit strings to real-parameter 
values is itself multi-modal (Bäck 1993). 

By contrast, progress does not depend on simultaneously flipping multi-
ple bits if the optimum happens to be x = 0. Instead, inverting non-zero bits 
in any sequence produces a series of parameter values each of which is 
closer to x = 0 than the last. If the objective function is separable and uni-
modal, these intermediate steps constitute improving moves. In this very

special case, the computational complexity to optimize a parameter is con-
stant at O(l⋅ln(l)) (Salomon 1996b). The factor, ln(l), occurs because the 
neighborhoods around parameters that are already optimized continue to 
be re-sampled (Salomon 1997). In the worst case scenario, however, all q
bits must be inverted to make an improving move, so the upper bound on 
the computational complexity for optimizing an independent parameter of 
a uni-modal function becomes O(lq⋅ln(l)). 

The requirement that all q bits simultaneously be inverted is also a de-
mand when the objective function is separable and multi-modal. For ex-
ample, it may be that two competing local minima are positioned at points 
whose representations differ at each bit position. Since an improving move 
from one local minimum to the other must simultaneously change all q

bits, the complexity is O(lq⋅ln(l)) (Salomon 1996b). That the computational 
complexity to optimize an independent parameter is the same in the worst 
case regardless of whether the function is uni- or multi-modal reflects the 
aforementioned fact that the standard GA coding scheme imposes multi-
modality on even uni-modal objective functions (Bäck 1993).

Gray Codes 

Gray codes eliminate Hamming cliffs by reassigning bit groupings to inte-
gers so that representations for adjacent integers differ by a single bit, i.e., 
so that the Hamming distance between consecutive integers is 1 (Wright 
1991). As long as the objective function is both uni-modal and separable, 
sequentially flipping single bits in Gray-coded variables can always pro-
duce monotonously decreasing objective function values regardless of both 
the starting point and the optimal parameter value. Since it no longer mat-
ters what the optimal parameter value is, the complexity for optimizing a 
separable, uni-modal function with Gray codes when pm= 1/l is constant at 
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O(l⋅ln(l)) (Salomon 1996b). Because of their constant low complexity, 
Gray codes are more efficient than the standard GA representation when 
the objective function is uni-modal (Bäck 1993). If, however, the objective 
function is multi-modal, then all bits must be inverted simultaneously in 
the worst case scenario, so the computational complexity again rises to 
O(lq⋅ln(l)) – the same complexity demonstrated for standard GA coding 
(Salomon 1996b). 

2.2.2 Floating-Point 

Unlike the standard GA representation in which all bits are potentially sig-
nificant, the floating-point format retains only a limited number of signifi-
cant digits. For example, the ANSI C float data type encodes a real num-
ber with q = 32 bits. Twenty-four bits are dedicated to precision, while the 
remaining eight bits are assigned to an exponent that locates the decimal 
point. By contrast, a fixed-point integer variable requires 256+ bits to span 
as many orders of magnitude as the float data type. In the final answer, 
most of the bits in this very long integer format will be either leading zeros 
or bits of unneeded precision. By contrast, the floating-point format retains 
only a limited number of significant bits while spanning a vast dynamic 
range with minimal resources.  

The floating-point format is convenient not only because it can effi-
ciently handle parameter values that span a wide dynamic range, but also 
because most modern programming languages support common floating-
point formats. No special routines are needed to define, input, manipulate 
or output a floating-point value. When representing continuous parameters 
in floating-point, the encoding process is transparent to the user. 

Logical Versus Arithmetic Operators 

GAs typically operate on bit strings with logical operators like the XOR 
(exclusive or) which has the effect of inverting specified bits. By contrast, 
DE and other floating-point optimizers add a floating-point deviation to 
one or more parameters. Compared to bit flipping, arithmetic provides two 
benefits: it reduces the complexity of the algorithm and it provides greater 
flexibility in designing a mutation distribution. 

The most efficient way for an EA to optimize a function with independ-
ent parameters is to change one parameter at a time before evaluating the 
result (Salomon 1996a). Typically, both standard and Gray-coded GAs 
implement this strategy by setting pm= 1/l so that, on average, only one pa-
rameter value changes per function evaluation (Potter and DeJong 1994). 
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For EAs that add a small deviation to a floating-point parameter, the corre-
sponding mutation probability is pm= 1/D – a value which also, on average, 
perturbs just one parameter before evaluating the result (Mühlenbein and 
Schlierkamp-Voosen 1993; Salomon 1996a). 

When the objective function is multi-modal, all bits in an independent

floating-point parameter may have to be set to the correct value to make 
progress. If there are q bits in the floating-point representation, then the 
probability of making progress in this worst case scenario is (1/2)q. While 
this number may be very small, it is constant and independent of D. As a 
result, the computational complexity for optimizing separable, multi-modal 
functions with floating-point representations and arithmetic operators is 
O(D⋅ln(D)) (Salomon 1996a). Compared to the O(lq⋅ln(l)) complexity for 
optimizing an independent, Gray-coded parameter of a multi-modal func-
tion, the floating-point format representation is faster by a factor of up to 
q⋅lq −1⋅(1 + ln(q)/ln(l)). The rules of complexity mathematics (Beckman 
1980), however, replace leading constants, like q, with 1 and substitute 0 
for terms like ln(q)/ln(l) that are negligible for large l. Under these rules, 
the ratio of Gray to floating-point complexities reduces to lq −1 (Salomon 
1996b).

Parameter dependence amplifies this disparity between the computa-
tional complexity of the Gray and floating-point approaches. For example, 
if a multi-modal function has two parameters that depend on each other, 
then progress in the worst case scenario will require flipping all bits in 
both parameters simultaneously. The probability of this event is p = (1/l)2q

and the corresponding computational complexity is O(l2q⋅ln(l)). Under 
similar circumstances, all bits in both parameters’ floating-point represen-
tations also must be changed. When pm= 1/D, this event occurs with a 
probability of (1/D)2, so the computational complexity for optimizing two, 
dependent, floating-point parameters of a multi-modal function is 
O(D2⋅ln(D)). Under the rules of complexity mathematics, the gain over 
Gray-coded parameters rises to l2(q −1).

Crafting a Mutation Distribution 

Arguably the most important advantage that floating-point arithmetic con-
fers on a real-parameter optimizer is the freedom to decide how perturba-
tions are distributed. Because floating-point’s computational complexity 
does not depend on the mutation operator’s probability density, distribu-
tions can be crafted to implement a particular search strategy (Salomon 
1996b). For example, the Breeder Genetic Algorithm perturbs parameters 
with non-adaptive step sizes that are distributed according to a power law 
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(Mühlenbein and Schlierkamp-Voosen 1993). Evolution Strategies (Bäck 
and Schwefel) and Fast Evolution Strategies (Yao and Liu 1997) adap-
tively modify steps sampled from Gaussian and Cauchy distributions, re-
spectively. The same freedom that these floating-point optimizers enjoy 
also allows DE to tap the pool of vector differences as its mutation distri-
bution.

2.2.3 Floating-Point Constraints 

The number of bits that a floating-point format dedicates to an exponent 
limits the minimum and maximum values that it can represent. These lim-
its are rarely exceeded in practical applications because physical properties 
of such extreme magnitude are uncommon. Of greater consequence for DE 
is the number of significant digits (precision) that a format supports. If the 
objective function contains terms that differ by many orders of magnitude, 
contributions from smaller terms will be lost if there are not enough sig-
nificant bits available. For example, the float data type holds about seven 
decimal digits of precision. If two numbers differ by more than seven 
decimal orders of magnitude, then the smaller contribution is not taken 
into account.  
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For the same reason, the lack of precision can be a problem not only when 
computing the objective function, but also when forming vector differ-
ences. Because DE relies on vector differences, the inability to record the 
effect of small perturbations might cause DE to stagnate (Zimmons n.d.). 

In most cases, the double format with 15 digits of decimal precision 
will be enough. Because they evaluate high-order polynomials, however, 
functions like the high-dimensional versions of the Chebyshev function 
(see Appendix) require long doubles. Except for requiring additional 
memory and bandwidth, there is little penalty for declaring long doubles
and their 19 digits of decimal precision because floating-point units com-
pute values to full precision by default. 
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2.3 Initialization 

In order for DE to work, the initial population must be distributed through-
out the problem space. One-point optimizers do not require this initial di-
versity and even the (1, λ)-ES begins with a single point. If, however, DE 
is initialized with Np replicas of a single vector, uniform crossover and dif-
ferential mutation will only clone more replicas. Consequently, DE re-
quires a predefined probability distribution function, or PDF, to seed the 
initial population. When specifying an initial distribution, steps must be 
taken to ensure that its scale sufficiently broad. 

2.3.1 Initial Bounds 

As a matter of convenience, test function parameters are often initialized 
with values that are constrained to lie between a single set of upper and 
lower bounds. By contrast, bounds for parameters that define real-world 
objective functions are seldom equal, often because the parameters they 
delimit correspond to different physical or mathematical entities. In many 
cases, the existence of natural physical limits or logical constraints makes 
prescribing bounds for each parameter straightforward. For example, ordi-
nary optical glass can never have an index of refraction less than or equal 
to 1, nor can a gear have less than one tooth. In cases like these where pa-
rameter limits are inviolable, initialization bounds should not only delimit 
the initial population, but also constrain the subsequent search. Section 
4.3.1 discusses several methods for keeping parameters constrained within 
pre-specified bounds. 

Far Initialization 

When parameters exhibit no obvious limits, their upper and lower bounds, 
bj,U and bj,L, respectively, should be set so that the initial bounding box 
they define encompasses the optimum. If the optimum’s general location is 
uncertain, then the possibility exists that it lies outside the initial bounding 
box. Figure 2.14 shows an example of far initialization in which the upper 
parameter limit has been reduced to the point where the initial bounding 
box no longer contains the optimum, x*. In cases of far initialization, 
bounds on otherwise unconstrained parameters must be ignored once the 
population has been initialized so that DE can explore beyond the initial 
bounding box. 

Table 2.1 records the effect that far initialization has on DE’s ability to 
discover the optima of ten common test functions (descriptions of test 
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functions can be found in the Appendix). Although each function has a dif-
ferent set of initialization bounds, in each case, these bounds define a D-
dimensional box that encloses the function’s global optimum. 

x1

x0

b0,L

b1,L

b1,U

b0,U

x*

b1,Far

b0,Far

Fig. 2.14. Far initialization shrinks the initial bounding box so that it no longer 
contains the optimum, x*.

For the results in Table 2.1, each parameter was initialized with a uni-
formly distributed random value from within a range that has been reduced 
by a factor, h, when compared to the originally prescribed bounds: 

( ).)1,0(rand L,U,L,0,, jjjjij bbhbx −⋅⋅+= (2.11)

After far initializing the population with the given value of h, bounds were 
relaxed to their normal values to constrain the subsequent search. 

For each of the functions in Table 2.1, the initial bounding box encloses 
the optimum when h = 1. Setting h ≤ 0.1 far initializes the population by 
restricting it to a corner of the original bounding box where it cannot sur-
round the optimum. Table 2.1 reports the average number of function 
evaluations (“Evals.”) taken to find a point whose objective function value 
differs from the optimum objective function value by less than a preset 
minimum. Finding such a point within the maximum allowed number of 
generations constitutes a success; otherwise, the trial is considered to be a 
failure. (See the Appendix for details on the minimum function value to 
reach.) Only “successes” contribute to the results in Table 2.1. The fraction 
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of successful trials, P, records the impact of failures. Results are 100-trial 
averages obtained using classic DE with F = Cr = 0.9 and r0 ≠ r1 ≠ r2 ≠ i

(distinct indices). 

Table 2.1. The effects of far initializing DE with a uniformly random population 

h = 1 h = 0.1 h = 0.01 Function D Np 
Evals. P Evals. P Evals. P 

Sphere 10 30 30,994.5 1 31,514.9 1 31,722.2 1 
Ridge 10 30 48,520.2 1 48,825.5 1 48,820.2 1 

Rosenbrock 10 30 59,643.4 1 59,721.9 1 60,315.4 1 
Chebyshev 9 30 69,522.1 1 72,211.3 1 71,068.5 1 

Ackley 10 30 48,385.2 1 49,853.3 0.90 – 0 
Rastrigin 5 100 59,840.4 1 60,199.2 1 – 0 
Schwefel 5 100 16,245.6 1 22,432.4 0.25 – 0 

Griewangk 5 100 19,4202 0.98 19,5551 0.99 19,4921 0.99 
Langerman 5 100 38,405.7 0.98 37,196.1 0.54 34,873.2 0.21 

Michalewicz 5 100 27,749.5 1 29,291.6 0.95 32,061.6 0.96 

As Table 2.1 shows, far initialization’s effect on the sphere, ridge, 
Rosenbrock, Chebyshev, Michalewicz and Griewangk functions is mini-
mal. In most cases, far initialization penalizes these six functions with a 
very slight increase in the average number of function evaluations and a 
very slight decrease in the estimated probability of success. For both the 
sphere and ridge functions, this result is not surprising. Both functions are 
uni-modal and convex, so neither poses obstacles to the population’s ex-
pansion toward the minimum. (Pictures of the two-dimensional versions 
for many of the test functions used in this book appear in the Appendix.) 
Rosenbrock’s function is also uni-modal, but unlike the sphere it is non-
convex. At least in the case of Rosenbrock’s function, non-convexity does 
not impede DE’s ability to locate the minimum when far initialized. 

Unlike the sphere, ridge or Rosenbrock functions, the remaining func-
tions in Table 2.1 are all multi-modal. Optimal parameter values for the 
Chebyshev function vary greatly in magnitude and restricting initial values 
to a small range means that some parameter values must inflate many or-
ders of magnitude to be on par with their optimal values. Table 2.1 shows 
that except for a slight increase in the number of function evaluations, di-
minishing the value of h did not significantly impact DE’s ability to con-
verge on the Chebyshev optimum. Similarly, far initialization did not sig-
nificantly affect DE’s performance on either Michalewicz’s or 
Griewangk’s function. 

DE became unreliable, however, when far initializing Langerman’s 
function and failed altogether on the Ackley, Rastrigin and Schwefel func-
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tions once h = 0.01. For these highly multi-modal functions, the entire ini-
tial population can land inside a single, non-optimal, local basin of attrac-
tion when h becomes too small. If competing basins are sufficiently far 
apart, then classic DE cannot generate difference vectors large enough to 
escape the local basin. Thus, it is important to use a bounding box of suffi-
cient size when initializing multi-modal functions with a uniform random 
distribution.

Initializing with a Constant 

Occasionally, it may prove productive to experiment with a design by 
holding one or more of its parameters constant while optimizing the re-
maining variables. DE automatically leaves a parameter unchanged during 
optimization if every vector is initialized with the same value for the given 
parameter. When all vectors have the same value for a parameter, every 
differential they combine to create for that parameter will be zero. Fur-
thermore, uniform crossover does not change parameter values, so a pa-
rameter initialized with a single constant value will never change. 

2.3.2 Initial Distributions 

DE can be initialized with either a uniform or a non-uniform distribution. 
The decision regarding which to use depends on how much is known about 
the location of the optimum. If the optimum’s location is fairly well 
known, a Gaussian distribution may prove somewhat faster, although it 
may also increase the probability that the population will converge prema-
turely. In general, uniform distributions are preferred, since they best re-
flect the lack of knowledge about the optimum’s location. The next section 
looks at two common uniform distributions.  

Uniform Distributions 

Distributing initial points with random uniformity is not mandatory, but 
experience has shown randj(0,1) to be very effective in this regard. In gen-
eral, any distribution that uniformly covers the search domain and contains 
a degree of irregularity or randomness should serve well for initializing the 
vector population. For example, Hammersley and Halton point sets are of-
ten used in the field of numerical integration (Halton and Weller 1964). 
Based on prime numbers, these pseudo-random distributions are both uni-
form and irregular, but lack points in close proximity, i.e., they have a 
minimum resolution that increases as the number of points in the sample 
increases. Figure 2.15 gives C-style pseudo-code for computing Halton 
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points in up to ten dimensions. The function, halton(i,j), takes the popula-
tion and parameter indices as input and returns a (rational) number belong-
ing to the interval [0,1). 

halton(i,j)
{
   prime[10]=[2,3,5,7,11,13,17,19,23,29];

p1=prime[j];
p2=p1;

   sum=0;

   do
   {
      x=i%p1; // "%" is the modulo operator
      sum=sum+x/p2;
      i=floor(i/p1);

p2=p2*p1;
   }while (i>0);

   return(sum);
}

Fig. 2.15. C-style pseudo-code for generating Halton point sets, D ≤ 10 

rand(0,1)

0

1

0 1

halton(i ,j )

0

1

0 1

Fig. 2.16. Two hundred points distributed with random uniformity (left) and ac-
cording to a two-dimensional Halton point set (right). 
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Figure 2.16 compares the uniform random and Halton distributions in 
two dimensions. The Halton distribution is more even, but the random dis-
tribution displays a wider range of difference vector magnitudes. 

Table 2.2 shows how the random and Halton distributions affect DE’s 
performance by reporting the average number of function evaluations 
(“Evals.”) taken to find a point whose objective function value differs from 
the optimum objective function value by less than a preset minimum. Find-
ing such a point within the maximum allowed number of generations con-
stitutes a success; otherwise, the trial is considered to be a failure. (See 
Appendix for details on the minimum function value to reach.) Only “suc-
cesses” contribute to the results in Table 2.2. The fraction of successful tri-
als, P, records the impact of failures. Results are 100-trial averages ob-
tained with classic DE, F = Cr = 0.9, distinct indices and with bound 
constraints imposed. Results for the random uniform distribution have 
been copied from Table 2.1 (h = 1). 

