
Journal of Global Optimization 27: 105–129, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

105

A Trigonometric Mutation Operation to Differential
Evolution

HUI-YUAN FAN1,2 and JOUNI LAMPINEN2

1School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, PR China;
2Department of Information Technology, Lappeenranta University of Technology, P.O. Box 20,
FIN-53851 Lappeenranta, Finland E-mail: jlampine@lut.fi

Abstract. Previous studies have shown that differential evolution is an efficient, effective and ro-
bust evolutionary optimization method. However, the convergence rate of differential evolution in
optimizing a computationally expensive objective function still does not meet all our requirements,
and attempting to speed up DE is considered necessary. In this paper, a new local search operation,
trigonometric mutation, is proposed and embedded into the differential evolution algorithm. This
modification enables the algorithm to get a better trade-off between the convergence rate and the
robustness. Thus it can be possible to increase the convergence velocity of the differential evolution
algorithm and thereby obtain an acceptable solution with a lower number of objective function
evaluations. Such an improvement can be advantageous in many real-world problems where the
evaluation of a candidate solution is a computationally expensive operation and consequently finding
the global optimum or a good sub-optimal solution with the original differential evolution algorithm
is too time-consuming, or even impossible within the time available. In this article, the mechanism
of the trigonometric mutation operation is presented and analyzed. The modified differential evolu-
tion algorithm is demonstrated in cases of two well-known test functions, and is further examined
with two practical training problems of neural networks. The obtained numerical simulation res-
ults are providing empirical evidences on the efficiency and effectiveness of the proposed modified
differential evolution algorithm.

Key words: differential evolution, evolutionary algorithm, mutation operation, nonlinear optimiza-
tion

1. Introduction

Evolutionary algorithms (EAs) are a class of nonlinear optimization approaches
based on natural selection and Darwin’s main principle: survival of the fittest. EAs
have some particular advantages, such as robustness, parallelism, global search
capability, etc., which make EAs applicable and very attractive within a wide range
of engineering disciplines. The differential evolution algorithm (DE), developed by
Storn and Price a few years ago, is one of the most promising new EAs; see Storn
and Price [14, 16, 17], Price [8, 9], Lampinen [3]. This method has been demon-
strated to be an efficient, effective and robust optimization method that outperforms
some of the traditional EAs as reported by Storn and Price in [15]. Furthermore, DE



106 HUI-YUAN FAN AND JOUNI LAMPINEN

can be easily extended to handling continuous, discrete and integer variables and
for handling of multiple non-linear and non-trivial constraints, see, for example,
Lampinen and Zelinka [4]. In addition, DE is extremely compact. Its implementa-
tion requires only about 20 lines of code in C or FORTRAN, for example. For these
reasons, DE is one of the most attractive evolutionary optimization algorithms for
practical engineering optimization work.

Despite DE having a relatively high convergence performance in comparison
with the other EAs for nonlinear optimization of multi-modal functions, its conver-
gence velocity is still too low for optimizing the computationally most expensive
objective functions. Generally, seeking the global optimum of a multi-modal ob-
jective function by any nonlinear optimization algorithm will always call for higher
convergence velocity. On the other hand, since all EAs, including DE, work with
a population of solutions rather than a single solution, typically a high number
of candidate solutions must be evaluated during the optimization process. Unfor-
tunately, for many real-world problems, evaluating a candidate solution is not too
difficult, but time-consuming. This will often result in the overall optimization time
being too long to be acceptable in finding the global extreme of the objective func-
tion despite that the objective function is only moderately multi-modal, providing
a relatively smooth function landscape. While DE can solve such problems with
high accuracy, the optimization time available does not make it possible to find
even a good quality sub-optimal solution. For example, optimization in connection
with various finite element methods (FEM), like optimization in the field of com-
putational mechanics, computational magnetics or computational fluid dynamics
(CFD), often leads to a computational expensive objective function as described in
[10–12]. The objective function evaluation may take several minutes, several hours,
even several days. In such cases, there is no other option but to limit the algorithm
to operate within an acceptable time, which may not be enough to find the global
optima, but enough to obtain an improved solution (i.e., sub-optimum). Thus it
is obvious that further study of strategies that can “locally” speed up the current
DE algorithm is still an important and interesting topic. Such speed acceleration
may allow better solutions to be obtained within the limited CPU-time available
for optimization. Furthermore, it may define to what extent the algorithm can be
extended into complicated real-world problems with computationally expensive
objective functions.

In this article a trigonometric mutation operation is proposed and embedded
into the DE algorithm. This modification can provide a measure to tune the balance
between the convergence rate and the robustness of the algorithm. As a result, it is
expected that the convergence velocity of the DE algorithm can be locally accel-
erated so that better solutions can be obtained within an acceptable convergence
time.



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 107

2. A short overview of DE

Currently, there are several variants of the DE-algorithm [9]. The particular version
subject to our investigation is the DE/rand/1/bin-version, which appears to be the
most frequently used variant, and is often considered as the “basic” version of the
DE-algorithm. This particular scheme will be briefly described as follows:

When DE is applied to solving an optimization problem formulated as,
min

X
f (X), where X is a vector of n × 1 parameters, it works with a population of

Np candidate solutions, i.e., Xi,G, i = 1, . . . , Np , where i indexes the population
and G is the generation to which the population belongs. The main operations of
DE, mutation, crossover and selection, are briefly discussed in turn.

The main difference between DE and other EAs is the implementation of the
mutation operation. The mutation operation of DE applies the vector differentials
between the existing population members for determining both the degree and
direction of perturbation applied to the individual subject of the mutation opera-
tion. The mutation process at each generation begins by randomly selecting three
individuals in the population. The ith perturbed individual, Vi,G+1, is therefore
generated based on the three chosen individuals as follows:

Vi,G+1 = Xr3,G + F · (Xr1,G − Xr2,G) (1)

where, i = 1, . . . , Np, r1, r2, r3 ∈ {1, . . . , Np} are randomly selected and satisfy:
r1 �= r2 �= r3 �= i, and a scaling factor F(F ∈ [0, 1+]) introduced by Storn and
Price [14] in Equation (1) is a control parameter of the DE algorithm.