Table 2.2. Comparing the effects of uniform initial distributions on performance 

randj(0,1) halton(i,j)Function D Np 
Evals. P Evals. P 

Sphere 10 30 30,994.5 1 30,971.1 1 
Ridge 10 30 48,520.2 1 48,346.8 1 

Rosenbrock 10 30 59,643.4 1 59,406.2 1 
Chebyshev 9 30 69,522.1 1 72,611.6 1 

Ackley 10 30 48,385.2 1 48,354.7 1 
Rastrigin 5 100 59,840.4 1 60,019.2 1 
Schwefel 5 100 16,245.6 1 16,203.2 1 

Griewangk 5 100 19,4202 0.98 18,8279 1 
Langerman 5 100 38,405.7 0.98 39,610.2 0.99 

Michalewicz 5 100 27,749.5 1 27,130.7 0.98 

As Table 2.2 shows, it matters little whether the population is initialized 
with randj(0,1), or according to 

( ).),(halton L,U,L,0,, jjjjij bbjibx −⋅+= (2.12)

In every case, both the fraction of successful trials and the average number 
of function evaluations they required were virtually the same regardless of 
which uniform distribution initialized the population. To generate a differ-
ent point set, a different range of prime numbers should be used. 
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Gaussian Distribution 

Uniform distributions are reliable, but populations can also be non-
uniformly initialized. For example, Fig. 2.17 plots 200 points distributed 
according to a two-dimensional multi-normal distribution whose mean 
vector value is µ = 0.5 and whose covariance matrix is C = σ  2⋅I, where σ
= 0.5 and I is the identity matrix, i.e., N(0.5, 0.25⋅I). This choice centers 
the (symmetrical) distribution in the bounding box and places standard de-
viates (along coordinate axes) on its surface. Unlike the Halton distribution 
in Eq. 2.12, the multi-normal distribution, whose output is a vector, is 
sampled only once per initial vector. 

N(0.5,0.25*I)

0

0.5

1

0 0.5 1

Fig. 2.17. A two-dimensional Gaussian-distributed initial population with mean of  
0.5 and a standard deviation of 0.5, i.e., N(0.5, 0.25⋅I)

Table 2.3 details how classic DE’s performs when the initial population 
is distributed according to a multi-normal distribution. Unlike Eq. 2.12 in 
which a new random value is generated for each parameter, the distribu-
tion used in both Fig. 2.17 and Table 2.3 generates a single instance of a 
multi-normally distributed random vector for each initial point. In both 
cases, the distribution’s mean vector is µ = (0.5, 0.5, ... 0.5) and its covari-
ance matrix is C = 0.25⋅I. A comparison with Table 2.2 shows that when 
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the population is not far initialized (h = 1), it makes little difference 
whether the initial distribution is uniform or Gaussian. The sole exception 
is Ackley’s function. Although initializing Ackley’s function with a Gaus-
sian distribution left convergence speed unchanged, it significantly de-
graded DE’s probability of success. 

Once the population is far initialized (h ≤ 0.1), failures become more 
likely. When compared with Table 2.1, the results in Table 2.3 show that a 
population far initialized with a Gaussian distribution is less likely to be 
successful on multi-modal functions than a uniformly distributed one. In 
every case where uniform distributions failed, the Gaussian-distributed 
population failed more often. 

Table 2.3. Far initialization with a ten-dimensional multi-normal distribution 

h = 1 h = 0.1 h = 0.01 Function D Np 
Evals. P Evals. P Evals. P 

Sphere 10 30 31,801.1 1 31,937.7 1 32,967.6 1 
Ridge 10 30 48,483.9 1 48,919.4 1 49,569.9 1 

Rosenbrock 10 30 60,198.4 1 60,897.4 1 61,056.4 1 
Chebyshev 9 30 72,972.6 1 72,233.6 1 70,129.5 1 

Ackley 10 30 48,472.5 0.02 – 0 – 0 
Rastrigin 5 100 59,627.1 1 61,125.9 0.71 – 0 
Schwefel 5 100 17,406.2 0.97 33,750.1 0.67 – 0 

Griewangk 5 100 19,0872 1 19,6362 0.99 19,2462 0.99 
Langerman 5 100 34,005.4 0.60 32,630.6 0.09 32,254.3 0.04 

Michalewicz 5 100 28,219.8 0.96 31,005.8 0.98 30,828.1 0.73 

Clustering the initial population significantly decreased success prob-
abilities not only for Ackley’s function, but also for the Rastrigin, Schwe-
fel and Langerman functions, although in each case the average number of 
function evaluations was not seriously affected. This result reinforces the 
idea that when the objective function is multi-modal, it is important to dis-
perse the initial population widely enough to contain the optimum. Results 
also suggest that the penalty for expanding bounds is a small increase in 
the average number of function evaluations but the reward is often a sig-
nificantly enhanced probability of success. 

DE is based on evolution with vector differences, so it is not surprising 
that the way in which differences are chosen can have an impact on the op-
timization process. The following section examines what happens when 
the base and difference vectors are chosen both with and without restric-
tions.
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2.4 Base Vector Selection 

There are four vector indices in classic DE’s generating equation (e.g., Eq. 
2.8). The target index, i, specifies the vector with which the mutant is re-
combined and against which the resulting trial vector competes. The re-
maining three indices, r0, r1 and r2, determine which vectors combine to 
create the mutant. Typically, both the base index, r0, and the difference 
vector indices, r1 and r2, are chosen anew for each trial vector from the 
range [0, Np − 1]. 

When indices are randomly selected, the possibility exists that some 
vectors may be chosen repeatedly while others may be omitted altogether. 
Both omitted and duplicated indices affect DE’s performance. Duplicating 
an index can reduce DE’s novel search strategy to a conventional one, 
while omitting an index may deprive a vector of the opportunity to serve as 
a base vector. After presenting several alternative schemes for selecting 
base vectors, this section explores the effects of degenerate vector combi-
nations.

2.4.1 Choosing the Base Vector Index, r0

Random Without Restrictions 

The base index, r0, specifies the vector to which the scaled differential is 
added. The classic version of DE employs a uniform distribution to ran-
domly select r0 anew for each trial vector. To ensure that the index is al-
ways less than Np, randi(0,1) must return a value that is strictly less than 1. 

r0=floor(randi(0,1)*Np);

Fig. 2.18. Base vector selection without restrictions 

While base index selection without restrictions (Fig. 2.18) treats all vec-
tors equally in a statistical sense, it may pick some vectors more than once 
per generation, causing others to be omitted. Stochastic universal sampling 
provides a more representative population sample. 

Stochastic Universal Sampling 

Randomly selecting the base vector without restrictions is known in EA 
parlance as roulette wheel selection. Roulette wheel selection chooses Np
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vectors by conducting Np separate random trials, much like Np passes at a 
roulette wheel whose slots are proportional in size to the selection prob-
ability of the vector they represent. In many GAs, selection probabilities 
are biased toward better solutions, meaning that better vectors are assigned 
proportionally wider slots, but in classic DE, each vector has the same 
chance of being chosen as a base vector, so all slots are of equal size, just 
like a real roulette wheel.

0

DE GA

Roulette wheel selection: Do Np times

1 2 3 4

0 1 2 3 4

Stochastic universal sampling: Do once

0 1 2 3 4

0 1 2 3 4

Fig. 2.19. Stochastic universal sampling and roulette wheel selection compared. 
The fraction of the space allotted to a vector in DE is constant, but in the GA it 
depends on the vector’s objective function value. 

Because samples drawn by roulette wheel selection suffer from a large 
variance, the preferred method for sampling a distribution is stochastic
universal sampling because it guarantees a minimum spread in the sample 
(Baker 1987; Eiben and Smith 2003). The relation of stochastic universal 
sampling to roulette wheel selection is best illustrated if the ball used in 
real roulette is replaced with a stationary pointer. Once the roulette wheel 
stops, the vector corresponding to the slot pointed to is selected. Instead of 
spinning a roulette wheel Np times to select Np vectors with a single 
pointer, stochastic universal sampling uses Np equally spaced pointers and 
spins the roulette wheel just once. In the GA, slot sizes are based on a vec-
tor objective function value, with better vectors being assigned more 
space. In DE, each candidate has the same probability of being accepted, 
so slots are of equal size. Consequently, each of the Np pointers selects one 
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and only one vector regardless of how the roulette wheel is spun (Fig. 
2.19)

The following vector selection methods adhere to stochastic universal 
sampling as it applies to DE since all vectors serve as base vectors once 
and only once per generation. Both methods described below also establish 
the one-to-one correspondence needed to pair each target vector with a 
unique base vector.

2.4.2 One-to-One Base Vector Selection 

Permutation Selection 

To ensure that each vector serves as a base vector just once per generation, 
permutation selection draws consecutive base vector indices from an array 
containing a random permutation of the sequence [0, 1,..., Np − 1]. In this 
scheme, the (target) vector with index i is crossed with is the base vector 
whose index is the ith element of the permutation. The permutation array 
can be initialized with consecutive integers and r0 can be computed with a 
single call to a uniform random number generator and one swap of array 
elements. Another way to permute base vectors assigns to i the vector 
whose index is the product, modulo Np, of i and an integer that is rela-
tively prime to Np. Details of both methods can be found in Sect. 5.2. 

Random Offset Selection 

The random offset method is another way to stochastically assign each tar-
get vector a unique base vector. Simpler than the permutation method, the 
random offset method computes r0 as the sum, modulo Np, of the target 
index and a randomly generated offset, rg. The modulo operator, %, in Fig. 
2.20 divides the operand, (i + rg), by Np and returns the integral remainder. 

r0=(i+rg)%Np;

Fig. 2.20. The base vector is the sum, modulo Np, of the target index, i, and the 
randomly generated offset, rg (see Fig. 2.21). 

rg=floor(randg(0,1)*Np);

Fig. 2.21. The random offset, rg, is chosen anew at the start of each generation.



64      2  The Differential Evolution Algorithm 

Each of the Np possible values for rg defines a one-to-one mapping be-
tween target and base vectors. These Np rotational mappings are a subset 
of the set of Np! permutations. The symbol, “!” is the factorial operator. 
The value of n! is just the product of all of the positive integers less than or 
equal to n. Figure 2.22 gives examples for each of the aforementioned base 
vector assignment methods. The target index is the population’s running 
index, i, so each method automatically ensures that each vector serves as a 
target vector once per generation. Only the last two methods, however, 
also ensure that each vector serves as a base vector once per generation. 
permute[i] refers to the ith element of an array containing a randomly gen-
erated permutation of the sequence [0, 1,…, Np − 1] (Np = 7 in Fig. 2.22). 
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r0=floor(randi(0,1)*Np) r0=permute[i] r0=(i+rg)%Np, (rg=2)

Fig. 2.22. Three ways to stochastically pair base and target vectors 

2.4.3 A Comparison of Random Base Index Selection Methods 

Using the ten-dimensional sphere as a test function, Table 2.4 compares 
the performance of the three stochastic base vector selection methods. (See 
the Appendix for test function details.) As Table 2.4 shows, all vector se-
lection methods respond similarly when Np is increased. Before conver-
gence becomes regular, increasing Np not only improves the probability of 
success, but also decreases the number of function evaluations needed to 
reach the optimum. Once convergence becomes regular, however, addi-
tional increases in Np only marginally improve the probability of conver-
gence while the number of function evaluations begins to climb. As a re-
sult, each method exhibits an optimal population size for which the 
number of function evaluations is a minimum. In the case of the ten-
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dimensional sphere, all three stochastic selection methods perform best 
when Np = 9, (F = Cr = 0.9 and i ≠ r0 ≠ r1 ≠ r2), with each converging re-
liably in about 6000 function evaluations. Some performance disparities 
arise, however, once degenerate vector combinations are allowed. 

Table 2.4. When best efforts are compared, all the three stochastic selection 
methods perform similarly. Results are 1000-trial averages of the number of func-
tion evaluations needed to reach the optimum to within a pre-specified limit and 
within the maximum allowed number of generations (see the Appendix for the 
function value to reach). P is the fraction of trials that were successful. For these 
results, F = Cr = 0.9 and i ≠ r0 ≠ r1 ≠ r2.

r0 = floor(randi(0,1)⋅Np) r0 = permute[i] r0 = ( i + rg)%Np
Np

Evals. P Evals. P Evals. P 
5 36,616.0 0.001 17,929.0 0.004 – 0 
6 14,215.0 0.074 16,804.2 0.309 17,627.9 0.583 

7 12,917.2 0.889 10,017.1 0.961 9047.00 0.977 

8 7097.05 0.982 6582.3 0.979 7086.11 0.995 

9 6006.70 0.994 5954.05 0.995 5927.24 0.998 
10 6039.08 0.996 5969.34 1.0 6669.14 1.0 

11 6433.55 0.998 6431.55 0.999 6843.09 1.0 

12 71,10.87 0.999 7195.95 1.0 8213.57 1.0 

13 79,86.33 0.999 8031.48 1.0 8856.00 1.0 

14 90,15.09 1.0 9040.13 1.0 10,509.7 1.0 

15 10,095.4 1.0 10,214.1 1.0 11,557.2 1.0 

2.4.4 Degenerate Vector Combinations 

If indices are chosen without restrictions, there is no guarantee that i, r0, r1
and r2 will be distinct. When these indices are not mutually exclusive, 
DE’s novel trial vector-generating strategy reduces to uniform crossover 
only, duplication of the base vector, an alternative form of recombination, 
or mutation only. These possibilities are explored below, first by looking at 
the three degenerate combinations of indices that comprise the mutant vec-
tor, r0, r1 and r2, and then by considering the three interactions of the tar-
get index, i, with the mutant indices.  
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Degenerate Combinations of Mutant Indices: r0, r1, r2 

r1 = r2: No Mutation. If r1 = r2, then the differential formed by the corre-
sponding vectors will be zero and the base vector, xr0,g, will not be mu-
tated:

.:)0(21 0,, grgirrr xv === (2.13)

When indices are chosen without restrictions, r1 will equal r2 on average 
once per generation, i.e., with probability 1/Np. The probability that all 
three indices will be equal is (1/Np)2, but either way, the result is the same: 
a randomly chosen base vector that has not undergone mutation is recom-
bined with the target vector by means of conventional uniform crossover: 
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Requiring the base vector to contribute a parameter when j = jrand en-
sures that the trial vector will not simply reproduce the vector with which 
it is compared, i.e., the target vector, xi,g. If, however, Cr is greater than 0, 
the possibility exists that the trial vector will duplicate the base vector. 
When Cr = 1, and r1 = r2, duplication is a certainty: 

grgigiCrrrr 0,,,:1)0(21 xvu ===∧== . (2.15)

More generally, the probability that the base vector will be duplicated is 
the product of the probability that r1 = r2 and the probability that all pa-
rameters are inherited from the mutant, vi,g. Since Cr mediates a random 
process having just two possible outcomes (mutant or target), the number 
of parameters inherited from the mutant is governed by a binomial distri-
bution. Thus, the probability of inheriting x mutant parameters in n tries is 
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Since one parameter is certain to be taken from the mutant, n = D − 1. 
Thus, the probability, given Cr, that all D − 1 of the remaining parameters 
will also be inherited from the mutant (x = D − 1) is 
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When difference indices are chosen without restrictions, the probability 
that the base vector will not be mutated is 1/Np, making CrD –1/Np the 
probability that a base vector will be duplicated. 

r1 = r0 or r2 = r0: Arithmetic Recombination. Another special case oc-
curs when either of the difference indices, r1 or r2, equals the base index, 
r0. When indices are chosen without restrictions, each coincidence occurs 
on average once per generation. Equation 2.18 elaborates the two possibili-
ties that result when DE’s three-vector mutation formula (Eq. 2.5) reduces 
to a linear relation between the base vector and a single difference vector: 
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Each two-vector linear combination defines a line that connects the base 
vector to one of the two difference vectors (Fig. 2.23). F plays the role of a 
coefficient of combination that determines which point along the line is 
targeted. In the parlance of evolutionary computation, this “line search” is 
usually called either continuous or arithmetic recombination. This book 
adopts the term “arithmetic recombination”. Section 2.6 explores this 
process more thoroughly. 

xr1,g (= xr0,g)

xr2,g (= xr0,g)

vi,g= xr0,g+F⋅(xr0,g-xr2,g)

vi,g= xr0,g+F⋅(xr1,g-xr0,g)

xr2,g

xr1,g

Fig. 2.23. Mutation degenerates into two-vector arithmetic recombination when 
either r1 = r0 (left) or r2 = r0 (right). 

Degenerate Combinations Involving the Target Index, i 

r0 = i: Mutation Only. If the base index, r0, is not different from the tar-
get index, i, then crossover reduces to mutation of the target vector. In this 
scenario, Cr plays the role of a mutation probability: 



68      2  The Differential Evolution Algorithm 

( ) ( )=∨≤−⋅+
=

otherwise.

,)1,0(randif

,,

rand,2,,1,,,

,,
gij

jgrjgrjgij

gij
x

jjCrxxFx
u

(2.19)

When base vector indices are randomly selected without restrictions, these 
degenerate vector combinations occur with probability 1/Np.

i = r1 or i = r2. Each of the coincidental events, i = r1 and i = r2, occurs 
with probability 1/Np when indices are chosen without restrictions. Neither 
coincidence reduces DE’s generating process to a conventional one; mu-
tants are still three-vector combinations and crossover recombines distinct 
base and target vectors (assuming r0 ≠ i).