The perturbed individual, Vi,G+1 = (vi,j,G+1, . . . , vn,i,G+1), and the current
population member, Xi,G = (x1,i,G, . . . , xn,i,G), are then subject to the crossover
operation, that finally generates the population of candidates, or “trial” vectors,
Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1), as follows:

uj,i,G+1 =
{

vj,i,G+1 if randj � Cr ∨ j = k

xj,i,G otherwise
(2)

where, i = 1, . . . , Np , j = 1, . . . , n, k ∈ {1, . . . , n} is a random parameters
index, chosen once for each i, and the crossover factor, Cr ∈ [0, 1], the other
control parameter of DE, is set by the user.

The selection scheme of DE also differs from that of other EAs. The population
for the next generation is selected from the individual in current population and its
corresponding trial vector according to the following rule:

Xi,G+1 =
{

Ui,G+1 if f (Ui,G+1) � f (Xi,G)

Xi,G otherwise
(3)

Thus, each individual of the temporary (trial) population is compared with its
counterpart in the current population. The one with the lower objective function



108 HUI-YUAN FAN AND JOUNI LAMPINEN

value will survive from the tournament selection to the population of the next gen-
eration. As a result, all the individuals of the next generation are as good or better
than their counterparts in the current generation. An interesting point concerning
DE’s selection scheme is that a trial vector is not compared against all the individu-
als in the current generation, but only against one individual, its counterpart, in the
current generation.

3. Trigonometric Mutation Operation

A mutation operation of DE is performed usually on the basis of three individuals
in the current population. An individual, being taken as a donor, is perturbed with a
scaled vector differential from the other two individuals so as to produce a mutated
individual. This enables a hypergeometric triangle to be formed in the search space
where the three selected individuals (i.e., points) exist as the vertices, and to use
the selected-individuals’ objective function values together with this triangle in
a mutation operation. By applying also the objective function value information
in the mutation operation the perturbations can be biased towards the points (the
vertices of the hypergeometric triangle) providing the lowest objective function
values.

From this, a new mutation approach, namely, a trigonometric mutation oper-
ation, is proposed and described as follows. Assume the three mutually different
individuals, Xr1,G, Xr2,G and Xr3,G, are randomly chosen to implement a mutation
operation for the i-th individual Xi,G, where r1, r2, r3 = {1, . . . , NP } are randomly
selected and satisfy: r1 �= r2 �= r3 �= i. When a trigonometric mutation operation is
performed, instead of an individual randomly taken from the three chosen ones as
in the original mutation of DE, the donor to be perturbed is taken to be the center
point of the hypergeometric triangle. The perturbation to be imposed to the donor
is then made up with a sum of three weighted vector differentials. The mutation
operation is performed according to the following formulation:

Vi,G+1 = (Xr1,G + Xr2,G + Xr3,G)/3 + (p2 − p1)(Xr1,G − Xr2,G)

+ (p3 − p2)(Xr2,G − Xr3,G) + (p1 − p3)(Xr3,G − Xr1,G)
(4)

where:

p1 =|f (Xr1,G)|/p′

p2 =|f (Xr2,G)|/p′

p3 =|f (Xr3,G)|/p′,

and

p′ =|f (Xr1,G)| + |f (Xr2,G)| + |f (Xr3,G))|
As it can be seen from the above formulation, the perturbation part in the trigo-
nometric mutation is contributed together by the three legs of the triangle defined



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 109

with Xri,G, i = 1, 2, 3, i.e., by (Xr1,G−Xr2,G), (Xr2,G−Xr3,G) and (Xr3,G−Xr1,G).
This perturbation can also equivalently be viewed as yielded by the donor, namely,
the triangle’s center, through shifting along the directions of each leg of the triangle
with different step-sizes respectively. The weight terms (p2 − p1), (p3 − p2) and
(p1 −p3) to the vector differentials are defined along the following two considera-
tions. Firstly, weight terms can make the perturbation have a tendency to produce a
better individual. This can further be explained from the case that the perturbation
is viewed as the result from the donor’s shifts. Evidently, with these weight terms
the donor is insured to move along in the direction from a vertex with a higher value
of objective function towards a vertex with a lower value of objective function.
Secondly, the weight terms can automatically scale the contribution magnitudes
of the vector differentials to the perturbation in such a way that the greater the
difference in the objective function values between the individuals that form a
vector differential, the larger the contribution the corresponding vector differential
offers to the perturbation.

Through the above analysis it can easily be observed that the trigonometric
mutation operation is a rather greedy operator since it biases the new trial solution
strongly in the direction where the best one of three individuals chosen for the
mutation is. Therefore the trigonometric mutation can be viewed as a local search
operator.

From the definition of trigonometric mutation it can be deduced that the per-
turbed individuals are produced only within a trigonometric region that is defined
by the triangle used for a mutation operation. A two-dimensional minimization
problem is taken as an example to illustrate this fact. As shown in Figure 1, if the
three individuals, Xr1,G, Xr2,G, and Xr3,G (here Xr1,G = (2, 2), Xr2,G = (6, 4),
and Xr3,G = (3, 6), for instance), are chosen to produce a perturbed individual,
the trigonometric region is determined by the following procedure. Considering an
extreme case of p1 = 1, or equivalently, p2 +p3 = 0, from Equation (4), the point,
X′

r1
, can be determined as

X′
t1

= (Xr1,G + Xr2,G + Xr3,G)/3 + Xr2,G + Xr3,G − 2Xr1,G).

Similarly, the other two points X′
r2

and X′
r3

can be determined with respects to the
other two extreme cases of p2 = 1 and p3 = 1 respectively as

X′
r2

= (Xr1,G + Xr2,G + Xr3,G)/3 + Xr1,G + Xr3,G − 2Xr2,G)

and

X′
r3

= (Xr1,G + Xr2,G + Xr3,G)/3 + Xr1,G + Xr2,G − 2Xr3,G).