Table 2.5 summarizes the possible degenerate vector combinations that 
can occur when difference indices are chosen without restrictions, i.e., in-
dex = floor(randi(0,1)⋅Np).

Table 2.5. First-order degenerate combinations 

Event Degenerate process Prob. Result 
Uniform crossover 1/Np vi,g = xr0,g

r1 = r2
Duplication of base vector CrD −1/Np ui,g = xr0,g

r0 = r1 Intermediate recombination 1/Np vi,g = xr0,g + F⋅(xr0,g − xr2,g)

r0 = r2 Intermediate recombination 1/Np vi,g = xr0,g + F⋅(xri,g − xr0,g)

i = r0 Differential mutation 1/Np vi,g = xi,g + F⋅(xr1,g − xr2,g)

i = r1 None 1/Np vi,g = xr0,g + F⋅(xi,g − xr2,g)

i = r2 None 1/Np vi,g = xr0,g + F⋅(xr1,g − xi,g)

Higher Order Degenerate Combinations 

The above index pairings are first-order degenerate combinations in which 
only two of four indices are coincident. If indices are chosen without re-
strictions, the same index may be chosen more than twice. In practice, the 
effects of higher order degenerate combination are small because their 
probability is inversely proportional to powers of Np ≥ 2. 

2.4.5 Implementing Mutually Exclusive Indices 

Enforcing i ≠ r0 

If base indices are chosen randomly, as they are in classic DE, then r0 = i
can be prevented by using a “do–while” loop to reselect r0 until it no 
longer equals the target vector index (Fig. 2.24). 
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do
{

r0=floor(randi(0,1)*Np);

}while(r0==i);

Fig. 2.24. To ensure that base and target vectors are different, r0 should be rese-
lected.

Similarly, if base vectors are the elements of a permutation, then r0 can 
be redrawn from the remaining list of unused indices, except when i is the 
last element of the permutation. In the random offset method, choosing rg

from the more restricted range [1, Np − 1], ensures that r0 = i does not oc-
cur.

Mutually Exclusive Indices: i ≠ r0 ≠ r1 ≠ r2 

Once the base vector has been determined, difference indices can be cho-
sen. Perhaps the simplest way to implement mutually exclusive indices is 
to use a pair of “do–while” loops (Fig. 2.25) to reselect any difference in-
dex that happens to equal the target, base or a previously chosen difference 
index.

do
{

r1=floor(randi(0,1)*Np);

}while(r1==i || r1==r0); // "||" is "or"
do
{

r2=floor(randi(0,1)*Np);

}while(r2==i || r2==r0 || r2==r1);

Fig. 2.25. Given r0 ≠ i, distinct indices should be selected with a pair of do–while 
loops.

Distinct difference indices can be taken from arrays of random permuta-
tions of the sequence [0, 1,…, Np − 1]. Methods for generating random 
permutations are presented in Sect. 5.2 and as an option in the Matlab code 
on this book’s companion CD-ROM.



70      2  The Differential Evolution Algorithm 

2.4.6 Gauging the Effects of Degenerate Combinations: The 
Sphere

Table 2.6 calls upon the ten-dimensional sphere to reveal how the presence 
of degenerate combinations affects both the speed and probability with 
which each of three stochastic base index selection methods converges. 
Because it is simple, the sphere provides a good way to interpret the effect 
of degenerate vector combinations. Performance is measured at the value 
of Np that minimizes the average number of function evaluations. The first 
row of results, labeled “All”, shows the combined effect of all degenerate 
combinations (any r0, r1, r2). For the final row of results, labeled “None”, 
indices are mutually exclusive (i ≠ r0 ≠ r1 ≠ r2) and degenerate combina-
tions are forbidden. The middle rows record what happens when only the 
designated index coincidence is permitted. 

Table 2.6. DE’s performance is influenced by the way in which trial vector indi-
ces are chosen. Here, the effects of degenerate vector combinations on the three 
base index selection schemes are compared. Results are 1000-trial averages, with 
F = Cr = 0.9. The value of Np is that which yields the answer in the fewest num-
ber of function evaluations, while P is the corresponding probability of success. 
Data for the last row “None”, has been copied from Table 2.4. 

r0 = floor(randi(0,1)⋅Np) r0 = permute[i] r0 = (i + rg)%NpAllowed
event Np Evals. P Np Evals. P Np Evals. P 
All 14 6479.79 0.992 14 6359.32 0.996 13 6549.55 1.0 

r1 = r2 13 6585.71 0.797 14 6522.19 0.881 13 6568.55 0.993 

r0 = r1 9 6388.09 0.967 9 6341.93 0.976 9 6371.36 0.994 

r0 = r1 13 5832.56 1.0 13 5743.42 1.0 13 5769.72 1.0 

i = r0 9 6067.18 0.991 9 5940.59 0.993 10 10,829.5 1.0 

i = r1 9 6009.60 0.992 9 6007.01 0.998 9 6204.13 0.999 

i = r2 9 5955.17 0.992 9 5847.14 0.998 9 5729.59 1.0 

None 9 6006.70 0.994 9 5954.05 0.995 9 5927.24 0.998 

All: Any r0, r1 and r2

The first row of data summarizes the combined influence of all degenerate 
combinations, including higher order degenerate combinations. Although 
the large optimal population size helps to keep convergence probability 
competitive, it also slows convergence speed. 
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r1 = r2 

Except for the anomalous behavior of the random offset method when r0 = 
i, all three base index selection methods exhibit their worst performance 
when equal difference indices are allowed (r1 = r2). At Cr = 0.9, a signifi-
cant fraction of these events (about 39%) duplicate base vectors. Re-
evaluating duplicated vectors wastes time and accepting them reduces the 
population’s effective size. Indeed, Table 2.6 shows that when r1 = r2 is 
allowed, all three base index selection methods require relatively large 
populations. In this case, increasing Np to compensate for duplicated en-
tries slows convergence without making it reliable. 

r0 = r1 

Because difference vector xr2,g is preceded by a minus sign, r0 = r1 places 
the recombinant farther away from xr2,g than was xr1,g whenever F > 0 (re-
fer back to Fig. 2.23). For the sphere, accepting this recombinant slows 
convergence and compromises reliability. This form of recombination also 
tends to slow convergence on multi-modal functions, but its effect on the 
probability of convergence will not always be detrimental. 

r0 = r2 

By contrast, all three base index selection methods performed best when 
they allowed r0 = r2 to transform differential mutation into arithmetic re-
combination. This is because when 0 < F < 2, r2 = r0 produces a recombi-
nant that lies closer to xr1,g than was xr2,g. This contractile mapping im-
proves optimization speed even though Np must be increased to 
compensate for the additional convergence “pressure”. Allowing this index 
combination typically speeds optimizations of multi-modal functions as 
well, but unlike the case of the sphere, it is less common that convergence 
probability will also improve. 

i = r0 

A careful examination of Table 2.6 shows that the random offset method 
(last column) exhibits the best probability of convergence under all cir-
cumstances. In addition, its speed of convergence is competitive except for 
the case i = r0, when the number of function evaluations balloons to nearly 
twice that of the other two methods. It may seem curious that permitting 
the combination r0 = i affects the performance of the random offset 
method so much more than it does the random selection method, even 
though r0 = i occurs on average once per generation in both cases. The 
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performance disparity arises because when the random offset equals zero 
(rg = 0), an entire generation of target–base pairings is turned into degener-
ate combinations, whereas unrestricted random selection spreads them uni-
formly over the generations. When allowed, the same “identity mapping” 
of target and base vectors also occurs in the permutation method, but its ef-
fect is negligible since it occurs on average only once every Np! genera-
tions.

i = r1 and i = r2 

The influence of i = r1 and i = r2 is more difficult to analyze than that of 
the corresponding pair of events r0 = r1 and r0 = r2, but it mirrors their 
behavior, with one event speeding convergence (i = r2) and the other re-
tarding it (i = r1). Although its convergence speed distinguishes i = r1
from i = r2, both events have little effect on either convergence probability 
or optimal population size when compared to the case of mutually exclu-
sive indices (i.e., “None”). 

None

Excluding all degenerate target, base and difference vector combinations, 
i.e., i ≠ r0 ≠ r1 ≠ r2, enables DE to achieve both good convergence speed 
and probability with a relatively small population. Imposing restrictions 
eliminates the function-dependent effects of degenerate search strategies 
and ensures that both crossover and differential mutation play a role in the 
creation of each trial vector. 

The effect that degenerate vector combinations have on DE’s perform-
ance depends in some degree on the objective function. For the hyper-
sphere, however, only i = r0 dramatically affected DE’s performance. In 
practice, even these first-order degenerate combinations play only a lim-
ited role in the optimization process simply because they become increas-
ingly infrequent as the population grows. 

2.4.7 Biased Base Vector Selection Schemes 

In GAs, better vectors are more likely to be chosen for recombination 
(Holland 1973). Similarly, some versions of DE select the base vector 
based on its objective function value. For example, the algorithm 
DE/best/1/bin (Storn 1996) always selects the best-so-far vector (best) as 
the base vector, adds a single (1) scaled vector difference to it, then creates 
a trial vector by uniformly crossing (bin) the resulting mutant with the tar-
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get vector. In this algorithm, the base vector always has the lowest objec-
tive function value in the current population 

( ) ( ).),1,...,1,0(if,best0 ,,best gig ffNpir xx ≤−∈∀= (2.20)

When compared to random base vector selection at the same Np, best-so-
far base vector selection usually speeds convergence, reduces the odds of 
stagnation and lowers the probability of success. Chapter 3 examines this 
trade-off between speed and reliability when the performance of 
DE/rand/1/bin and DE/best/1/bin are compared.  

Two alternative base vector selection schemes have been proposed that 
bias solutions toward better vectors without creating the intense selection 
pressure that the “best” method applies. In Price (1997), a base vector’s 
objective function value must be less than or equal to that of the target vec-
tor, xi,g:

( ) ( ).if,better0 ,,better gig ffr xx ≤= (2.21)

The other method, DE/target-to-best/1/bin (called “rand-to-best” in (Storn 
1996)), uses arithmetic recombination (see Sect. 2.6.3) to generate a base 
vector that lies on a line between the target vector and the best-so-far vec-
tor:

( ) [ ] .constant1,0,,,best,,0 =∈−⋅+= kk giggigr xxxx (2.22)

The constant, k, in Eq. 2.22 controls the bias toward the best-so-far solu-
tion.

Compensating for Lost Diversity 

Compared to random base vector selection, setting r0 = best lowers the di-
versity of the pool of potential trial vectors. Increasing the population size 
is both a simple and effective way to enhance the diversity of the pool of 
potential trial vectors, but several other schemes have also been proposed. 
One idea was to expand the set of vector differences by adding two differ-

ence vectors together (Price 1996; Storn 1996). Because they are larger 
than their single difference counterparts, differentials composed of two dif-
ferences typically require a smaller F to match the convergence rate that 
one-difference differentials produce. Except for a few early successes on 
relatively simple functions, this method has not shown much promise, per-
haps because adding difference vectors destroys the correlation that the ob-
jective function’s topography imparts to the one-difference vector differen-
tials (see contour matching in Sect. 2.17).  
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Making F a random variable is another way to enhance the pool of po-
tential trial vectors. This technique, which is covered extensively in Sect. 
2.5.2, has proven useful in cases where stagnation threatens, or when con-
vergence is very slow. In particular, R. Storn has found randomizing the 
scale factor, F, to be crucial when designing digital filters (Sect. 7.8). 

2.5 Differential Mutation 

Most dictionaries define mutation as an alteration or change. In the context 
of genetics and EAs, however, mutation is also seen as change with a ran-
dom element. Thus, real-valued EAs typically simulate the effects of muta-
tion with additive increments that are randomly generated by a predefined 
probability distribution function, or PDF. DE, however, uses a uniform 
PDF not to generate increments, but to randomly sample vector differ-
ences:

( )2121, rrrr xxx −=∆ . (2.23)

In a population of Np distinct vectors, there will be Np⋅(Np − 1) non-
zero vector differences and Np null differences having zero magnitude giv-
ing a total of Np2 vector differences. Figure 2.26 pictures an arbitrary 
population of 5 vectors and the sheaf of 20 non-null difference vectors that 
they generate. 

x0,g

x1,g

x2,g

x3,g

x4,g

Fig. 2.26. The figure on the right displays the sheaf of 20 vector differences gen-
erated by the population of 5 vectors shown on the left. Here, differentials have 
been scaled by half (F = 0.5), and transported to a common origin. Note that the 
distribution is symmetric about zero. 

The distribution of difference vectors will depend on the distribution of 
vectors and this will be different for each objective function. Each distribu-
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tion, however, will be symmetric about zero because every pair of vectors 
gives rise to two opposite but equal difference vectors, since reversing the 
order of the vectors in the differential reverses the sign of the differential: 

( ) ( ) grrgrgrgrgrgrr 1,2,1,2,2,1,2,1, xxxxxx ∆−=−−=−=∆ . (2.24)

Since each difference vector can be paired with a differential of equal 
value but opposite sign, and since all vector differences are equally prob-
able, both the sum and average over all Np2 difference vectors are zero. 
Equation 2.25 sums the Np2 vector differences (including the Np cases 
when i = k and ∆x = 0) and normalizes the result. The brackets, , indicate 
that ∆x is an (ensemble) average taken over all population members, not an 
expectation or a time average: 
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2.5.1 The Mutation Scale Factor: F

Limits on F 

Upper. The stated range for F is (0,1), although 1.0 is an empirically de-
rived upper limit in the sense that no function that has been successfully 
optimized has required F > 1. This is not to say that solutions are not pos-
sible when F > 1, but only that they tend to be both more time consuming 
and less reliable than if F < 1. When F = 1 exactly, otherwise distinct vec-
tor combinations become indistinguishable: 
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This discontinuity at F = 1 reduces the number of mutants by half and can 
result in erratic convergence unless Cr < 1, since Cr = 1 further restricts 
the pool of possible trial vectors by not crossing mutant and target parame-
ters.

Lower. In general, selection tends to reduce the diversity of a population, 
whereas mutation increases it. To avoid premature convergence, it is cru-
cial that F be of sufficient magnitude to counteract this selection pressure. 
Zaharie (2002) recently demonstrated the existence of what is effectively a 
lower limit for F, finding that if F is too small, the population can con-
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verge even if selection pressure is absent. In her study, Zaharie measured 
population diversity as the variance of its parameter values. Because all 
variables are independent in the absence of selection pressure, population 
diversity can be measured by tracking the variance of a single parameter of 
the population. In Eq. 2.27, the subscript, “x”, in Px,g is set in italics to em-
phasize that the variance and mean are computed using one parameter

from each vector in the population (the particular parameter is not speci-
fied):
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Using a methodology pioneered by H.-G. Beyer (1999), Zaharie com-
puted the expected variance of DE’s mutant and trial populations given the 
variance of the population. The goal was to determine which combinations 
of DE control parameters were likely to result in premature convergence 
due solely to the inability of the algorithm to generate a trial population as 
diverse as the population. To simplify her analysis, Zaharie dropped DE’s 
usual demand that base and target vectors be different, although the re-
quirement that base and difference vectors be distinct was retained. By 
dropping the demand that at least one trial parameter be inherited from the 
mutant, Zaharie also assumed that Cr is a true crossover probability, pCr. In 
order to compute the expected population variance, Zaharie further modi-
fied the standard DE algorithm by multiplying F by a Gaussian random 
variable, ξj, that is chosen anew for each parameter

( ) ( )1,0N,
~

;
~

2,,1,,0,,,, ≈⋅=−⋅+= jjjgrjgrjjgrjgij FFxxFxv ξξ . (2.28)

With these caveats, Zaharie determined that the expected variance of the 
mutant population is related to the variance of the population by the for-
mula: 
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If this mutant population is then crossed with the original population, the 
expected trial population variance becomes: 

( )( ) ( )gx
CrCr

Crgu
Np

p

Np

p
pFE ,

2
2

, PVar1
2

2PVar ++−= .
(2.30)

Consequently, DE control parameter combinations that satisfy the equa-
tion:
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can be considered to be critical since they result in a population whose 
variance remains constant except for random fluctuations. When selection 
is “turned off”, Eq. 2.31 predicts that F will display a critical value, Fcrit,
such that the population variance decreases when F < Fcrit and increases 
when F > Fcrit. Solving Eq. 2.31 for F gives Fcrit as 

Np

p

F

Cr−
=

21

crit .

(2.32)

Thus, Fcrit establishes a lower limit for F in the sense that smaller values 
will induce convergence even on a level objective function landscape. Fig-
ure 2.27 confirms the prediction by Zaharie that F = 0.1341 is a critical 
value when Np = 50 and pCr= 0.2. 
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Fig. 2.27. The evolution of the variance of a single parameter is displayed for four 
different values of F. Note that F ~ 0.134 is critical in the sense that the variance is 
nearly constant. Results are for evolution on a flat surface, i.e., all trial vectors are 
accepted (no selection pressure). These results are 100-trial averages and were 
generated using Zaharie’s modified version of DE, with Np = 50 and pCr = 0.2. 
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Objective function landscapes are seldom flat. In practice, F must be 
larger than Fcrit to counteract the additional reduction in variance that se-
lection induces. For example, Zaharie empirically examined three test 
functions using Np = 50, pCr = 0.2 and found that F ~ 0.3 was the smallest 
reliable scale factor and that Fcrit= 0.1341 was too small to forestall prema-
ture convergence. 