It can be proven that the three points, X′
r1

, X′
r2

, and X′
r3

just form the trigonometric
region that limits mutation results. Any resultant individual by the trigonometric
mutation based on the three chosen individuals will not be outside this region.

The basic idea of the trigonometric mutation operation can be further clarified
by Figure 1. Here it is assumed p1 < p2, p1 < p3, p2 < p3. A mutation operation



110 HUI-YUAN FAN AND JOUNI LAMPINEN

Figure 1. The trigonometric mutation operation illustrated for the case of a two-dimensional
function minimisation problem: Xri,G, i = 1, 2, 3, are the individuals chosen to mutate the
i-th individual of the current population; Vi,G+1 is a possible perturbed individual by tri-
gonometric operation; an arrowhead on the legs of the triangle defined by Xt1,G, i = 1, 2, 3,
indicates the direction of decreasing objective function values between two chosen individuals;
X′

ri ,G
, i = 1, 2, 3, indicates the direction of decreasing objective function values between two

chosen individuals; X′
ri ,G

, i = 1, 2, 3, which is defined by Xri,G, i = 1, 2, 3, which forms a
triangular region that limits the trigonometric mutation to produce a perturbed individual only
within that region.

starts from the canter (i.e., donor) of the triangle used for the mutation operation,
and makes the donor shift along in the direction from Xr2,G to Xr1,G, from Xr3,G

to Xr2,G, and from Xr3,G to Xr1,G, respectively, with step-sizes depending on the
respective objective function values, and finally yields a perturbed individual. Evid-
ently, this process makes an individual mutated to an area where the individuals are
likely to have lower objective function values.

In order to make a further observation to the trigonometric mutation operation,
three representative cases of the different pi , i = 1, 2, 3, i.e., Case One: p1 < p2,
p1 < p3, p2 < p3; Case Two: p1 < p2, p1 < p3, p2 > p3; and Case Three: p1 <

p2, p1 < p3, p2 = p3, are studied by randomly producing 200 sets of different
values of pi , i = 1, 2, 3, for each case. The perturbed individuals obtained through
the trigonometric mutation operation are plotted in Figure 2. It can be observed that
the trigonometric mutation operation tends to bias the mutated individuals towards
an optimal region that is locally and roughly determined on the basis of the three
chosen individuals and their objective function values.



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 111

Figure 2. The trigonometric mutation operation illustrated in three representative cases for a
two-dimensional minimisation problem. Two hundred perturbed individuals are plotted. These
points are obtained by randomly generating the values for pi , i = 1, 2, 3. The values are
required to satisfy the above-mentioned conditions for each case.

Since all of the variables in Equation (4) are known at the moment of applying
the trigonometric mutation, determining the new trial individual with Equation (4)
is a straightforward procedure.

4. The modified DE algorithm

In this paper the trigonometric mutation operation is embedded into the original
DE/rand/1/bin-version to form a new modified DE algorithm. Later on the modi-
fied DE algorithm will be referred to as the TDE (trigonometric mutation differen-
tial evolution) algorithm. The TDE algorithm can be outlined as follows:

The TDE Algorithm:
1. Initialization of the population.



112 HUI-YUAN FAN AND JOUNI LAMPINEN

2. Mutation operation:
2.1 Perform trigonometric mutation with Equation (4) with a probability Mt , or
2.2 perform original mutation with Equation (1) (with a probability 1 − Mt ).

3. Crossover operation.
4. Evaluation of the population with the objective function.
5. Selection.
6. Repeat from step 2 to 5.

Note here, that the only structural difference between the TDE algorithm and the
original DE algorithm is the new trigonometric mutation operation added into the
TDE. This extra step is controlled by a new control parameter “trigonometric muta-
tion probability”, Mt . Thus, Mt is an extra search control parameter of TDE. As it
is well known, hybridizing a local search operator into an evolutionary algorithm
can generally speed up the convergence velocity of the algorithm. However, such
an operator usually leads to a greedy algorithm prone to converge prematurely into
a local optimum. Therefore, the frequency of performing a local search operation
in an EA must be appropriately controlled in order to allow the algorithm to keep
a good balance between fast convergence and global optimum searching ability.
In the TDE algorithm, the parameter Mt provides a convenient way to adjust this
balance. It is also useful to note here a special case, Mt = 0, when TDE effectively
reduces into original DE.

The trigonometric mutation operation is used jointly with the DE’s original
mutation operation so that only one or the other is applied for generating the
current trial individual, depending on a uniformly distributed random value within
the range [0.0, 1.0]. If the random value is smaller than Mt , then a trigonomet-
ric mutation is applied using Equation (4), otherwise the mutation is performed
according to Equation (1).

5. Illustrative examples

5.1. TEST FUNCTIONS AND ARRANGEMENTS

Two test functions that are known to be densely multi-modal were chosen to demon-
strate the TDE algorithm. The first is so called Ackley’s function, as it can be found
in [1, 2]. This is a continuous, highly multi-modal function that causes the search
with moderate complications. The second is commonly called as Rastrigin’s func-
tion, and can be found in [7]. This function is also considered relatively difficult
to minimize because the number of locally optimum points is high. These two test
functions are defined as follows:



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 113

Ackley’s function [1, 2]:

f1(X) = − 20 · exp


−0.2

√√√√1

n

n∑
i=1

x2
i


 − exp

(
1

n

n∑
i=1

cos(2πxi

)
+ 20 + e;

− 20 � xi � 30, n = 30
(5)

The global minimum is f1(X
∗) = 0 with xi = 0, i = 1, 2, . . . , n.

Rastrigin’s function [7]:

f2(X) =2n +
n∑

i=1

(x2
i − 2 cos(2πxi));

− 5.12 � xi � 5.12, n = 20

(6)

The global minimum is f2(X
∗) = 0 with xi = 0, i = 1, 2, . . . , n.

The performance of the DE algorithm, of course, depends on how the values
for its control parameters, namely, F , Cr , Np, are chosen. As it is well known, the
aforementioned parameters are problem-specific. On how to choose their values
optimally a priori is still a partially open problem. Usually, a trial-and-error ap-
proach can be used to complete a sub-optimal selection of these parameters, but it
is rather laborious and time-consuming. In consideration of a good generality, in
this investigation a basic set of these control parameters was first chosen based on
the authors’ experience and the general recommendations given in the literature,
for example, in [3, 9, 13, 14, 16–18]. Then, all the numerical simulations and result
comparisons were carried out around this basic parameter set, namely: F = 0.99,
Cr = 0.85, Np = 30. The special control parameter of TDE, i.e., the trigono-
metric mutation probability , was chosen as Mt = 0.05 after performing a set of
experiments that will be discussed in detail in the following section.

In general, in the numerical experiments, the population of a DE algorithm was
always randomly initialized. Despite this, both the TDE algorithm and the original
DE algorithm to be compared were tested by applying identical initial populations.
In other words, when an initial population was once randomly generated, it was
then used as a starting point for a single trial run both for the TDE and the DE.
Thus, both the compared algorithms were tested with identical, but still randomly
generated initial populations.

Due to the stochastic nature of DE algorithm, for both of the compared al-
gorithms, the experiments were repeated multiple times for each test function (10–
50 times depending on the case). When applicable, the results subject to our interest
were averaged over all the repeated experiments. A case dependently specified
maximum CPU-time was applied as stopping criteria. For the first test function,
the given maximum CPU-time was 45 s, and for the second, 30 s.



114 HUI-YUAN FAN AND JOUNI LAMPINEN

Figure 3. Convergence histories of the TDE algorithm and the original DE algorithm for
minimization of the test functions f1 and f2. The results are averaged over 50 independent
experiments for each algorithm.

Both the TDE algorithm and the original DE algorithm were implemented within
Matlab 5.0 system and were executed in PC with a Pentium III processor.

5.2. OVERALL RESULTS

Some overall performance measures of the compared algorithms were examined
first. Figure 3 shows the convergence histories of the TDE algorithm and the ori-
ginal DE algorithm for minimization of the two test functions. The results were
averaged over 50 independent trial runs for each algorithm for each test function.
From Figure 3 it can be observed that for both functions the TDE expressed a
considerably higher convergence velocity than the DE did. Though the TDE fi-
nally stagnated into a sub-optimal solution respectively as also did the original
DE algorithm, the TDE converged faster in the earlier generations. Nevertheless,
the sub-optimal solutions obtained by the TDE were closer to their corresponding
global minimum than those obtained by the DE.



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 115

Figure 4. Histograms of the function values obtained by the TDE algorithm and the original
DE algorithm in the case of 50 independent trial runs.

The convergence reliability of the TDE algorithm was further assessed by his-
tograms (Figure 4) representing the obtained function values from 50 independent
trial runs for both the test functions, and for both the TDE and the DE algorithms.
From Figure 4 it can be observed that for both chosen test functions the TDE
continuously converged (in all experiments) into a closer vicinity of the true global
optima than the best run of the DE. Within the given maximum CPU-time the DE
was able to find only sub-optimal solutions that were still quite far from the real
minimum function values. The results in Figure 4 qualitatively suggest that the



116 HUI-YUAN FAN AND JOUNI LAMPINEN

TDE algorithm has a better convergence reliability than the original DE algorithm
in minimization of the applied test functions.

5.3. TUNING THE CONTROL PARAMETER, mt

The TDE algorithm has the extra control parameter for the trigonometric mutation
probability Mt . The influence of Mt to the convergence performance of the TDE
was also investigated with a set of numerical experiments. For this purpose, the
basic values of the control parameters F , Cr and Np as described in Section 5.1
were applied, and then the TDE was applied to minimize the two test functions
by experimenting with 17 different values for Mt . For each value of Mt , 50 inde-
pendent trial runs were performed with the TDE. The function values obtained by
the TDE were recorded and averaged over these 50 trial runs. From the Figure 5 it
can be found that that there appears to be an optimal value for both of the applied
test functions: for Ackley’s function, this value is about 0.03, and for Rastrigin’s
function it is about 0.05. Since these two optimal values are rather close to each
other, for simplification, we considered Mt = 0.05 as an appropriate value for both
the test functions, and used this value also for all our further experimentation to be
discussed later on.

The convergence histories of the TDE in the case for minimizing the Ackley’s
function, corresponding to eight out of all 17 experimented values of Mt , are shown
in Figure 6 to demonstrate the influence of Mt to the convergence performance
of the TDE. An important detail that can be observed from the above results is
an early stagnation tendency of the TDE algorithm while increasing the value of
Mt . This supports further on the initial assumption that the trigonometric mutation
proposed here is effectively a local search operator. The larger the Mt parameter,
the greedier is the algorithm, and the higher is the probability of premature con-
vergence into a local optima. For example, when Mt is close to one, the algorithm
quickly stagnates far from the global optimum. However, also the convergence rate
appears to increase along with the value of Mt . Indeed, the TDE appear to offer a
useful mean for accelerating convergence through tuning of the added parameter,
Mt , and thereby adjust the desired balance between the convergence rate and failure
probability. Note, that generally a high convergence rate and low failure probability
are conflicting objectives. Nevertheless, some care must be taken to select the value
of Mt properly. The results here suggest that the value of Mt should be rather low,
Mt = 0.05 appears to be a good initial setting to be tried first.

5.4. SENSITIVITIES TO OTHER CONTROL PARAMETERS AND TO PROBLEM

SIZE

The influence of the other control parameters on the TDE algorithm was also
investigated and compared with the corresponding results of the original DE al-



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 117

Figure 5. With different values of trigonometric mutation probability Mt , the TDE algorithm
obtained different test function values within the specified maximum CPU-time.