Figure 2.28 illustrates the effect of this additional selection pressure 
produced by the 30-dimensional Rastrigin function on the population’s 
variance over time at several different values for F.
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Fig. 2.28. Even though F is above the critical value, the population variance still 
decreases over time due to the selection pressure exerted by the objective function, 
in this case the thirty-dimensional Rastrigin function. Results are 100-trial aver-
ages obtained with Zaharie’s version of DE, with Np = 50 and pCr = 0.2. 

A DE control parameter study by Gamperle et al. (2002) explored DE’s 
performance on two of the same test functions that Zaharie used and con-
cluded that F < 0.4 was not useful. In Ali and Törn (2000), C–Si clusters 
were optimized with F never falling below F = 0.4. On the other hand, 
Chakraborti et al. (2001; Sect. 7.1) had success minimizing the binding en-
ergy of Si–H clusters using values for F ranging from 0.0001 to 0.4, with F
= 0.2 often proving effective. Such low values for F, however, appear to be 
atypical. The lower limits suggested by Zaharie and Gamperle et al. more 
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accurately reflect the norm. Zaharie concluded that for the test functions 
examined, modifying vector differences with a Gaussian distribution did 
not significantly alter DE’s performance compared to when F is held con-
stant. The next section tests this claim and examines several other methods 
for transforming F into a random variable. 

2.5.2 Randomizing the Scale Factor 

When compared to the ES, DE shifts the responsibility for adapting step 
sizes from the mutation distribution’s pre-factors to the distribution itself. 
More specifically, the ES adapts pre-factors (strategy parameters) and mul-
tiplies them by the output from a stationary, multi-dimensional PDF, 
whereas DE multiplies the constant pre-factor, F, by a sample vector dif-
ference from an adaptive distribution. Whereas the ES “strategy” parame-
ters adapt to the absolute step size, F only affects the relative step size 
since the distribution of vector differences is itself adaptive. Thus, F can 
be kept constant during optimization without compromising DE’s ability to 
generate steps of the required size. Indeed, keeping F constant has proven 
effective in the sense that no function that has been solved has required F
to be a random variable. Nevertheless, randomizing F offers potential 
benefits.

Transforming F into a random variable effectively broadens the spec-
trum of vector differentials beyond the possibilities allowed for by com-
bining vectors. Such an enhanced distribution of differentials might be use-
ful if the population is small and/or symmetrically distributed, since 
without access to a mutation distribution of sufficient diversity, DE can 
stagnate. When stagnant, DE can no longer find improved solutions be-
cause no combination of vector and vector difference leads to a better solu-
tion. Instead of coalescing to a single solution, a stagnant population of 
vectors remains static while still distributed throughout the problem space. 
The case explored by Lampinen and Zelinka (2000) is hypothetical and 
subsequent attempts to induce stagnation in test functions with classic DE 
have been unsuccessful. Nevertheless, randomizing the scale factor is a 
way to increase the pool of potential trial vectors and minimize the risk of 
stagnation without increasing the population size. 

Transforming F into a random variable also makes the analysis of DE 
dynamics tractable. By invoking the normal (Gaussian) distribution, Za-
harie succeeded not only in predicting critical control parameter combina-
tions, but also in constructing a limited convergence proof (Zaharie 2002). 
Zaharie based her proof on the general EA convergence criteria set forth 
by G. Rudolph (1996). Briefly, an evolutionary search algorithm can be 
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proven to converge to within ε > 0 of the global optimum in the long-time 
limit if its operators fulfill two (sufficient, but not necessary) conditions: 

1. The transition probability, through mutation, between any two points in 
the problem space is strictly positive. 

2. Selection is elitist, i.e., that the best-so-far solution is always retained. 

DE selection is elitist because the population’s current best vector can only 
be replaced by a better vector. By multiplying F by a normally distributed 
variable, Zaharie ensured that the unbounded, multi-normal distribution 
could access any point given enough time. The possibility does exist, how-
ever, that all members of a population may have the same value for one or 
more parameters, in which case no new possibilities for that parameter are 
generated. Zaharie considers this set to be of zero measure and that it has 
no impact on the proof that DE is convergent when mutation is augmented 
by a Gaussian random variable. 

Converting F into a random variable, however, involves both selecting a 
PDF and deciding how often it should be sampled. Zaharie, for example, 
sampled a zero-mean, normally distributed random variable anew for each 
parameter, but this is not the only possibility. The next two subsections 
explore how both the sampling frequency and PDF affect the optimization 
process.

PDF Sampling Frequency: Dither and Jitter 

In Zaharie’s version of DE, Fj is a normally distributed random variable 
that is generated anew for each parameter. For convenience, the practice of 
generating a new value of F for every parameter is called jitter and it is 
signified by subscripting F with the parameter index, j. Alternatively, 
choosing F anew for each vector, or dithering, is indicated by subscripting 
F with the population’s running index, i. Dithering scales the length of 
vector differentials because the same factor, Fi, is applied to all compo-
nents of a difference vector (Fig. 2.29). As such, dithering does not dra-
matically depart from traditional DE in which each component of a differ-
ential is scaled by the same constant, F. Jitter, however, multiplies each 
component of the difference vector by a different scale factor, Fj, and this 
changes not only the scale of the differential, but also its orientation. The 
rotation that it introduces makes jitter a fundamentally different process 
than classic DE mutation with F = constant.

When Cr = 0, only one trial vector parameter is inherited from the mu-
tated base vector, so it impossible to distinguish jitter from dither, since in 
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both cases only a single instance of F as a random variable occurs per trial 
vector. In order to compare how jitter and dither affect the optimization 
process, it is necessary to plot DE’s performance versus Cr.

∆x1

x1

x0∆x0Fi∆x0

Fi∆x1

∆x1

x1

x0∆x0F0∆x0

F1∆x1

Fig. 2.29. Dithering (left) scales vector differentials, while jitter (right) both scales 
and rotates them. 
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Fig. 2.30. The graph on the left illustrates how implementing jitter and dither with 
the N(0,1) PDF affects convergence speed compared to holding F constant. Plot-
ted as a function of Cr is the minimum number of function evaluations required to 
optimize the ten-dimensional hyper-sphere. The graph on the right plots the corre-
sponding optimal Np at which the minimum number of evaluations occurred. For 
example, at Cr = 0.8, the graph on the left shows that jitter took a little more than 
3000 evaluations, while the graph on the right shows that the population used to 
produce this result was Np = 8 (at Cr = 0.8). Results are 1000-trial averages 
which, except for the indicated randomization method, were obtained with F =
0.9, r0 = randi(0,1)⋅Np, except r0 ≠ r1 ≠ r2 ≠ i (i.e., classic DE). 

Using the normal (Gaussian) PDF, N(0,1), to drive dither and jitter, Fig. 
2.30 plots both the minimum number of function evaluations and the cor-
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responding optimal population size at which the minimum occurred versus

Cr for each of the three methods when applied to the ten-dimensional hy-
per-sphere objective function. An inspection of the graphs in Fig. 2.30 re-
veals that: 

• As expected, both jitter and dither exhibit the same number of function 
evaluations and the same optimal population size (Np = 7) when Cr =
0.

• At Cr = 0.2 (Zaharie’s choice), all three methods require about the 
same number of function evaluations, with both jitter and dither also 
having the same optimal population size (Np = 8). 

• Over the range of Cr, jitter was the fastest technique and the optimal 
population size was virtually constant at Np = 8. 

• In terms of the number of function evaluations, F = constant and dither 
perform similarly, but dither requires a larger population. 

The data in Fig. 2.30 casts suspicion on Zaharie’s contention that multi-
plying each component of a differential by a normally distributed variable 
does not affect DE’s performance. Even for a function as simple as the hy-
per-sphere, classic DE with its constant F and Zaharie’s method of jitter 
perform similarly only when Cr = 0.2 and this performance discrepancy 
grows as Cr increases. 

Not shown in Fig. 2.30 is the fact that all trials conducted with both 
dither and jitter at their optimal Np were successful, but convergence was 
less than perfect when F was kept constant, as Table 2.7 shows. A slight 
increase in Np, however, would put the convergence probability on a par 
with that of dither and jitter, but then the average number of function 
evaluations would also increase. 

Table 2.7. The fraction of trials that were successful when optimizing the ten-
dimensional hyper-sphere using classic DE and F = constant = 0.9. By contrast, all 
trials with dither and jitter were successful at the specified optimal Np.

Cr 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
P 0.966 0.884 0.95 0.931 0.916 0.881 0.865 0.957 0.971 0.991 1 

Also not shown in Fig. 2.30 are the data points associated with Cr = 1. 
These points are not plotted in Fig. 2.30 simply because the large values 
for dither and F = constant would overwhelm the data for Cr ≤ 0.9. In-
stead, Table 2.8 reports both the average minimum number of function 
evaluations and the population size at which this minimum occurred for 
each of the three methods when Cr was set equal to 1. When compared to 
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trials using Cr ≤ 0.9, all three methods required significantly larger popula-
tions to offset the loss of diversity that occurs when Cr = 1, exactly. In this 
case, the penalty for enlisting larger populations is slower convergence. 

Table 2.8. When Cr = 1, both the optimal population size and the number of func-
tion evaluations balloon for both dither and F = constant and even jitter takes 
twice as long to converge as it does when Cr = 0.9. Results are 1000-trial averages 
for the ten-dimensional hyper-sphere using classic DE except for the indicated 
randomization method using a normal distribution: N(0,1). 

Process Evaluations Np

F=constant 49,809.5 41 
Dither 33,640.1 109 

Jitter 6037.11 13 

The hyper-ellipsoid (Eq. 2.33) poses a stiffer challenge to optimization 
algorithms because unlike the symmetrical hyper-sphere, the optimal step 
size depends on the direction in which the step is taken: 

−

=

=
1

0

2
ellipsoid 2)(

D

j

j
j xf x .

(2.33)

Figure 2.31 shows a single contour of constant function value for the two-
dimensional version of this function. 

x0

x1
fellipse(x)=constant

x*
(√2,0)

(0,1)

Fig. 2.31. The ellipse is a single contour of the two-dimensional version of the el-
lipsoidal function described by Eq. 2.33. The optimum, x*, is located at the origin, 
(0,0). The principal axes of the ellipse are aligned with the coordinate axes. Tak-
ing large steps along x0 and smaller steps along x1 efficiently optimizes this func-
tion.



84      2  The Differential Evolution Algorithm 

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1

Cr

E
v

a
ls

.

Constant Dither Jitter

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Cr

N
p

Constant Dither Jitter

Fig. 2.32. The graph on the left illustrates the effects of jitter, dither and F = con-
stant by plotting, as a function of Cr, the minimum number of function evaluations 
needed to optimize the ten-dimensional hyper-ellipsoid. The graph on the right 
plots the corresponding optimal Np at which the minimum number of evaluations 
occurred. For example, at Cr = 0.9, the graph on the left shows that jitter took 
about 4000 function evaluations when using the population indicated in the graph 
on the right at Cr = 0.9, i.e., Np = 8. Results are 1000-trial averages, F = 0.9 and 
classic DE except for randomizing F with a normal distribution N(0,1). 

Figure 2.32 profiles how both jitter and dither influence DE’s ability to 
optimize the ten-dimensional hyper-ellipsoid. Except for requiring roughly 
15% more function evaluations, the performance profiles for the hyper-
ellipsoid are virtually indistinguishable from those generated for the hyper-
sphere.

Before taking these profiles to be universal, it is instructive to perform 
the same experiment, except that this time, trial vectors are evaluated in a 
coordinate system that has been rotated 45° with respect to the principal 
axes of the ellipse (Fig. 2.33). 

In two dimensions, this rotated version of the ellipse defined by Eq. 2.33 
is

( ) ( )2
110

2
0ellipse 2 xxxxf +−=x . (2.34)

As a result of this rotation, the ellipse, which is separable as defined in 
Eq. 2.33, becomes nonlinear, i.e., parameters become dependent. The 
cross-term, x0x1, in Eq. 2.34 embodies this parameter dependence (see 
Sects. 1.2.3 and 2.6.2). Even though rotation does not alter the objective 
function’s topography, the parameter dependence that it induces compro-
mises DE’s efficiency in the presence of jitter. 
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x0

x1
fellipse(x)=constant

x*
(1,0)

(0,1)

Fig. 2.33. Once rotated, the parameters of the ellipse function become dependent. 
An efficient search of the long axis along the diagonal now requires that large 
steps in both coordinate directions occur simultaneously, i.e., that they be corre-
lated.

As Fig. 2.34 illustrates, transforming the hyper-ellipsoid from a separa-
ble function into one with dependent parameters via a coordinate system 
rotation dramatically alters the performance profiles of all three methods. 
In particular, the data plotted in Fig. 2.34 show that: 

• In contrast to results for the separable hyper-ellipsoid, the fastest solu-
tions now occur at high Cr.

• Jitter is now the worst performing method even though population 
sizes remain relatively small. 

• F = constant is the fastest method except when Cr = 1, in which case 
dithering is faster. 

At Cr < 0.5, the fastest run-times begin to occur at population sizes that 
are too small to produce reliable convergence. To be fair, the number of 
function evaluations for different methods must be compared at the same 
probability of convergence. In previous examples, convergence probabili-
ties were so close to 1 that the small differences between them did not 
compromise the validity of the performance comparisons. A method for 
evaluating algorithm performance that gives proper weight to convergence 
probabilities will be presented in Chap. 3 when several version of DE are 
tested. For now, higher run-times and worse convergence probabilities 
make it easy to say that DE’s performance on the parameter-dependent (ro-
tated) hyper-ellipsoid deteriorates at low Cr.



86      2  The Differential Evolution Algorithm 

0

50000

100000

150000

0 0,2 0,4 0,6 0,8 1

Cr

E
v

a
ls

.

Constant Dither Jitter

0

20

40

60

80

100

120

0 0,2 0,4 0,6 0,8 1

Cr

N
p

Constant Dither Jitter

Fig. 2.34. Once rotation induces parameter dependence in the ten-dimensional hy-
per-ellipsoid, the three techniques become inefficient at low Cr. Population sizes 
used to produce the graph on the left are plotted in the graph on the right at the 
corresponding value of Cr. For example, jitter still uses small populations but is 
slow nonetheless. Despite using large populations, dither is more efficient than jit-
ter when Cr > 0.6 and more efficient than F = constant = 0.9 when Cr = 1. Keep-
ing F constant, however, uses relatively small populations and gives the overall 
fastest result at Cr = 0.9. All results are 1000-trial averages with classic DE, ex-
cept for the indicated randomization scheme. For this experiment, the PDF was the 
normal distribution, N(0,1). 

 Since it was the fastest method when the hyper-ellipsoid was separable 
and was competitive with both dither and F = constant on the rotated hy-
per-ellipsoid at Cr = 1, jitter would seem to be a good strategy as long as 
Cr is chosen wisely. The case of the Chebyshev polynomial, however, 
suggests differently (see the Appendix for a function description). Like the 
rotated hyper-ellipsoid, the Chebyshev polynomial fitting problem is a 
function with dependent parameters that requires correlating step sizes that 
differ greatly in magnitude from one parameter to the next. Unlike the hy-
per-ellipsoid, the Chebyshev function is multi-modal. Figure 2.35 com-
pares the number of function evaluations taken by dither to those needed 
by F = constant to find the coefficients of the nine-dimensional Chebyshev 
polynomial. 

The results in Fig. 2.35 are remarkably similar to those displayed by 
dither and F = constant for the rotated hyper-ellipsoid in Fig. 2.34, except 
that now dither gives the overall fastest solution (when Cr = 1). Missing 
from Fig. 2.35 are the results for jitter. Like the case of the rotated hyper-
ellipsoid, jitter was most effective when Cr = 1, but unlike the case of the 
rotated hyper-ellipsoid, run-times at this optimal crossover setting were not 
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Fig. 2.35. Dither and F = constant perform similarly on the nine-dimensional 
Chebyshev function, with dither converging in fewer function evaluations than F
= constant at Cr = 1. Results for jitter are not shown, as run-times were in excess 
of 6 million function evaluations and convergence was erratic even for large popu-
lations. Results are 100-trial averages with Np = 40. Both dither and jitter (not 
shown) used the normal PDF; otherwise, the algorithm was classic DE. 

competitive with those turned in by either dither or F = constant. Not only 
was convergence erratic even with large populations, but the number of 
function evaluations taken by successful trials never averaged less than 6 
million, making jitter over 100 times slower than either dither or F = con-
stant. Clearly, these results refute Zaharie’s contention that DE’s perform-
ance is not significantly affected by transforming F into a Gaussian ran-
dom variable that is sampled anew for each parameter. 

Although jitter is effective on separable functions, its poor performance 
on non-separable, multi-modal functions makes it a questionable strategy 
for non-linear global optimization with DE unless the deviations it gener-

ates are very small, e.g., d = 0.001 in the case of uniform jitter (see next 
subsection). The next subsection explores this possibility with some alter-
natives to the Gaussian PDF. 