Figure 6. Convergence histories of the TDE algorithm with different values of trigonometric
mutation probability Mt in the case for minimizing the Ackley’s function.

gorithm. During the experimentation, one among the three parameters, F , Cr , Np,
was varied stepwisely within a certain range, while the remaining ones were kept
in their basic values, as described in Section 5.1. For each individual set of control
parameter values 20 independent trial runs were performed with both the TDE and
DE. The obtained function values were recorded and averaged over all the trial runs
performed. The results of these experiments are shown in Figures 7–9.

From Figures 7–9 it can be seen that the TDE indicated a considerably lower
sensitivity to the variations in search control parameters, than the original DE did.
For all control parameters, F , Cr and Np, the DE appears to require selecting a
value from a noticeably narrower range than the TDE does. Due to it’s indicated
lower sensitivity to the control parameter values, from a user point of view, the
usage of the TDE can be expected to be simpler than the usage of the DE. The



118 HUI-YUAN FAN AND JOUNI LAMPINEN

Figure 7. The function values obtained by the TDE algorithm and the original DE algorithm
with different values of scaling factor F in minimization of the test functions. The TDE
demonstrated a lower sensitivity to the value of F in both cases. The results are averages
over 20 independent trial runs for each point plotted.

control parameter values are easier to set by the user a priori. In brief, the TDE
algorithm allows these three parameters, F , Cr and Np, to be selected from a larger
range than the original DE algorithm does, without major performance degrada-
tion. While there is an extra search control parameter, Mt , in the TDE, the rest of
the search parameters, F , Cr and Np, are easier to set due to their lower sensitivity
in comparison with the original DE.

The influence of the problem size (dimensionality) to the performance of the
TDE and DE algorithms was also initially and preliminarily studied. In order to
investigate this, the basic control parameter settings as described in Section 5.1
were applied, and used for both algorithms to minimize the two test functions
varying the function dimensionality (both functions have scalable dimensionality).
With each given number of parameters, both algorithms were applied repeatedly
and independently twenty times. The function values obtained by the TDE and the



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 119

Figure 8. The function values attained by the TDE algorithm and the original DE algorithm
for different values of crossover factor Cr . The TDE demonstrated a lower sensitivity to the
value of Cr in both cases. The results are averages over 20 independent trial runs for each
point plotted.

DE were recorded and averaged over all the performed trial runs. From the results
shown in Figure 10 it can be observed that when the test function’s dimensionality
was increased, the function values obtained by the TDE algorithm still remained
clearly below those obtained by the original DE. These results did not revealed
any major problems with the scalability of the DE or TDE to higher dimensional
problems.

Please notify here, that our current results described in this section are mainly
based on the results obtained from numerical simulations. Due to the contemporary
shortage of the mathematical analysis of the dynamic behavior of the DE algorithm,
it was not possible to clarify and to theoretically support all observations based
on the numerical results as adequately as desired. For example, why the TDE
algorithm indicated a much lower sensitivity to the control parameters than the
original DE algorithm? The phenomena may depend on the algorithm’s dynamic



120 HUI-YUAN FAN AND JOUNI LAMPINEN

Figure 9. The function values attained by the TDE algorithm and the original DE algorithm
for different values of crossover factor Np . The TDE demonstrated a lower sensitivity to the
value of Np in both cases. The results are averages over 20 independent trial runs for each
point plotted.

characters or on the problems themselves. All these questions still remain open for
further studies in the future.

6. Application for training neural networks

The neural network technique is a computation strategy that simulates the bio-
logical process in the human brain. A neural network consists of simple, highly
interconnected processing elements called neurons. Neurons by themselves are not
particularly interesting, but their interconnection creates a powerful device that
is proven to be capable of approximating arbitrary functions. Neural networks
have been shown to successfully model a wide diversity of practical systems and
processes.



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 121

Figure 10. The function values obtained by the TDE algorithm and the original DE algorithm
as a function of the problem size, n. The Ackley’s function, f1, and the Rastrigin’s function,
f2, were used as test functions to be scaled for different problem dimensionalities. Note, that
both test functions can be easily scaled for any number of dimensions.

However, the effective training of a neural network that is used to approximate
a complicated practical system can still be viewed as one of the most important
open problems in the field of neural networks. A training problem of a neural
network usually can be attributed to a multi-modal nonlinear optimization prob-
lem, often having hundreds of parameters. A wide variety of difficulties have been
encountered in solving such a problems. A low convergence speed allowing only
a minor convergence within the time available for computation, for example, is
one of the most common practical difficulties. This is because a practical physical
system is usually so complex that its approximation by a neural network may need
a large network structure as well as a large number of samples to train it. In such
a case the very slow speed of convergence for the training process often becomes
a fatal drawback for the neural network approach. As a result, any attempts made
to improve the convergence of neural network training should be very profitable to
real neural network problems.



122 HUI-YUAN FAN AND JOUNI LAMPINEN

In this section the proposed TDE algorithm is applied to the training problems of
multi-layered feed forward neural networks to further demonstrate its convergence
speeding-up ability.

6.1. SOME PROBLEM-SPECIFIC ADAPTATIONS

Let Y and O = g(Y ) be the input and output vectors for the system g to be
approximated by a multi-layered feed forward neural network from a set of known
input-output pairs, i.e., samples, (Y,O)j , j = 1, . . . , N . During the training, the
neural network “black-box” is presented with the training pairs (Y,O)j and its
internal parameters (connecting weights) are adjusted by the training algorithm.
This procedure results in the “encoding” of the properties of the function g in
different parts of the neural network. After training is completed, the neural net-
work becomes an approximator of the system. When the trained neural network is
presented with an input, Y , it will simulate the function g and will produce an out-
put O ′ that is an approximation of the target output, O. Without loss of generality,
it is assumed that a feed forward neural network with (M+1) layers will be trained.
Denote the connecting weight matrix between the layers of the i-th to the (i + 1)-
th as W [i], i = 1, . . . ,M, and further, let W = {W [1], . . . ,W [M]}. The training
of the neural network can be interpreted as a minimization process of a proper
error function of the neural network. For neural network training, the commonly
used output mean squared error (MSE) of the neural network was applied here as
an error function. The training process can then be formulated as the following
minimization problem:

min
W


ϕ(W) = 1

N

N∑
j=1

[
m∑

i=1

(Oji − O ′
ji)

2

]
 (7)

where m is the dimension of the output vectors, or equally, the number of output
neurons.

When DE is applied to solve the above minimization problem, the individuals
are no longer vectors, but groups of weight matrices of the neural network. Of
course, the weight matrixes in a group can be reshaped to vectors and thereby
be formed into a single vector through linking the reshaped vectors end by end
in a proper sequence so as that the previously prescribed DE operations can be
directly used without any adaptations. However, some additional work may be
added into the training process. For example, inverse reshape work is needed in
order to evaluate an individual’s objective function value. In view of this fact, the
presentations of individuals with matrixes are reserved into the DE’s operations
in this application. Due to this, the DE algorithm must evolve in synchronism a
population in which the individuals, i.e., Wi,G, i = 1, . . . , Np, are groups of weight
matrixes with several different sizes. So all the DE operations are required to adapt
to operate based on such individuals.



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 123

In this section, in correspondence with the fact that the to-be-optimized solu-
tions, or individuals, in the population have already been represented with the sets,
Wi,G, i = 1, . . . , Np , the perturbed individuals and the trial individuals are also
newly denoted with Ri,G, i = 1, . . . , Np , and Si,G, i = 1, . . . , Np , respectively.
The three DE operations, as adapted to the training problem of the neural network,
i.e., the minimization problem as Equation (7), will be as follows:

The mutation operation can expressed as Ri,G+1 = {R[1]
i,G+1, . . . , R

[M]
i,G+1, in

which, R
[1]
i,G+1, l = 1, . . . ,M, are defined respectively for the original mutation

and the trigonometric mutation as follows:
For the original mutation:

R
[l]
i,G+1 = W

[l]
r3,G

+ F · (W
[l]
r1,G

− W
[l]
r2,G

) (8)

For the trigonometric mutation:

R
[l]
i,G+1 =(W

[l]
r1,G

+ W
[l]
r2,G

+ W
[l]
r,G)/3 + (p2 − p1)(W

[l]
r1,G

− W
[l]
r2,G

)

+ (p3 − p2)(W
[l]
r2,G

− W
[l]
r3,G

+ (p1 − p3)(W
[l]
r3,G

− W
[l]
r1,G

)
(9)

where, p1 = ϕ(Wr1,G)/p′, p2 = ϕ(Wr2,G)/p′, p3 = ϕ(Wr3,G)/p′, and p′ =
ϕ(Wr1,G) + ϕ(Wr2,G) + ϕ(Wr3,G).

Similar to the mutation operation, the crossover operation can also be expressed
as Si,G+1 = {S[1]

i,G+1, . . . , S
[M]
i,G+1}. Let w[l]i,G(m, n), r

[l]
i,G(m, n), represent the ele-

ments in the m-th row and the n-th column of W
[l]
i,G, R

[l]
i,G, S

[l]
i,G, respectively, then

S
[l]
i,G+1, l = 1, . . . ,M, in the equation are defined as:

s
[l]
i,G+1(m, n) =

{
r
[l]
i,G+1(m, n) if randm,n[0.1] � Cr ∨ (m, n) = (m∗, n∗)

w
[l]
i,G+1(m, n) otherwise

(10)

where m = 11, . . . ,Ml, n = 1, . . . , Nl , Ml and are the row size and the column
size of the related matrix [•][l] (e.g., W

[l]
i,G, R

[l]
i,G, S

[l]
i,G, etc), m∗ � Ml , n∗ � Nl , are

random element indexes, chosen once for each element.
Compared with the above two operations the selection operation is simpler and

more similar to the original selection operation as described in Equation (3). It is
expressed as:

Wi,G+1 =
{

Si,G+1 if ϕ(Si,G+1) � ϕ(Wi,G)

Wi,G otherwise
(11)

It is also worth mentioning that the problems usually handled by DE are often with
the parameters subject to lower and upper boundary constraints, so that the popula-
tion can easily be initialized with random values chosen within the given boundary
constraints. However, when DE is applied to train a neural network, values of the



124 HUI-YUAN FAN AND JOUNI LAMPINEN

Figure 11. Convergence histories of the TDE algorithm, the original DE algorithm and the
standard BP algorithm in training the neural network for the XOR problem. The results are
averaged over 50 independent experiments for each algorithm.

Figure 12. Configuration of the five-hole probe and its coordinate system.

elements for a weight matrix generally need not be constrained by lower and upper
boundaries. In order to straightforwardly initialize the population in this case, the
uniformly distributed random values in the range [−1, 1] are assigned to all the
elements of the weight matrixes.

Having the above adaptations, the existing DE algorithm can be mechanically
applied to training neural networks without any difficulties. Except the variables
that represent the individuals such as Xi,G, Vi,G, and Ui,G should be replaced with
the variables newly defined as Wi,G, Ri,G, and Si,G, and all the other evolution
parameters remain as the same definitions as in the previous Sections 2–4. The
algorithm scheme of DE keeps in the original structure at all times.

6.2. CASE 1: THE XOR PROBLEM

The simple XOR problem was first considered to examine the behaviors of the
TDE algorithm through training a neural network to approximate the problem. A
four-layered feed forward neural network with the structure formed as “2-2-2-1”,



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 125

i.e., two input neurons used to input the XOR variables, and the one output neuron
used to output the XOR function value, and each of the two hidden layers with
two neurons, were taken in this case. The evolution parameters were chosen by
trial-and-error as: Np = 40, Cr = 0.85, F = 0.99. The trigonometric mutation
probability was chosen as Mt = 0.05 on the basis of the experimental results
provided in Section 5.3.