Other Distributions 

The effectiveness of both jitter and dither can be improved by moderating 
the amount of variation in Fj and Fi, respectively. The problem with Za-
harie’s formulation in this regard is that as the standard deviation, σ, of the 
normal (Gaussian) distribution approaches zero, so does Fj (or Fi):



88      2  The Differential Evolution Algorithm 

( ) 0lim);,0(N 0 =⋅= → jjj FFF σσ (2.35)

To circumvent this difficulty, F can be multiplied by a PDF whose aver-
age value is 1, not 0. This way, both dither and jitter revert to the F = con-
stant model as the amount of variation, e.g., σ, approaches zero. Further-
more, the order in which difference vectors are chosen determines the sign 
of a differential, so a PDF need only generate positive values in order to 
scale differential magnitudes. A normal distribution can be given an aver-
age value of 1 simply by adding one to the zero mean normal PDF, N(0,1), 
but the resulting distribution will still generate both positive and negative 
values. The traditional PDF for perturbing scale factor magnitudes is the
log-normal distribution. 

Log-normal. In the ES, not only are the objective function variables mu-
tated and recombined, but so too are the components of the adaptive corre-
lation matrix. Of the correlation matrix’s D2 components, D are scale fac-
tors while the remaining D⋅(D − 1) are rotation angles. Although the ES 
perturbs rotation angles with normally distributed random variables, it 
turns to the log-normal PDF to mutate the strategy parameters that regulate 
step sizes (Bäck 1996). An instance of a log-normal random variable for

DE can be computed as 

−=
2

)1,0(exp
ττ jj NFF .

(2.36)

The factor, τ, controls the spread of the distribution while the termτ/2 is 
an empirically derived factor that normalizes the expected value of the dis-
tribution to 1.0. When τ  = 0, the average value of the log-normal PDF is 
the constant value 1, so all Fj = F. In this model, the distribution’s variance 
can be controlled independently of F. Figure 2.36 shows how the spread of 
the log-normal distribution affects DE’s ability to optimize both the rotated 
hyper-ellipsoid and the Chebyshev polynomial fitting problem. 

In both plots, jitter requires an increasing number of function evalua-
tions as τ increases. For the Chebyshev polynomial fitting problem, this 
increase is explosive. By contrast, dither actually shows a slight decrease

in the number of function evaluations when compared to F = constant, 
with the best performance occurring near τ = 0.4. The improvement 
amounts to roughly 10% for the rotated hyper-ellipsoid and just over 40% 
for the Chebyshev problem. 
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Fig. 2.36. Jitter performs worse as the variance of the log-normal distribution is 
increased from zero. By contrast, dither is faster than F = constant (τ = 0) on both 
the rotated hyper-ellipsoid (while τ > 0.6) and the Chebyshev problem (while τ ≤
0.9). In both cases, the fastest convergence occurs near τ = 0.4. Data points are 
1000-trial averages for the rotated hyper-ellipsoid and 100-trial averages for the 
Chebyshev problem. Results were obtained using classic DE except for the indi-
cated randomization method with a log-normal PDF. Np = 40.  

Uniform. The uniform distribution can also be transformed into a PDF 
whose average value is F and whose spread is an independent variable. 
Equation 2.37 illustrates one possibility: 

( )( ) FddFF jj 2,5.01,0rand <−⋅+= . (2.37)

To keep Fi positive, d must be less 2F. Like τ in the log-normal PDF, d
controls the amount of variation in the uniform PDF. The log-normal PDF, 
however, occasionally generates both very large and very small perturba-
tions, both of which can degrade DE’s performance because they tend to 
slow progress toward the optimum. The uniform distribution with d ~ F ef-
fectively eliminates these extremes. Figure 2.37 compares DE’s perform-
ance on both the rotated hyper-ellipsoid and Chebyshev polynomial fitting 
problem as a function of the spread, d.

Figure 2.37 shows that as long as d < 0.1, jitter remains competitive, al-
though once d > 0.2, its performance quickly deteriorates. It should be em-
phasized, however, that a very small amount of jitter can prove useful, 
sometimes providing solutions that would otherwise be impossible with F
= constant. 
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Fig. 2.37. The profiles generated by the uniform and log-normal PDFs are very 
similar. Jitter’s performance worsens as the variation increases and dither con-
verges faster than F = constant (d = 0) when 0 < d < 1.4. Dither’s best perform-
ance in this case occurs when d = 0.9 (not plotted). Results are 1000-trial averages 
for the rotated hyper-ellipsoid and 100-trial averages for the Chebyshev problem. 
In both cases, all trials were successful. The algorithm was classic DE except for 
the specified randomization technique with the uniform PDF. Np = 40. 

In particular, experiments with the digital filter design program FIWIZ 
(Sect. 7.8). have shown that uniform jitter on the order of d = 0.001 is of-
ten indispensable. In addition, jitter can reduce the size of the population 
that DE needs to solve a given problem. 

Dither’s performance changes little when log-normal noise replaces the 
uniform PDF. The slightly larger optimal population size posted by the 
log-normal PDF suggests that the small steps present in the log-normal 
PDF but excluded by the uniform PDF only marginally inflate the optimal 
population size. The similarly of the two results also suggests that the very 
large steps generated when τ = 0.4 are too infrequent to have much impact 
on convergence speed. 

Power Law. Just as choosing a PDF complicates the optimization task, so 
too does having to decide what level of variability is suitable for the nor-
mal, log-normal and uniform models. One PDF that avoids this difficulty 
is based on a power law. An instance of a power law variable can be gen-
erated by raising a uniformly distributed random value, rand(0,1), to the 
power, q, where q = (1/F) − 1: 

( )( ) ( ) 1
1

,1,0rand,1,0randpow −===
F

qqF
q

jjj .
(2.38)



2.6 Recombination      91 

This distribution has F as its average value and when F is between 0 and 1, 
Fj will also lie in this interval. For example, when F = 0.5 and q = 1, the 
distribution is uniform between (0,1). As F approaches either 1 or 0, the 
amount of variation decreases so that when F = 1 all Fj = 1 and when F = 0 
all Fj = 0. When F > 1, q is negative and all Fj are greater than 1. Table 2.9 
reports DE’s performance on both the rotated hyper-ellipsoid and the Che-
byshev polynomial fitting problems when Fj is a random variable distrib-
uted according to the power law in Eq. 2.38. 

Table 2.9. At F = 0.9, the power law distribution has a small variance, so results 
for jitter and dither on the ten-dimensional rotated hyper-ellipsoid are close to 
those for Fi = constant. Nevertheless, the variation is large enough to inflate jitter’s 
function evaluations to twice that of dither in the case of the Chebyshev polyno-
mial fitting problem. Results are 1000-trial averages for the rotated hyper-ellipsoid 
and 100-trial averages for the Chebyshev function. The algorithm was classic DE 
except for the stated randomization method using a power law PDF. All trials 
were successful (P = 1.0). 

Function Rotated hyper-ellipsoid 
Cr = 0.9 

Chebyshev 
Cr = 1 

Process Np Evals. P Np Evals. P 
F = constant = 0.9 16 23,208.2 1.0 36 43,608.8 1.0 

Dither 16 23,060.5 1.0 34 35,966.8 1.0 
Jitter 15 25,212.4 1.0 22 70,358.4 1.0 

In both cases, dither’s fast convergence did not require a compensating 
increase in population size. Jitter, although competitive on the rotated hy-
per-ellipsoid, took twice as many function evaluations to solve the Cheby-
shev problem as did dither, even though it operated with a smaller popula-
tion. Still, this is much faster than the 6 million function evaluations that 
jitter took when driven by the normal PDF, N(0,1). In this model, the 
amount of jitter cannot be chosen independently of F. For example, using a 
very small amount of jitter will require F to be very close to 1.

2.6 Recombination 

Recombination randomly exchanges or merges parameters from two or 
more vectors to create one or more trial vectors. Discrete recombination,
also known as crossover, is an operation in which trial vector parameters 
are copied from randomly selected vectors. Since it only copies informa-
tion, crossover can be applied to binary, real-valued or even symbolic data. 
By contrast, continuous or arithmetic recombination expresses trial vectors 
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as linear combinations of vectors, so it is inapplicable to symbolic data and 
inappropriate for binary variables. Both crossover and arithmetic recombi-
nation have a variety of implementations. Those with particular relevance 
to DE are described below. 

2.6.1 Crossover 

It was originally thought that crossover could exponentially increase the 
probability of above-average parameter groupings (alleles) while exponen-
tially decreasing the likelihood of less than average groupings (Holland 
1973). More recent analysis shows that growth is not exponential because 
the selective advantage of a parameter grouping decreases as it becomes 
more prevalent (Macready and Wolpert 1998). Empirical evidence also ex-
ists suggesting that (uniform) crossover does not decrease the time com-
plexity of an EA but merely speeds convergence by a constant factor 
(Mühlenbein and Schlierkamp-Voosen 1993). Nevertheless, crossover 
plays a significant role in most EAs. 

Global discrete recombination refers to the case where both vectors are 
chosen anew for each trial parameter (Bäck and Schwefel 1993). The ES 
globally recombines its strategy variables, but like DE and most GAs, it 
crosses objective function parameters from just two vectors (dual cross-

over). Both DE and ES also use crossover to create a single trial vector, 
whereas most GAs cross two vectors to produce two trial vectors, often by 
one-point crossover. 

12 26 51 8 30 50 75 95

12 26 51 13 44 11 54 39

7 104 68 13 44 11 54 39

crossover point

Vector 1

Vector 2

Trial

Fig. 2.38. One-point crossover. Each string represents a vector of parameters. In 
this figure, D = 8 and values are integral, although real-valued or symbolic data 
could also have been used. Each vector contributes a contiguous series of parame-
ter values to the trial vector. The crossover point is randomly chosen. In this case, 
it occurs between the third and fourth parameters. 
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One-Point Crossover 

There are several ways to assign donors to trial parameters. For example, 
one-point crossover randomly selects a single crossover point such that all 
parameters to the left of the crossover point are inherited from vector 1, 
while those to the right are copied from the vector 2 (Fig. 2.38) (Holland 
1995). GAs often construct a second trial vector by reversing the roles of 
the vectors, with vector 2 contributing the parameters to the left of the 
crossover point and vector 1 supplying all trial parameters to the right of 
the crossover point. 

N-Point Crossover 

N-point crossover randomly subdivides the trial vector into n + 1 partitions 
such that parameters in adjacent partitions are inherited from different vec-
tors. If n is odd (e.g., one-point crossover), parameters near opposite ends 
of a trial vector are less likely to be taken from the same vector than when 
n is even (e.g., n = 2) (Eshelman et al. 1989). This dependence on parame-
ter separation is known as representational or positional bias, since the 
particular way in which parameters are ordered within a vector affects al-
gorithm performance. Studies of n-point crossover have shown that re-
combination with an even number of crossover points reduces the repre-
sentational bias at the expense of increasing the disruption of parameters 
that are closely grouped (Spears and DeJong 1991). To reduce the effect of 
their individual biases, DE’s exponential crossover employs both one- and 
two-point crossover.

Exponential Crossover 

DE’s exponential crossover achieves a similar result to that of one- and 
two-point crossover, albeit by a different mechanism. One parameter is ini-
tially chosen at random and copied from the mutant to the corresponding 
trial parameter so that the trial vector will be different from the vector with 
which it will be compared (i.e., the target vector, x i,g). The source of sub-
sequent trial parameters is determined by comparing Cr to a uniformly dis-
tributed random number between 1 and 0 that is generated anew for each 
parameter, i.e., randj(0,1). As long as randj(0,1) ≤ Cr, parameters continue 
to be taken from the mutant vector, but the first time that randj(0,1) > Cr,
the current and all remaining parameters are taken from the target vector. 
The example in Fig. 2.39 illustrates a case in which the exponential cross-
over model produced two crossover points. 
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7 104 68 8 30 50 54 39

7 104 68 13 44 11 54 39
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Xi,g

Ui,g

0 1 2 3 4 5 6 7j =

jrand

Start r2≤Crr1≤Cr

r3>Cr

Fig. 2.39. Exponential crossover. Starting at the randomly chosen parameter in-
dex, jrand (= 3), trial parameters are inherited from the mutant, vi,g, as long as 
randj(0,1) ≤ Cr  (e.g., j = 4, 5). The first time that randj(0,1) > Cr, all the remain-
ing trial parameters (e.g., j = 6, 7, 0, 1, 2) are inherited from the target vector, xi,g.
Indices are computed modulo D = 8. 

Figure 2.40 describes the process in C-style pseudo-code. Parameter in-
dices are computer modulo D. The exponential method’s name reflects the 
fact that the number of inherited mutant parameters is an exponentially dis-
tributed random variable. For example, the probability that the initial, ran-
domly chosen parameter is the trial vector’s only mutant parameter is 
equal to the chance that the first comparison of randj(0,1) and Cr results in 
a failure, i.e., that randj(0,1) > Cr. Thus, the odds of crossover resulting in 
exactly one mutant parameter are 

.1)1( Crxp −== (2.39)

jr=floor(rand(0,1)*D); // 0<=jr<D
j=jr;
do
{
   uj,i=vj,i;  // Child inherits a mutant parameter

   j=(j+1)%D;// Increment j, modulo D
}while(rand(0,1)<Cr && j!=jr); // Take another mutant parameter?
while(j!=jr) //Take the rest, if any, from the target
{
   uj,i=vj,i;

   j=(j+1)%D;
}

Fig. 2.40. C-style pseudo-code for DE’s exponential crossover scheme 



2.6 Recombination      95 

Similarly, the probability that two mutant parameters are inherited is the 
same as the chance that there will be one success before the first failure: 

( ) .1)2( CrCrxp ⋅−== (2.40)

In general, the probability that the trial vector will inherit exactly n mutant 
parameters is 

( ) .1)( 11 nnn CrCrCrCrnxp −=⋅−== −− (2.41)

Summing these terms gives the cumulative distribution function. Once 
summed, only the first and last terms remain, since consecutive contribu-
tions contain identical terms of opposite sign that cancel. As a result, the 
probability that n or fewer parameters are inherited from the mutant is 

.1)(
1

1 n
n

k

kk CrCrCrnxp −=−=≤
=

−
(2.42)

One way to eliminate any representational bias associated with the 
crossover process is to shuffle the vector indices, perform crossover and 
then un-shuffle the trial vector indices (Caruana et al. 1989). Alternatively, 
the representational bias inherent in n-point crossover can be eliminated if 
donors are determined by D independent random trials. This alternative, 
known as uniform crossover, is the discrete recombination method that DE 
employs most often. 

Uniform (Binomial) Crossover 

G. Syswerda defined uniform crossover as a process in which independent 
random trials determine the source for each trial parameter (Syswerda 
1989). Crossover is uniform in the sense that each parameter, regardless of 
its location in the trial vector, has the same probability, pCr, of inheriting its 
value from a given vector. For this reason, uniform crossover does not ex-
hibit a representational bias. Syswerda’s original definition also allows for 
the possibility that donors are chosen with different probabilities, but pCr = 
0.5 is the most commonly cited value (both donors are equally probable). 

When the vectors being crossed are randomly chosen from the same 
population, pCr and 1 − pCr create the same pool of trial vectors. For exam-
ple, both pCr = 0.3 and pCr = 0.7 produce a vector that on average inherits 
30% of its parameters from one vector and 70% from another. In particu-
lar, when two vectors, A and B, are crossed with pCr = 0.3, trial vectors 
will inherit, on average, 30% of their parameters from A and 70% from B. 
It is equally probable, however, that B will be drawn first and A second, in 
which case trial vectors inherit, on average, 30% of their parameters from 
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B and 70% from A. These trial vectors could also have been generated by 
taking A first, B second and pCr = 0.7. Reversing the roles of the donor 
vectors has the same effect as using 1 − pCr instead of pCr. Since the order 
in which vectors are chosen is random, pCr potentially generates the same 
population as does 1 − pCr. DE on the other hand crosses vectors from dif-
ferent populations and their order of crossover is not random. In DE, each 
value of Cr ~ pCr generates a different trial population. 

As with exponential crossover, DE’s version of uniform crossover be-
gins by taking a randomly chosen parameter from the mutant so that the 
trial vector will not simply replicate the target vector. Comparing Cr to 
randj(0,1) determines the source for each remaining trial parameter. If 
randj(0,1) ≤ Cr, then the parameter comes from the mutant; otherwise, the 
target is the source. Figure 2.41 illustrates the process. 

12 26 51 8 30 50 75 95

7 26 68 8 30 11 54 95

7 104 68 13 44 11 54 39

Vi,g

Xi,g

Ui,g

0 1 2 3 4 5 6 7j =

jrand

Start

r2>Cr

r1≤Cr

r3>Crr7>Crr5>Cr

r6≤Cr r4≤Cr

Fig. 2.41. Uniform crossover. Once an initial, randomly chosen parameter is in-
herited from the mutant (e.g., jrand = 3), D − 1 independent trials are conducted to 
determine the source of the remaining parameters. If randj(0,1) ≤ Cr, the mutant 
donates a parameter value; otherwise, parameters are copied from the target. 

The number of inherited mutant parameters follows a binomial distribu-
tion, since parameter origins are determined by a finite number of inde-
pendent trials having two outcomes with constant probabilities. In particu-
lar, the odds of successfully inheriting only one parameter from the mutant 
is the probability that there will be D − 1 “failures” occurring with prob-
ability 1 − Cr

( ) .1)1( 1−−== D
Crxp (2.43)

More generally, the probability, given D, that exactly n parameters are 
inherited from the mutant is 
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The term D – 1Cn – 1 represents the number of combinations of D − 1 items 
taken n − 1 at a time. Summing the first n terms of Eq. 2.44 gives the prob-
ability that the trial vector will inherit at least n mutant parameters. Unlike 
exponential crossover, the cumulative binomial distribution does not re-
duce to a simple expression. Because the distribution of inherited mutant 
parameters is binomial, most DE literature refers to this method as “bino-
mial crossover” to distinguish it from exponential crossover. 