The neural network was trained with four input-output pairs: ([1 1]T , [1]),
([0 0]T , [1]), ([1 0]T , [0]), ([0 1]T , [0]). Both the TDE algorithm and the original
DE algorithm were used to train the network. For a further comparison, the stand-
ard Back-Propagation algorithm (BP), implemented as described in [6], was also
used to train the network. The maximum CPU-time available for the training was
specified to 30s. The resulting convergence histories for the three algorithms are
shown in Figure 11. The results are averaged over 50 independent trial runs.

6.3. CASE 2: AN AERODYNAMIC FIVE-HOLE PROBE CALIBRATION

Five-hole probes have established themselves as some of the easiest-to-use and
cost-effective devices for three-component velocity measurements of fluids in re-
search as well as in industry environments. By measuring the five pressures at the
ports of a probe’s tip and through the use of proper probe calibration methods, the
five-hole probes can measure the three velocity components, the total and static
pressure of a flowfield at the location of its tip. Their calibrations are just the job
to establish the mapping relations between the pressure values measured in the five
ports and the measured flowfield properties. Generally, these mapping relations are
nonlinear. So the neural network is a good option to approximate these relations.

A five-hole probe with a conical tip was chosen in this application case. The
configuration of the probe and its coordinate system is shown in Figure 12. In the
tip, one port sits at the center of the cone, and the other ports are axisymmetrically
arranged in a ring downstream. Generally, a local velocity vector in the measured
flowfield can be fully determined with four local flow parameters. They are the
flow pitch angle, α, the flow yaw angle, β, the total pressure coefficient At , and the
static pressure coefficient As . Consequently, to calibrate the probe is to determine
the above four variables (output variables) as functions of the five measured pres-
sures or equivalently, four non-dimensional pressure coefficients, Bi , i = 1, 2, 3, 4,

(input variables). Let P5 denote the pressure measured at the central port, and Pi ,
i = 1, 2, 3, 4, denote the pressures at the other four ports. The pressure coefficients
are defined as: Bi = (P5 − Pi)/P

′, where P ′ = P5 − 0.25 · ∑4
i=1 Pi . When a

multi-layered feed forward neural network is applied to fulfill the above calibration
task, it can be interpreted as to train a neural network to approximate the mapping
relation as

A = g(B) (12)

where A = [αβAtAs]T , and B = [B1B2B3B4]T .



126 HUI-YUAN FAN AND JOUNI LAMPINEN

The probe calibration data was obtained on an air jet calibration facility. Varying
the α and β in steps of 5◦ from −40◦ to +40◦, respectively, the total number of
17 × 17 = 289 data points were obtained that form 289 input-output pairs, i.e.,
(B,A)i , i = 1, . . . 289. From these input-output pairs 153 were uniformly chosen
for the following neural network training.

Two feed forward neural networks, each with four layers, were trained in this
case. They had different numbers of hidden neurons, and had structures in the form
of “4-10-10-4” and “4-20-20-4”, respectively. Here the number of hidden layers
and the number of neurons in the layers were selected a priori rather arbitrarily
based on the author’s experience and no attempts were made towards optimizing
these selections. Since the aim was to prove the algorithm’s local convergence
performance and not to find an optimal structure for the neural networks, the
two structures were chosen here only for the purpose of an extended observation.
Clearly, for both neural networks, the four input neurons represented the four
input variables Bi , i = 1, 2, 3, 4, while the four output neurons represented the
parameters α, β,At and As .

The training problem of the neural network was solved using the TDE algorithm
and the original DE algorithm with control settings of: Np = 20, F = 0.99,
Cr = 0.85. For the TDE, the trigonometric mutation probability Mt was again
chosen as, Mt = 0.05. For further comparisons, also in this case, the standard BP
algorithm [6] was again used to train the neural networks. For the first network,
the maximum CPU-time for training was limited to 20 min, while for the second
network configuration it was limited to 60 min. The convergence histories averaged
over 10 independent trial runs are shown in Figure 13.

6.4. DISCUSSIONS AND SUMMARIES

In cases for both practical neural network training problems studied above, it was
observed that the TDE algorithm had a significantly higher convergence rate within
the given limited CPU-time in comparison with the original DE algorithm. As was
expected, the BP algorithm showed a rather poor performance in both these training
problems.

In the case of the XOR problem, both DE algorithms completed the training
task within the given maximum CPU-time, while the solution found by the BP
algorithm was rather far from optimal solution (see Figure 11). As shown in Fig-
ure 11, the TDE converged to the optimal solution clearly faster than the DE,
though the difference was not overwhelming.

In the Case for the aerodynamic probe calibration, because the problem was
time-consuming, the training processes could not be extended long enough to allow
any of the compared algorithms to converge to the global optimum. However, in
this article our focus is on how the algorithms behave within the given maximum
CPU-time, i.e., under tight time limitations that do not allow finding a globally



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 127

Figure 13. Convergence histories of the TDE algorithm, the original DE algorithm and the
standard BP algorithm in training the neural network for aerodynamic probe calibration. Two
different neural network configurations, both having two hidden layers, were studied in this
case. The results are averaged over 10 independent experiments for each algorithm.

optimal solution and therefore forces us to seek the best possible sub-optimal
solution that can be found within the available CPU-time. Anyway, the numer-
ical simulation results for both studied neural network configurations, as shown in
Figure 13, demonstrated a clearly higher convergence velocity with the TDE than
with the original DE in the training of the neural networks to calibrate the five-
hole aerodynamic probe. For both studied neural network configurations the BP
algorithm, again, showed a rather poor performance by stagnating into low quality
solutions at a relatively early phase in the optimization process (see Figure 13).

Concerning the trigonometric mutation probability Mt for the TDE algorithm,
the setting based on the experimental results discussed in Section 5.3, Mt = 0.05,
was found to be also suitable for both of the above-discussed neural network train-
ing problems. Note also, that all three neural network training cases discussed here,
were solved by applying the same values for the TDE control parameters, F , Cr and
Mt . Varying only the population size, Np, was enough to provide all the problem
specific adaptation required here.