Lampinen and Zelinka (2000) have shown that the number of possible 
trial vectors, ntrial, that can be created with DE’s uniform (binomial) cross-
over is 
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Although the number of possible trial vectors is constant when 0 < Cr <
1, uniform crossover suffers from a distribution bias because not all con-
figurations are equally likely (Spears and DeJong 1991). DE does not 
eliminate distribution bias but relies on Cr to provide the means for con-
trolling it. At one extreme, Cr ~ 0 minimizes disruption by incrementally 
altering just a few parameters of a vector at a time, while at the other ex-
treme, Cr ~ 1 favors exploration by drawing most trial vectors directly 
from the mutant population. The next section examines the conditions un-
der which reinforcement and incremental change are useful and in what 
contexts exploration becomes crucial. 

2.6.2 The Role of Cr in Optimization

Despite mediating a crossover process, Cr can also be thought of as a mu-

tation rate, i.e., the (approximate) probability that a parameter will be in-
herited from a mutant. In DE, the average number of parameters mutated 
for a given Cr depends on the crossover model (e.g., exponential or bino-
mial) but in each, a low Cr corresponds to a low mutation rate. Many GAs 
recommend a mutation rate of 1/D, meaning that, on average, only one 
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trial parameter is mutated (Potter and DeJong 1994). Indeed, Zaharie’s re-
sults for Rastrigin, Griewangk and the sphere, as well as those for the sim-
ple hyper-ellipsoid in Fig. 2.33, consistently found low Cr to be the most 
effective values. Similarly, optimizing the extensive test beds in Storn and 
Price (1997) showed that all functions could be solved with either 0 ≤ Cr ≤
0.2 or 0.9 ≤Cr ≤1. The reason for the bifurcation of the crossover control 
space was not at first appreciated until it was realized that functions solv-
able with low Cr were inevitably decomposable, while those requiring Cr

~ 1 were not. 

Limitations of a Low Mutation Rate 

As Sect. 1.2.3 mentioned, a decomposable function can be written as a 
sum of D one-dimensional functions (not necessarily all the same) 
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j

jj xff x
(2.46)

Decomposability simplifies the task of optimization because each parame-
ter can be optimized independently, allowing the task of optimizing a sin-
gle D-dimensional function to be broken up into D one-dimensional prob-
lems. Once the optima of the D one-dimensional functions have been 
located, they can be combined to specify the optimum of the original D-
dimensional function 
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For such functions, changing just one parameter (e.g., Cr = 0) before each 
evaluation can be viewed as a single step in an independent, one-
dimensional optimization. If the parameter being modified is randomly se-
lected, then the D one-dimensional optimizations proceed as arbitrarily se-
quenced tasks (Salomon 1996a). 

Any decomposable uni- or multi-modal function can be optimized in 
linear time, O(D), but randomly interleaving the order in which these one-
dimensional optimization tasks are executed causes EAs to incur an addi-
tional penalty of ln(D), raising their total computational complexity for de-
composable functions to O(D⋅ln(D)) (Salomon 1996a). Thus, DE and other 
GAs with low mutation rates should not be expected to compete with dedi-
cated decomposable function solvers. Such was the case at the First Inter-
national Contest of Evolutionary Optimizers, held in Kyoto, Japan, where 
DE finished behind a method that exploited the fact that the contest func-
tions were decomposable (Storn and Price 1996). Even so, the ln(D) pen-
alty incurred by EAs when using low mutation rates on decomposable 
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functions is not prohibitive. Once parameters become dependent, however, 
the penalty incurred by algorithms using low mutation rates does become 
prohibitive. 

Salomon provides two reasons why a low mutation rate is an ill-advised 
strategy when optimizing parameter-dependent functions (Salomon 1996). 
The first reason, mentioned briefly in conjunction with the rotated ellipse 
of Sect. 2.5.2, is illustrated by Fig. 2.42. The picture on the left shows con-
tours of an elliptical objective function whose principal axes are parallel to 
the coordinate axes. Any trial vector that is interior to the contour on 
which xi resides constitutes an improving move. If only one parameter is 
changed per evaluation, then xi can move at most ∆x0 in the x0 direction or

∆x1 in the x1 direction before it produces an unacceptable result. For this 
ellipse, these intervals are large enough to permit the optimum to be lo-
cated in just two moves, first to either xi + 0.5⋅∆x0 or to xi + 0.5⋅∆x1, and 
then to x* on the next move.  

x0

x1

∆x0

∆x1

x i

x*

x0

x1

∆x0

∆x1

x i

x*

Fig. 2.42. When the principal axes of the ellipse are aligned along coordinate axes, 
improvement intervals are large compared to those available once the coordinate 
axes have been rotated by 45°. In the figure on the left, a single pair of moves exe-
cuted in either order would be able to reach the minimum, but in the figure on the 
right it takes at least three moves parallel to the coordinate axes to reach the opti-
mum. 

By contrast, rotation shortens the improvement intervals to the point 
where the optimum can no longer be reached in just two consecutive 
moves if each step is taken parallel to a coordinate axis. These additional 
steps slow convergence and raise the algorithm’s time complexity above 
O(D⋅lnD). Both the dimension and eccentricity of the hyper-ellipsoid ex-
acerbate this performance loss. Indeed, the experiments in Sect. 2.5.2 con-
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firmed Salomon’s predictions that low Cr, though efficient on the decom-
posable ellipse, is inefficient on its rotated, non-decomposable counterpart. 

As the example of the rotated ellipse in Fig. 2.42 demonstrates, a low-
Cr DE strategy can suffer a loss of performance even if the function is uni-
modal. Salomon’s second reason for not using low mutation rates applies 
only to multi-modal functions whose local minima are not aligned with the 
coordinate axes. Figure 2.43 shows the contours of a hypothetical multi-
modal function having two local optima located on a diagonal. The only 
way to reach the optimum at x* from inside the penultimate basin of at-
traction is by moving in both the (positive) x0 and x1 directions simultane-

ously. Since the current vector is in a local optimum, no single move paral-
lel to a coordinate axis will be acceptable and improving moves into a 
basin of equal or lower function value will have components in both axes. 

x*

x1

x0

Fig. 2.43. Multi-modal functions with dependent parameters pose additional chal-
lenges to low-Cr strategies. The only improving move out of the penultimate basin 
of attraction requires making changes in both coordinates simultaneously. 

Salomon has shown that at O(DD) = O(exp(D⋅ln(D))), a low mutation rate 
can actually take longer than a random search to optimize a parameter-
dependent, multi-modal function (Salomon 1997). Time complexity of this 
order is prohibitive in all but the most trivial cases. 

In summary, the role of Cr is to provide the means to exploit decom-
posability, if it exists, and to provide extra diversity to the pool of possible 
trial vectors, especially near Cr = 1. In the general case of parameter-



2.6 Recombination      101 

dependent functions, Cr should be close to 1 so that the performance losses 
associated with using a low mutation rate are minimized.

Rotational Invariance 

An algorithm whose performance depends on the objective function being 
aligned with a privileged coordinate system is a poor choice in general be-
cause it is unlikely that the optimal orientation will be known in advance. 
What is needed instead is a search algorithm that is rotationally invariant – 
one whose performance does not depend on the orientation of the coordi-
nate system in which the objective function is evaluated. For classic DE, 
this means that Cr = 1, i.e., mutation only and no crossover. 

That crossover is not rotationally invariant can be seen in Fig. 2.44, 
which plots the trial vectors generated by a pair of vectors both before and 
after a coordinate rotation. Although rotation leaves the position of the 
vectors with respect to one another unaltered, trial vector placement rela-
tive to the vector population depends on the angle of rotation. Since each 
angle samples different regions of the objective function, performance is 
rotation dependent. 

x1

x0

x1'

x0'

xa

xb

u

u

u'

u'

Fig. 2.44. Crossover is not a rotationally invariant process. The trial vectors de-
rived by crossover from vectors xa and xb change from u to u´ as the coordinate 
system is reoriented. 
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Fig. 2.45. The average number of function evaluations to solve the ten-
dimensional hyper-ellipsoid is a function of the angle between the hyper-
ellipsoid’s principal axes and the axes of the coordinate system in which it is 
evaluated. Only when Cr = 1 (mutation only) is the algorithm’s performance inde-
pendent of the rotation angle. Results are 100-trial averages obtained with classic 
DE (DE/rand/1/bin) and F = 0.9. 

Figure 2.45 shows how the time taken by classic DE to optimize the ten-
dimensional hyper-ellipsoid depends on the orientation of the hyper-
ellipsoid’s principal axes with respect to the coordinate system axes in 
which the trial vector is evaluated. Only when Cr = 1 is the number of 
function evaluations independent of the coordinate system orientation. 

Without crossover, classic DE operates by mutation alone. Setting Cr =
1, however, ensures that mutation is rotationally invariant only if jitter is 
absent. For example, Fig. 2.46 shows the regions where jitter relocates the 
head of a difference vector when Fj = F + d⋅(randj(0,1) − 0.5) where d =
0.5. Because it permits each differential component to be perturbed inde-
pendently, jitter is an angle-dependent search. The relatively large random 
deviation illustrated in Fig. 2.46 is necessary to clearly illustrate jitter’s ro-
tational dependence, but in practice, such a large value for d would seri-
ously degrade DE’s performance on epistatic objective functions. In prac-
tice d should be much smaller, e.g., d = 0.001. 
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x1

x0

x1'

x0'
xr2

xr1

Fig. 2.46. Jitter is not a rotationally invariant process because components of the 
differential are altered independently. Dashed boxes outline the areas in which jit-
ter with Fj = 0.5 + 0.5⋅randj(0,1) can place the head of the difference vector, xr1 −
xr2. As the coordinate axes are reoriented, the range of possibilities changes. 

Figure 2.47 shows that even with a mutation-only strategy, DE’s per-
formance is rotationally dependent if jitter is present (top line). The magni-
tude of the dependence increases as the magnitude of jitter’s deviation in-
creases. On the other hand, dither, like the F = constant model profiled in 
Fig. 2.45, is rotationally invariant as the lower line in Fig. 2.47 shows. The 
middle line shows that when jitter is very small (e.g., d = 0.001), the pen-
alty for rotational invariance is also small. 

Salomon’s warnings notwithstanding, DE performs well on parameter-
dependent multi-modal functions in practice as long as rotationally invari-
ant processes are the dominant strategies, e.g., when Cr is “close” to 1, 
say, Cr = 0.98, and when jitter’s PDF has a “small” variance, e.g., d =
0.001 in Eq. 2.37. 

The value of such a small value for jitter appears to be that the diversity 
it adds to the pool of trial vectors lowers the odds that DE will stagnate, 
particularly when Np is relatively small. This added diversity seems to be 
of particular benefit to the algorithm DE/best/1/bin, for which reliance on 
the best-so-far vector as a base vector lowers diversity in the pool of possi-
ble trial vectors. In addition, jitter with a suitable PDF makes DE provably 
convergent. It should be emphasized, however, that jitter’s practical value 
is still a matter of debate. 



104      2  The Differential Evolution Algorithm 

10-D  Hyper-ellipsoid h

60000

70000

80000

90000

100000

0 10 20 30 40 50

Rotation angle (degrees)

F
u

n
c
ti

o
n

 e
v
a
lu

a
ti

o
n

s

Jitter, d=0.2 Jitter, d=0.001 Dither, d=0.2

Fig. 2.47. When using jitter, DE’s performance on the ten-dimensional hyper-
ellipsoid depends on the orientation of the coordinate system relative to the princi-
pal axes of the hyper-ellipsoid. Plotted are the number of function evaluations that 
DE needed to optimize the ten-dimensional hyper-ellipsoid using both jitter and 
dither in a mutation-only strategy (Cr = 1). Unlike jitter, dither is rotationally in-
variant, but when the level of variation in jitter is very small (d = 0.001), rotation 
does not significantly affect run-times. Results were obtained using Np = 50, Cr =
1 and classic DE except that Fi = 0.9 + d⋅(randi(0,1) − 0.5) with d = 0.2 for dither 
and Fj = 0.9 + d⋅(randj(0,1) – 0.5) with both d = 0.2 and d = 0.001 for jitter. 

If a strictly rotationally invariant scheme is demanded, then Cr = 1 and 
the pool of potential trial vectors is limited to the mutant population. With-
out crossover or jitter, the only rotationally invariant way to increase the 
pool of potential trial vectors is by increasing Np or by using dither. If, 
however, dither’s PDF has a high proportion of small perturbations, then 
optimal population sizes may be larger than if no dithering is used at all. 
Alternatively, certain forms of arithmetic recombination – unlike discrete 
recombination – can add diversity and complement the mutation search 
strategy without becoming rotationally dependent. 

2.6.3 Arithmetic Recombination 

Although crossover creates new combinations of parameters, it leaves the 
parameter values themselves unchanged. Continuous or arithmetic recom-

bination, however, operates on individual trial parameter values by ex-
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pressing them as linear combinations of parameters. Arithmetic recombi-
nation’s global variant selects both vectors anew for each parameter of a 
recombinant vector, wi,g (Bäck and Schwefel 1993), but most EAs select 
just one set of vectors for all parameters of wi,g:

( ).010 ,gr,gri,gri,g k xxxw −+= (2.48)

The coefficient of combination, ki, can be a constant (e.g., ki = 0.5 is uni-

form arithmetic recombination (Eiben and Smith 2003)), or a random vari-
able (e.g., rand(0,1)). More generally, if ki is either constant or a random 
variable that is sampled anew for each vector, then the resulting process is 
called line recombination (Eq. 2.48) (Mühlenbein and Schlierkamp-
Voosen 1993). If, however, the coefficient of combination is sampled 
anew for each parameter, then the process is known as intermediate re-

combination (Mühlenbein and Schlierkamp-Voosen 1993): 

( ).121 ,gj,r,gj,rj,gj,rj,i,g xxkxw −+= (2.49)

Not all sources agree on this terminology. For example, in ES terminol-
ogy, the coefficient of combination is chosen anew for each parameter 
only in the global version, i.e., when vectors are also chosen anew for each 
parameter (Bäck and Schwefel 1993). This book equates intermediate re-
combination with the two-vector linear combination in Eq. 2.49, where kj

is a random variable that is sampled anew for each parameter, but vectors 
are chosen once per trial vector. If kj is allowed to assume values outside 
the range (0,1), then the process is called extended intermediate recombi-

nation (Mühlenbein and Schlierkamp-Voosen 1993). 
Figure 2.48 compares the regions searched by discrete, line and inter-

mediate recombination when the coefficient of combination is distributed 
with random uniformity between 0 and 1. The two vectors occupy oppos-
ing corners of a hypercube whose remaining corners are the trial vectors 
created by discrete recombination. Line recombination, as its name sug-
gests, searches along the axis connecting vectors, while intermediate re-
combination explores the entire D-dimensional volume contained within 
the hypercube. 

Since the hypercube’s corners are the possible outcomes of discretely 
recombining two vectors, intermediate recombination, like both jitter and 
crossover, is not a rotationally invariant process. Rotation relocates the hy-
percube’s corners, which in turn redefine the area that intermediate recom-
bination searches. On the other hand, line recombination is rotationally in-
variant. Given that both differential mutation and line recombination are 
rotationally invariant schemes for adding a weighted vector difference to 
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an existing vector, the question arises: what real difference is there be-
tween the two operations? 

discrete 

discrete 
xb

xa

line random 
intermediate 

x0

x1

Fig. 2.48. Domains of the possible recombinant vectors generated using discrete, 
line and intermediate recombination. The coefficient of combination is drawn 
from the interval [0,1]. 

Distinguishing Line Recombination from Differential Mutation 

Why should some vector differences be associated with recombination and 
the others not? The reason is that the presence of the base vector in recom-
bination differentials constitutes a bias that makes recombination’s dynam-
ics different from those of differential mutation. For example, shifting the 
base vector’s position with respect to the population does not influence its 
mutation differentials, but it does alter the size and orientation of its re-
combination differentials. Figure 2.49 shows that if the base vector moves 
from the population’s outer boundary to a more central position, its re-
combination differentials will become shorter and more symmetrically dis-
tributed, whereas mutation differentials – defined by the remaining vectors 
whose positions are unchanged – are unaffected. 

Recombination’s positional dependence allows trial vectors to be delib-
erately placed into the population in locations that mutation can reach only 
by chance. For example, ki = 0.5 (Eq. 2.48) places the trial vector midway 
between the base vector and the vector xr1. Moreover, ki = 1 reduces re-
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combination to a replacement operation by placing the trial vector at xr1.
By contrast, non-zero mutation differentials place trial vectors on, between 
or in relation to other vectors only by chance, not by intention. 

Old base vector

New base vector

Fig. 2.49. Recombination differentials change in response to a shift in the base 
vector’s position relative to the population. 

When a trial vector is a linear combination of only two vectors, the dif-
ferential’s dependence on the base vector is inevitable. For example, let u
be a trial vector that is a linear combination of two, randomly chosen vec-
tors

.1100 rr kk xxu ⋅+⋅= (2.50)

To prevent trial vectors from expanding (k0 + k1>1) or contracting (k0 + k1 <
1) over the course of many generations due only to the generating process 
itself, the coefficients k0 and k1 are subject to a normalization constraint

that requires their sum to equal 1. For a linear combination of m vectors,  
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Substituting 1 − k1 for k0 in Eq. 2.50 yields the familiar formula for line re-
combination in which the base vector, xr0, also appears in the difference 

term:
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Once three vectors are linearly combined, however, the positional bias 
inherent in two-vector combinations can be eliminated. For example, a 
mutant is a three-vector linear combination that is subject to two con-
straints. The normalization constraint, k0+ k1+ k2 = 1, eliminates one of the 
three coefficients of combination (k0) and reduces the expression for a 
general linear combination of three vectors to 

).()( 0220110 rrrrr kk xxxxxu −⋅+−⋅+= (2.53)

Imposing the mutation constraint
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both eliminates a second coefficient (k1) and removes xr0 from the differ-
ence term 

vxxxu =−⋅+= )( 2120 rrr k . (2.55)

Satisfying Eq. 2.54 cancels out the base vector’s contribution to the m − 1 
differential terms. The one remaining coefficient of combination, k2, is the 
mutation scale factor, F. Like the increments generated by a PDF, the mu-
tation differentials contain no reference to the vector they modify.  

Two-vector line recombination’s positional dependence complements a 
mutation-driven search, but the existence of only Np − 1 possible recombi-
nation axes limits its explorative power. More than two vectors can be re-
combined and elevating line recombination to a three-vector process places 
it on an equal footing with differential mutation as both consist of a linear 
combination of three vectors. 

Three-Vector Recombination 

Equation 2.51 appears to be missing the differential mutation operator be-
cause it expresses a trial vector as the sum of the base vector and two re-
combination differentials that contain the base vector.  The reciprocal roles 
played by recombination and mutation in three-vector linear combinations 
become clearer once Eq. 2.53 is rewritten with a change of variables that 
decomposes any normalized, three-vector linear combination into separate 
recombination and mutation components, K and F, respectively. First, let 
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Replacing k1 and k2 in Eq. 2.53 with the expressions in 2.56 yields 
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Multiplying out the expressions in Eq. 2.57 and collecting terms reorgan-
izes Eq. 2.53 into a recombination term that contains the base vector and a 
mutation term from which the base vector is absent: 
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The change of variables laid out in Eq. 2.56 defines a 45° rotation of the 
K–F plane with respect to the k1–k2 plane (Fig. 2.50). The mutation con-
straint, k1= −k2, defines a mutation axis, F, that passes through the origin 
and has a slope of −1, while the recombination constraint, k1= k2, defines a 
recombination axis, K, that also passes through the origin but has a slope 
of +1. The advantage of the K–F decomposition is that it permits two 
search processes with different dynamics to be controlled independently. 

The coordinates, (k1,k2), locate the trial vector, u, relative to the base 
vector xr0 using two-vector recombination differentials as basis vectors. 
Coordinate k1 measures the distance of the trial vector from the base vector 
in the direction of the differential (xr1 − xr0), while k2 measures the distance 
from xr0 in the direction of the differential (xr2 − xr0). Similarly, K and F
measure the distance of the trial vector from the base vector along the di-
rection of the three-vector recombination and mutation axes, respectively. 

The medial line (the K–axis in Figs. 2.50 and 2.51) plays an important 
role in the two-dimensional version of the Nelder–Mead algorithm. As 
Sect. 1.2.3 explained, the Nelder–Mead strategy tests a point located on the 
axis defined by the vector being modified (the worst vector in Nelder–
Mead, but xr0 in this case) and the centroid of a simplex consisting of D
additional vectors. When D = 2, this axis is a medial line that passes 
through not only the centroid, but also the average position of xr1 and xr2.
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Fig. 2.50. Decomposing the position of a trial vector into separate mutation and 
recombination components in the K–F plane (refer to Eqs. 2.51 and 2.56). The ro-
tation angle between the k1–k2 and K–F coordinate systems is 45°.

Figure 2.51 illustrates some of the important features of the K–F plane. 
Coordinates are given as (K,F) where K and F are a vector’s coordinates 
along the recombination and mutation axes, respectively. The base vector, 
xr0, corresponds to the origin, (K,F) = (0,0). The remaining two vectors 
correspond to (0.5,0.5) and (0.5, −0.5). Together, the three vectors form an 
inverted triangle whose sides and their extensions constitute the three axes 
along which three-vector combinations reduce to two-vector line recombi-
nation. This triangle of vectors is inscribed inside a larger triangle whose 
vertices are the three mutation points (0,1), (0, −1) and (1,0) corresponding 
to the vectors xr0 + xr1 − xr2, xr0 + xr2 − xr1 and xr1 + xr2 − xr0, respectively.

Only the order in which vectors are combined distinguishes these three 
strategies and as long as vectors are randomly selected, the three mutation 
points are dynamically indistinguishable, i.e., the three strategies cannot be 
distinguished based on their performance. Similarly, the sides of this larger 
triangle represent the three possible mutation axes and its three medial 
lines represent the three possible recombination axes. The figure is bilater-
ally symmetric (left and right sides are mirror images, with the mirror 
aligned on the K axis) about the vertical recombination axis because xr1 −
xr2 = − (xr2 − xr1). The centroid of both the large and small triangles lies at 
(1/3,0).
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K

k2 k1

F

(K,F)=(1,0)

(0.5,0.5)(0.5,-0.5)

(0,-1) (0,1)

(0,0)

corresponds to a mutation point: xr0+xr1-xr2: (0,1)
 xr0+xr2-xr1: (0,-1)
xr1+xr2-xr0: (1,0)

corresponds to a vector: xr0: (0,0), xr1: (0.5,0.5), xr2: (0.5,-0.5)

2-vector recombination

3-vector recombination (medial line)

mutation axis

Fig. 2.51. The K–F plane exhibits three axes along which two-vector recombina-
tion produces trial vectors. Squares plot the three dynamically equivalent mutation 
points. The vertical axis measures the component along the medial axis while the 
horizontal mutation axis measures the component in the direction of the difference 
vector xr1 − xr2. Note that the coordinate values are expressed in the K–F coordi-
nate system. Note also that the vectors that correspond to these points are also 
mentioned. As an example, the point (1,0) corresponds to the vector xr1 + xr2 − xr0.

Because they represent varying fractions of recombination and muta-
tion, points in the K–F plane also represent different search strategies. For 
example, classic DE with Cr = 1 includes all the points on the mutation 
axis where trial vectors are pure mutants, whereas those that lie along the 
medial axes are pure three-vector recombinants similar to those produced 
by the two-dimensional Nelder–Mead algorithm. Off-axis points possess 
attributes of vectors that have been subjected to both differential mutation 
and three-vector line recombination. For optimization, the most important 
questions regarding K and F are whether they are correlated and whether 
successful strategies consistently cluster around landmarks in the K–F
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plane. The phase portrait is designed to provide insights into these ques-
tions.

2.6.4 Phase Portraits 

Phase portraits are a visual aid for exploring relationships between control 
parameters, in this case K and F. Each point, (K,F), in the K–F plane lo-
cates a point representing a trial vector generating strategy that is iterated 
over many generations. If the point at (K,F) is plotted when the strategy it 
represents is successful within the allotted number of generations, then a 
“portrait” forms revealing the location of effective control variable combi-
nations for the given test function. Rosenbrock’s function, for example, 
displays the portrait in Fig. 2.52. 

5-D Rosenbrock,      Np = 50   h
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Fig. 2.52. The phase portrait for the five-dimensional generalized Rosenbrock 
function. Points were sampled with random uniformity, i.e., F = 8⋅(rand(0,1) −
0.5) and K = 8⋅(rand(0,1) − 0.5). The function rand(0,1) lacks a subscript to indi-
cate that a single value is generated anew for each optimization run. One optimi-
zation was run for each point. If the optimization was successful within the allot-
ted number of generations and with the chosen population size, the point was 
plotted. Results were obtained with DE/rand/1/bin, Cr = 1 and i ≠ r0 ≠ r1 ≠ r2.

Regions that are most densely populated correspond to strategies that have 
the highest probability of convergence. Points in the central triangular void 
are strategies that converged prematurely for the given Np, while those in 
the vacant space surrounding the portrait did not converge within the al-
lowed number of generations. 
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Fig. 2.53. Reducing the maximum allowed number of generations reveals that the 
fastest solutions are the most interior ones. The three clusters represent symmetric 
solutions.
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The distribution of successful strategies highlights several important 
features of the K–F plane shown in Fig. 2.51. For example, the distribution 
of successful strategies is bilaterally symmetric about the vertical recombi-
nation axis. In addition, the six spikes correspond to the three cases of two-
vector line recombination. Their presence in Rosenbrock’s portrait shows 
that even two-vector line recombination is sufficient to solve this uni-
modal function if the coefficient of combination (e.g., k1 in Eq. 2.50) is 
large enough. 

By successively halving the maximum allowed number of generations, 
gmax, in successive portraits, Fig. 2.53 shows that the solutions obtained by 
two-vector recombination are relatively time consuming and that the fast-
est solutions are the most interior ones. 

Figure 2.54 shows the final Rosenbrock portrait in Fig. 2.53 at expanded 
scale with medial lines and lines of two-vector recombination drawn for 
reference.
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Fig. 2.54. Clusters for Rosenbrock’s functions are bisected by a medial line and 
constrained by the lines of two-vector recombination. 
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Even though they possess very different topography, many other func-
tions display portraits similar to Rosenbrock’s. As Fig. 2.55 shows, the 
phase portraits for the hyper-ellipsoid, Ackley, Whitley and Lennard-Jones 
functions all look remarkably similar to Rosenbrock’s portrait when gmax=
5000.
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Fig. 2.55. Despite having radically different topographies, these functions produce 
portraits similar to Rosenbrock’s. 

Other portraits, such as those of the Chebyshev and Hilbert functions in 
Fig. 2.56, produce images similar to plots of Rosenbrock’s fastest strate-
gies. In each case there are three clusters centered on a medial line that are 
constrained by the lines representing two-point recombination. 

Not all functions conform to this pattern and some have portraits with 
clusters that lie predominantly along either the mutation axis or the three-
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vector recombination axis. Figure 2.57 shows that most of the successful 
strategies for the Shekel and odd square functions lie on the mutation axis. 
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Fig. 2.56. Portraits for both the Chebyshev and Hilbert functions are almost indis-
tinguishable from Rosenbrock’s innermost strategies. 
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5-D  Odd Square, Np =400
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Fig. 2.57. Solutions for both the Shekel and odd square functions lie almost en-
tirely on the mutation axes. Recombination is effective on the Shekel function as 
long as K is close to 1, but it is an ineffective strategy when applied to the odd 
square.
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At the other extreme, Griewangk’s function shows a distribution of 
points centered on the medial lines that has only a few outlying points ap-
proaching the mutation axis, most notably near F = 1 and F = 0.5. 
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Fig. 2.58. Although a few cluster points intersect the mutation axes, the most ro-
bust strategies lie on the medial axes. 

These phase portraits show that mutation and recombination differen-
tials do indeed have different effects on the optimization dynamic. For 
functions like the odd square, mutation is the only viable option, while for 
those like Griewangk, recombination is a better strategy. Reliance on the 
wrong operation is likely to result in poor performance for a significant 
number of functions, but many functions are generic, meaning that either 
mutation or recombination makes an effective strategy. Given the range of 
behaviors displayed in the phase portraits, what is the best strategy in gen-
eral?

2.6.5 The Either/Or Algorithm 

All portraits in the previous section displayed clusters of successful strate-
gies that were bisected by either a recombination or a mutation axis. In the 
generic case, both axes intersected clusters. Furthermore, there was no case 
in which a cluster only occupied the spaces between axes. Because these 
isolated, off-axis clusters are not observed, the best strategy for locating a 
central cluster point is to look along the mutation axis, the recombination 
axis, or both, but not between them. Compared to searching the entire two-
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dimensional K–F plane, a dual-axis search reduces the effort to find a suc-
cessful strategy because it restricts the search to a pair of one-dimensional 
axes.

The simplest way to implement a dual-axis search is to define a muta-
tion probability such that trial vectors that are pure mutants occur with 
probability pF and those that are pure recombinants occur with probability 
1 − pF :
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(2.59)

This scheme accommodates functions that are best solved by either muta-
tion only (pF = 1) or recombination only (pF = 0), as well as generic func-
tions that can be solved by randomly interleaving both operations (0 < pF <
1). Figure 2.59 gives pseudo-code for this “either/or” algorithm. 

...

if (randi(0,1)<PF)          // mutate or recombine ?

{

ui=xr0+F*(xr1-xr2);       // mutate

}

else

{

ui=xr0+K*(xr1+xr2-2*xr0); // recombine

}

...

Fig. 2.59. Pseudo-code for creating a trial vector with the “either/or” algorithm. 
From experience K = 0.5⋅(F + 1) can be recommended as a good first choice for K
given F.

2.7 Selection 

There are primarily two stages in the evolutionary process where selection 
can be applied to a population. Some GAs (Goldberg 1989) employ parent 
selection to decide which vectors will undergo recombination. Typically, 
vectors with the best function values are assigned the highest selection

probability, making them the most likely to be chosen for mating. This 
strategy mimics the one employed by breeders and botanists who try to 
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improve traits by selectively breeding individuals with superior character-
istics. In practice, methods for assigning selection probabilities involve ad-
ditional assumptions about how to map objective function values to a set 
of probabilities. Instead of selecting mates based on objective function 
value, both ES and classic DE select mates with equal probability. In the 
ES, each vector has the same chance to be chosen for mutation and/or re-
combination. Similarly, classic DE randomly selects base vectors without 
regard for their objective function values (see Sect. 2.4). 

In contrast to parent selection, survivor selection, also called replace-

ment, chooses the next generation of vectors from the current generation of 
vectors and trial vectors. Most EAs apply selection pressure either when 
choosing vectors to recombine or when choosing survivors. GAs typically 
bias selection in favor of better vectors, whereas DE, ES and other EAs, 
however, combine randomly chosen vectors and apply selection pressure 
only when picking survivors. Using both parent (base vector) and survivor 
selection can cause premature convergence to a local optimum.  

The remainder of this section is primarily concerned with survivor se-
lection and it will be convenient for the following discussion to assume 
that the current and trial populations can have different sizes. In keeping 
with the naming traditions established by the ES community, µ will denote 
the size of the current population and λ will represent the size of the trial 
population. 

2.7.1 Survival Criteria 

In some algorithms, age alone determines which individuals survive. Here, 
age distinguishes vectors in the current population from those in the 
(younger) trial population. More often, however, both a vector’s objective 
function value and the luck of the draw are also factors. The simple GA, 
however, determines survivors by their age alone. 

Age Only 

The simple GA replaces µ vectors with λ = µ trial vectors without regard 
to whether the trial vectors actually have lower function values than those 
in the current generation (Goldberg 1989). This age-based replacement

scheme only works if parent selection is driven by an objective function-
based criterion. Without the feedback that an objective function-based par-
ent selection rule provides, there is no bias to drive the population toward 
better solutions. For example, the (1,1)-ES with its age-based selection is 
nothing more than a random walk in which each trial vector replaces the 
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current vector regardless of its objective function value (Bäck et al. 1993). 
Similarly, age-based replacement is unsuitable for classic DE because its 
parent selection scheme, i.e., random base vector selection, does not 
choose vectors based on objective function value.

Objective Function Value Only 

When only trial vectors are allowed to advance, there is no guarantee that 
the best-so-far solution will not be lost. Retaining the best-so-far solution 
is known as elitism and part of the task of proving that an algorithm will 
converge to the global optimum in the long-time limit is proving that it is 
elitist (Rudolph 1996). For this reason, and because of the speed improve-
ment that it offers, most EAs, including DE, evolutionary programming 
(EP) and some versions of ES and genetic programming (GP) (Koza 
1992), include the current population when determining the membership of 
the next generation. For example, the (µ + λ)-selection scheme (see Sect. 
1.2.3) ranks all vectors in both the current and trial populations from best 
to worst and then populates the next generation with the best µ individuals. 
Similarly, EP tournament selection (see subsection 2.7.2) compares the ob-
jective function value of vectors randomly chosen from the current and 
trial populations. In both cases, a vector’s age is irrelevant and the best-so-
far result is always retained. 

Age and Objective Function Value 

In ES (µ, λ)-selection (see Sect. 1.2.3), age dictates that only trial vectors 
can survive, while objective function values determine which trial vectors 
are among the µ best. Using objective function values to pick the µ best 
survivors from a pool of λ trial vectors biases evolution toward better solu-
tions, unlike the simple GA in which µ = λ trial vectors survive regardless 
of their objective function values. Since surviving trial vectors can over-
write better current vectors, (µ, λ)-selection is not elitist. Forgetting prior 
results, however, allows the population both to escape local optima and to 
track dynamic ones. In addition, (µ, λ)-selection lessens the chance that ES 
“strategy” parameters will prematurely adapt to a good but sub-optimal so-
lution (Bäck and Schwefel 1995). 

As the next section shows, both age and objective function value also 
play a role in DE selection. Age is a factor because trial vectors can only 
compete against members of the current population, while their objective 
function values determine which vector survives. The DE scheme is elitist 
since the best vector in the current and trial populations always survives. 
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2.7.2 Tournament Selection 

In general, any parent selection scheme can also be adapted for survivor 
selection, but in practice nearly all EAs, including DE, determine survivors 
by some form of tournament selection or ranking, which is a special case 
of tournament selection. The next subsection explores DE selection in the 
context of the tournament survivor selection method employed by the EP 
algorithm (Fogel et al. 1966; Fogel 1991). 

In EP-style tournament selection, each vector competes against T oppo-
nents drawn at random from a selection pool of Ns vectors (Saravanan and 
Fogel 1997). In deterministic tournaments, vectors are assigned a “win” 
for each pair wise competition in which they have the lower objective 
function value (in non-deterministic tournaments, the best vector wins with 
a user-defined probability). The µ vectors that accumulate the most wins 
populate the next generation. 