128 HUI-YUAN FAN AND JOUNI LAMPINEN

7. Conclusions

A new mutation strategy, trigonometric mutation operation was proposed and hy-
bridized into the DE algorithm. Since the trigonometric mutation operation is a
rather greedy local search operator, this modification of the DE algorithm makes
it possible to straightforwardly adjust the balance between the convergence rate
and the robustness through a new introduced parameter, Mt . The greediness of the
algorithm can be tuned conveniently by increasing or decreasing Mt .

The modified DE algorithm was first examined with minimization of two well-
known test functions, and then further demonstrated in cases of two practical ap-
plications for training neural networks, with comparisons to the original DE and
Back-Propagation algorithms. The numerical simulation results showed that when
the parameter, Mt , was properly chosen, the convergence rate of the TDE algorithm
could be significantly increased within a given maximum CPU-time.

It is well known that when an EA, or any stochastic search algorithm, is applied
to solving a real-world problem, a trade-off has to be made between the algorithm’s
convergence rate and the search robustness. Often the attempts towards a higher
convergence rate simultaneously increase the risk that the algorithm will prema-
turely converge into a local optimum. The advantage of the modified DE algorithm
proposed in this paper is that it can offer a dedicated search control parameter for
adjusting the balance between convergence rate and the robustness, and thereby
obtain a compromise between these conflicting objectives. Consequently, the al-
gorithm can be appropriately adjusted for a higher convergence rate without sacri-
ficing the solution precision or search robustness too much. This kind of advantage
will be especially attractive when solving real-world problems with computation-
ally expensive objective functions, since evaluating a candidate solution for such
a problem is always time-consuming. Under tight computation time limitations a
robust, but slowly converging algorithm cannot provide an acceptable sub-optimal
solution since the convergence rate is too low for that. In such cases a more greedy
but slightly less robust algorithm appears to be the only way for obtaining bet-
ter sub-optimal solutions. For these problems the modified DE algorithm appears
to provide a promising alternative having a dedicated search greediness control
parameter.

References

1. Bäck, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University Press,
Inc., Oxford, 1996.

2. De Jong, K. (1975), An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D.
Thesis, Department of Computer and Communication Sciences, University of Michigan, Ann
Arbor, MI.

3. Lampinen, J. (2000), A bibliography of differential evolution algorithm, Technical Report,
Lappeenranta University of Technology, Department of Information Technology, Laboratory
of Information Processing. Available via the Internet: http://www.lut.fi/ jlampine/debiblio.htm



TRIGONOMETRIC MUTATION OPERATION TO DIFERENTIAL EVOLUTION 129

4. Lampinen, J., and Zelinka, I. (1999), Mechanical engineering design optimization by differ-
ential evolution, In: Corne, D., Dorigo, M. and Glover, F. (eds), New Ideas in Optimization,
McGraw-Hill, London (UK), pp. 127–146.

5. Lampinen, J. and Zelinka, I. (2000). On stagnation of the differential evolution algorithm, In:
Ošmera, P. (ed.), Proceedings of MENDEL 2000, 6th International Mendel Conference on Soft
Computing, Brno, Czech Republic, pp. 76–83. Available via the Internet:
http://www.lut.fi/ jlampine/MEND2000.ps.

6. Hassoun, M. H. (1995), Fundamentals of Artificial Neural Networks, MIT Press, Cambridge,
MA.

7. Muhlenbein, H., Schomisch, M. and Born, J. (1991), The parallel genetic algorithm as function
optimizer, Parallel Computing 17, 619–632.

8. Price, K. (1996), DE: a fast and simple numerical optimizer, 1996 Biennial Conference of the
North American Fuzzy Information Processing Society, NAFIPS, Smith, M., Lee, M., Keller, J.
And Yen, J. (eds.), IEEE Press, New York, pp. 524–527.

9. Price, K. (1999), An introduction to DE, In: Corne, D., Marco, D. and Glover, F. (eds.), New
Ideas in Optimization, McGraw-Hill, London (UK), pp. 78–108.

10. Rogalsky, T., Derksen, R.W. and Kocabiyik, S. (1999), An aerodynamic design technique for
optimizing fan blade spacing, Proceedings of the 7th Annual Conference of the Computational
Fluid Dynamics Society of Canada, pp 2-29 – 2-34.

11. Rogalsky, T. and Derksen, R. W. (2000), Hybridization of differential evolution for aerody-
namic design, Proceedings of the 8th Annual Conference of the Computational Fluid Dynamics
Society of Canada, pp. 729–736.

12. Stumberger, G., Dolinar, D., Pahner, U. and Hameyer, K. (2000), Optimization of radial active
magnetic bearings using the finite element technique and the differential evolution algorithm,
IEEE Transactions on Magnetics 36(4), 1009–1013.

13. Storn, R. (1996), On the usage of differential evolution for function optimization, 1996 Bien-
nial Conference of the North American Fuzzy Information Processing Society (NAFIPS 1996),
Berkeley, IEEE, New York, pp. 519–523.

14. Storn, R. and Price, K. (1995), DE-a simple and efficient adaptive scheme for global optimiza-
tion over continuous space, Technical Report TR-95-012, ICSI, March 1995. Available via the
Internet: ftp.icsi.berkeley.edu/pub/techreports/ 1995/tr-95-012.ps.Z.

15. Storn, R. and Price, K. (1996), Minimizing the real function of the ICEC’96 contest by DE,
IEEE International Conference on Evolutionary Computation, Nagoya, pp. 842–844.

16. Storn, R. and Price, K. (1997), DE-a simple evolution strategy for fast optimization, Dr. Dobb’s
Journal April 97, 18–24 and 78.

17. Storn, R. and Price, K. (1997), DE-a simple and efficient heuristic for global optimization over
continuous space, Journal of Global Optimization, 11(4), 341–359.

18. Zaharie, D. (2002), Critical values for control parameters of differential evolution algorithms,
In: Matoušek, R. and Ošmera, P. (eds.), Proceedings of MENDEL 2002, 8th International
Conference on Soft Computing, Brno, Czech Republic, pp. 62-67. ISBN 80-214-2135-5.