The main control variable in tournament selection is the tournament 
size, T, where 2 ≤ T ≤ Ns. A typical tournament size for the EP algorithm 
is T = 10. DE, however, conducts Np, binary tournaments (T = 2) in which 
only two individuals compete. In general, the selection pressure increases 
as T increases, i.e., increasing T speeds convergence, so compared to EP 
tournament selection (T = 10), DE selection is gentler. DE’s lower selec-
tion pressure helps avoid premature convergence without the introduction 
of variation operators to enhance the diversity of the pool of potential trial 
vectors.

Ranking (e.g., (µ + λ)-selection in which both the current and trial popu-
lations are sorted based on objective function value) is a special case of EP 
tournament selection for which T = Ns. For example, if one vector is better 
than another, the better vector will win all the same tournaments that the 
inferior vector wins plus the tournament with the inferior vector itself. 
Since better vectors always have more wins than inferior vectors, conduct-
ing T = Ns tournaments for each vector ensures that ranking vectors by the 
number of wins also ranks them by objective function value. In practice, 
ranking is accomplished more efficiently by sorting the population from 
best to worst based on objective function value and then taking the top µ
individuals. Efficient sorting reduces the computational complexity of the 
each-against-all tournament process from O(Ns2) to O(Ns⋅log(Ns)) (Blahut 
1984).

Tournament selection is very versatile because it only depends on know-
ing which of two solutions that have been paired for competition is better. 
Because it only depends on the difference between objective function val-
ues, tournament selection is unaffected when a constant is added to every 
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vector’s objective function value (transposition) (Eiben and Smith 2003). 
By contrast, fitness proportional selection selects an individual with a 
probability based on its function value (Holland 1992) 
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and adding a constant to each vector’s objective function value will change 
its fitness proportional selection probability. 

Tournament selection is also well suited for co-evolutionary optimiza-
tion tasks in which the quality of a given solution is defined only in the 
context of its performance with respect to the rest of the population. For 
example, it is difficult to rate an arbitrary checkers strategy, but it is a sim-
ple matter to determine which of two strategies is better by actually using 
them to play one or more games against each other. Similarly, tournament 
selection is the most effective way to evolve solutions to “subjective” ob-
jective functions, like those used in evolutionary art. In such environments, 
it is easier to decide, for example, which of two pictures is more pleasing 
than it is to decide how pleasing a picture is in an absolute sense. In addi-
tion, tournament selection permits the concept of Pareto-dominance to be 
implemented for both constraint functions and for multi-objective optimi-
zations (see Sects. 4.3 and 4.6). 

A single competition in an EP tournament might select two current 
population vectors, a current and a trial vector, or two trial vectors to com-
pete against one another. DE, however, restricts tournament selection to 
this last possibility in which each competition pits a trial vector against a 
vector in the current population (the target) with the additional proviso that 
the target and trial vectors are also related by crossover. The next subsec-
tion explores this special class of deterministic, binary tournaments, known 
as one-to-one selection for the way in which population and trial vectors 
are paired for competition. 

2.7.3 One-to-One Survivor Selection 

Besides pairing competitors based on age, DE’s one-to-one replacement 
scheme differs from EP tournament selection in other ways. For example, 
an EP-style binary tournament conducts 2Np competitions by pairing each 
vector in the current population and each trial vector with a randomly se-
lected competitor. Each vector competes once in its own tournament and 
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possibly one or more times as a competitor in another vector’s tournament. 
Consequently, not every vector that wins advances and not every vector 
that loses fails to advance. For example, a very good vector will lose if it is 
chosen as a competitor in the best vector’s tournament. If, however, an av-
erage competitor is chosen to compete in the very good vector’s tourna-
ment, then the very good vector will win. Even though it loses in competi-
tion with the best vector, the very good vector still wins its own 
tournament, giving it the same chance to enter the next generation as the 
best vector because both vectors won their tournaments and scored one 
win apiece. Furthermore, it is possible for more than Np vectors to win 
their tournaments depending on how competitors are chosen, in which case 
all winning vectors cannot advance. For example, although improbable, 
every member of the current population and every member of the trial 
population might randomly pick the very worst vector in the combined 
populations as a competitor. In that case, there would be 2Np − 1 vectors 
with one win and one vector with no wins. In such cases, the best vector 
can be lost unless steps are taken to preserve it. 

By contrast, DE’s one-to-one selection holds only Np “knock-out” com-
petitions. Any vector that loses the single competition in which it competes 
is eliminated and vectors that win are assured of a spot in the next genera-
tion. This form of binary, deterministic, one-to-one tournament selection in 
which competitors are chosen from different populations is not unique to 
DE. Like DE, the Particle Swarm Optimization (PSO) algorithm also con-
ducts Np competitions that compare the trial vector with population index i
to the best performing vector at population index i (Kennedy and Eberhart 
1995). In DE, the best performing vector at the ith position is just the ith

vector in the current population, i.e., the target vector xi,g. In both DE and 
PSO, the trial vector replaces the best-so-far vector with the same index 
only if it has an equal or lower objective function value. 

Comparing each trial vector to the best performing vector at the same 
index ensures that both DE and PSO retain not only the best vector at each 
index, but also the very best-so-far solution at any index. Even so, a trial 
vector that is better than most of the current population will be rejected if 
its target is even better. Trial vectors that are worse than the worst vector 
in the current population, however, are never accepted. 
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2.7.4 Local Versus Global Selection 

Local Selection 

When an objective function is known to exhibit multiple global optima, 
some algorithms subdivide the selection pool into subpopulations. Each 
subpopulation evolves in isolation to prevent the entire population from 
coalescing about a single optimum. Selection is local because survivors 
can only replace members of the same subpopulation. For example, in the 
simple GA with a (µ, λ) survivor selection scheme, age determines the in-
teracting subpopulation, or selection neighborhood, because only trial vec-
tors are allowed to compete. In general, the smaller the selection neighbor-
hood is, the lower the selection pressure will be. Just as increasing λ or T
increases selection pressure, increasing the size of the population from 
which the base vector is drawn speeds convergence.

If DE’s base and target vectors are the same, vectors evolve in isolation 
as though there were Np subpopulations. Selection will be local because 
each population vector will be compared to a mutated version of itself. Al-
though the mutation differential is still drawn from the population at large, 
there is no interaction with other population members – no comparisons to 
solutions evolving in other parts of the solution space. 

Global Selection 

When seeking a single, global optimum, care must be taken to ensure that 
information about the best solutions can reach all members of the popula-
tion. If base vectors are randomly chosen, then each vector in the current 
population is compared to and possibly crossed with the mutated version 
of another vector. Compared to local selection, global selection speeds 
convergence and minimizes the risk of stagnation. 

2.7.5 Permutation Selection Invariance 

When base vectors are the elements of a random permutation of the se-
quence (0, 1,…, Np − 1), the roles played by the base vector and survivor 
selection become interchangeable. If a permutation of the sequence (0, 
1,…, Np − 1) indexes base vectors, then each vector in the current popula-
tion serves as a base vector once per generation (Sect. 2.4.2). Each vector 
in the current population also serves as a target vector once per generation. 
As such, it makes no difference whether the random permutation indexes 
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either base vectors or target vectors. Either way, each vector in the current 
population vector is mutated, then matched by permutation to a vector with 
which it is both crossed and compared and which it potentially replaces. 
For example, the first expression in Eq. 2.61 shows the traditional DE ap-
proach in which permuted indices, permute[i], select the base vector, while 
the running index, i, points to the target vector. The second expression 
shows the situation reversed, in which the running index specifies the base 
vector and the ith permutation entry locates the target vector. For clarity, 
Eq. 2.61 expresses this symmetry as a vector relationship (Cr = 1): 

( ) ( ).vs.vs. 21permute[i]21permute[i] rrirri FF xxxxxxxx −+⇔−+ (2.61)

These two approaches based on the permutation selection method give 
identical results, i.e., optimizer performance is the same regardless of 
which method is employed. In both cases, each vector in the current popu-
lation is mutated and then crossed with and compared to another vector in 
the current population not assigned to any other mutant. As such, random 
assignments derived from permutations can be performed either during 
parent (base vector) selection (left side of Eq. 2.61), or when selecting a 
target vector with which to cross and compete (right side of Eq. 2.61). 

The “urn” permutation algorithm (see Sect. 5.2) helps illustrate the 
symmetry between these two selection options. For example, let urn 1 hold 
Np marbles, each of which is numbered with a unique vector index, i ∈ [0, 
Np − 1]. Urn 2 also contains Np marbles numbered 0 through Np − 1, but 
this time, numbers indicate a vector in the current population that has been 
mutated. Permutation selection matches vectors in the current population 
with mutants for crossing and competing by drawing a marble (at random 
and without replacement) from each urn. Once all marbles have been ran-
domly paired this way, the final mapping between population and mutant 
indices will define a permutation. It does not matter to which urn the role 
of the permutation is assigned, just as it does not matter whether targets or 
mutants have their indices permuted.  

2.7.6 Crossover-Dependent Selection Pressure 

Because DE selection compares each trial vector to the vector in the cur-
rent population with which it is crossed, replacing a vector in the current 
population can change the population’s composition by as little as one pa-
rameter (Cr = 0), or by as many as D (Cr = 1). If, unlike DE, each vector 
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in the current population is compared to and replaced by a trial vector with 
whom it shares no common parameters, then the composition of (one 
member of) the vector in the current population changes by D parameters. 
Similarly, when (µ + λ)-selection replaces a vector in the current popula-
tion with a trial vector, the two vectors usually share no parameter values 
in common. By contrast, the number of parameters changed when classic 
DE accepts a trial vector is a function of Cr.

Figure 2.60 compares the selection pressure exerted by classic DE and 
two other selection schemes, both of which change D parameters each time 
they replace a vector in the current population. Classic DE (DE/rand/1/bin) 
generated the trial vectors in each case and algorithms differed only in how 
they selected survivors. Data points were only plotted if all 20 trials were 
successful. The top line shows that classic DE selection is the slowest of 
the three schemes when Np = 60, although it is the only method whose se-
lection pressure is gentle enough to prevent premature convergence at 
small values of Cr. The middle line corresponds to a selection scheme that 
pairs vectors in the current population and trial vectors with a random 
permutation. This use of random permutation to pair vectors and trial vec-
tors is distinctly different from the permutation selection method described 
in Sect. 2.7.5. Instead of drawing vectors from the first urn and mutants 
from the second, this selection method draws completed trial vectors that 
have already been crossed with another vector from the second urn. As 
such, vectors in the current population and the trial vectors that compete 
against them share no parameters through crossover. Its greater rate of 
convergence in Fig. 2.60 shows that in the case of the hyper-ellipsoid, ac-
cepting D new parameters per trial vector creates more selection pressure 
than does classic DE selection, except at Cr = 1 where both algorithms 
change the current population by D parameter values for each trial vector 
accepted. The (µ + λ)-selection scheme (bottom line) generates the highest 
selection pressure because it not only changes D parameters per accepted 
trial vector, it also uses T = Np tournaments instead of just T = 2. 
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Fig. 2.60. Classic DE selection (top line) is weaker than (µ + λ)-selection (bottom 
line) but both share a similar profile. Pairing target and trial vector (not mutant) 
adversaries with a random permutation provides an intermediate level of selection 
pressure (middle line). DE/rand/1/bin (Np = 60, F = 0.9) generated trial vectors, 
but survivors were selected by the indicated selection method. Data points are 20-
trial averages. 

2.7.7 Parallel Performance 

Not all survivor selection methods are equally well suited to parallel im-
plementations. For example, (µ + λ)-selection is time consuming when 
implemented as tournament selection without replacement. If instead, (µ +
λ)-selection is done by sorting, it becomes difficult to implement effi-
ciently in parallel because some comparisons must be performed before 
others. DE, however, is ideally suited for parallel computing, primarily be-
cause each vector in the current population competes in a single tourna-
ment against a trial vector that belongs to an intermediate population. Sec-
tion 5.1 describes several schemes for distributing DE across a network of 
processors. In addition, Sect. 7.6 describes how DE was implemented in 
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parallel to perform image registration. In that application, performance 
scaled quasi-linearly. 

2.7.8 Extensions 

The presence of constraint functions and multiple objectives in an optimi-
zation task make it difficult to compare solutions based on a single objec-
tive function value. For this reason, J. Lampinen (2002) has extended DE’s 
selection criteria so that solutions can be compared based on the notion of 
Pareto-dominance (Sect. 4.6). Instead of replacing a vector in the current 
population with a trial vector whose objective function value is equal or 
lower, Lampinen’s method replaces a vector in the current population 
when the trial vector dominates it. Lampinen’s method is easy to apply to 
problems with multiple constraints (Sect. 4.3), those with multiple objec-
tives (Sect 4.6) and multi-objective problems with multiple constraints 
(Sect 4.6). Among its principal advantages are that objectives and con-
straints do not need to be weighted. Details on Lampinen’s method can be 
found in the sections indicated above. 

In summary, DE’s one-to-one selection offers numerous advantages be-
yond its simplicity. It does not require mapping objective function values 
to selection probabilities. It is elitist, easy to implement in parallel, com-
pensates for increased acceptance rates at low Cr and has all the traditional 
advantages of tournament selection’s versatility which include invariance 
to objective function transposition. DE selection is also flexible, allowing 
either target or base indices to be randomly specified by permutations, or 
the criterion of “less than or equal” to be replaced by “Pareto-dominant” 
when problems have multiple objective and/or multiple constraints. 

2.8 Termination Criteria 

Sometimes it is obvious when an optimization should be halted. For exam-
ple, in constraint satisfaction problems (Sects. 4.3 and 4.5) the optimiza-
tion is over when all constraints are satisfied, i.e., when a feasible vector is 
found. In multi-objective optimization (Sect. 4.6), however, objectives of-
ten conflict. Satisfying one objective leaves another unfulfilled, so it is not 
always clear when to stop searching for a better compromise. This section 
briefly describes some halting criteria and the scenarios in which they are 
appropriate.
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2.8.1 Objective Met 

In some optimization tasks, the objective function’s minimum value is al-
ready known. For example, the goal when designing telescope optics is to 
reduce the geometric spot size of a star’s image to a point. The wave na-
ture of light, however, renders meaningless any improvement beyond cer-
tain well-known limits. Consequently, an optical system optimization can 
be halted when spot sizes fall below the limits set by the wave nature of 
light. The same is true of other error functions for which the tolerable error 
is given. This is also the method used when working with test functions 
whose minima are known. If the best-so-far vector’s objective function 
value is within a specified tolerance of the global minimum, the optimiza-
tion halts. 

2.8.2 Limit the Number of Generations 

Usually, the objective function minimum is not known in advance. Even 
for many test functions, only the best-known results are reported. In these 
cases, optimizations can be terminated after gmax generations. When testing 
optimizers with functions whose optima are known, setting gmax may halt 
optimizations that do not reach the objective function minimum within the 
specified tolerance. Finding a value of gmax that is large enough to give an 
optimizer enough time to find the optimum, but not so long that a second 
trial would be a better way to invest computer time, involves some guess 
work.

Alternatively, an optimization can be halted when ∆gmax generations 
have passed without a trial vector being accepted. Again, some experimen-
tation may be needed to find a good value for ∆gmax. Long periods without 
improvement are perhaps more common in DE than other EAs, so it is im-
portant that ∆gmax not be set too low. 

2.8.3 Population Statistics 

An optimization can also be terminated when a population statistic reaches 
a pre-specified value. For example, an optimization can be halted when the 
difference between the population’s worst and best objective function val-
ues falls below some predetermined limit. This method needs to be applied 
with caution because it can cause an optimization to halt prematurely. For 
example, if the optimization is halted when the difference between the 
population’s worst and best objective function values is less than, e.g., 
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1.0×10−6, the population’s best objective function value might not yet be 
within 1.0×10−6 of the minimum value. Thus, the interruption is premature 
because DE may still be making progress even though the range of objec-
tive function values is small. When using this criterion, it is usually a good 
idea to make the difference between the population’s worst and best objec-
tive function values several orders of magnitude lower than the tolerance 
set for locating the optimum. The same advice applies when monitoring 
the standard deviation of population vectors or the longest vector differ-
ence as termination criteria. 

2.8.4 Limited Time 

Sometimes only a limited amount of time is available for an optimization. 
In such cases, the optimization must terminate regardless of the state of the 
population or the number of generations. For example, in on-line optimiza-
tion, only a small amount of time may available to adjust manufacturing 
process parameters (e.g., Sect. 7.12). Similarly, it may be that computer 
time is limited or simply that a deadline must be met. Monitoring and 
manual intervention can help determine whether the available time is best 
spent completing an ongoing optimization or running a new trial.  

2.8.5 Human Monitoring 

Because of the inherent uncertainties in knowing when an optimization is 
over, it usually helps to personally monitor time-consuming optimization 
tasks. The feedback from the best objective function value, number of trial 
vectors accepted per generation, the distribution of the population, etc., 
usually makes it clear when no more improvement is possible or when 
time might be better spent running a new trial. In addition, human monitor-
ing allows the optimization to be altered in response to perceived opportu-
nities.

2.8.6 Application Specific 

Finally some applications will have their own termination criterion. In evo-
lutionary art, for example, an optimization to find the most pleasing picture 
might end when interest in the exhibit wanes, or when a certain group of 
people have participated. 
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