
526 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

Differential Evolution Using a Neighborhood-Based
Mutation Operator

Swagatam Das, Ajith Abraham, Senior Member, IEEE, Uday K. Chakraborty, and Amit Konar, Member, IEEE

Abstract— Differential evolution (DE) is well known as a simple
and efficient scheme for global optimization over continuous
spaces. It has reportedly outperformed a few evolutionary algo-
rithms (EAs) and other search heuristics like the particle swarm
optimization (PSO) when tested over both benchmark and real-
world problems. DE, however, is not completely free from the
problems of slow and/or premature convergence. This paper
describes a family of improved variants of the DE/target-to-
best/1/bin scheme, which utilizes the concept of the neighborhood
of each population member. The idea of small neighborhoods,
defined over the index-graph of parameter vectors, draws inspi-
ration from the community of the PSO algorithms. The proposed
schemes balance the exploration and exploitation abilities of DE
without imposing serious additional burdens in terms of function
evaluations. They are shown to be statistically significantly better
than or at least comparable to several existing DE variants as
well as a few other significant evolutionary computing techniques
over a test suite of 24 benchmark functions. The paper also
investigates the applications of the new DE variants to two real-
life problems concerning parameter estimation for frequency
modulated sound waves and spread spectrum radar poly-phase
code design.

Index Terms— Differential evolution, evolutionary algo-
rithms, meta-heuristics, numerical optimization, particle swarm
optimization.

I. INTRODUCTION

D IFFERENTIAL EVOLUTION (DE), proposed by Storn
and Price [1]–[3], is a simple yet powerful algorithm

for real parameter optimization. Recently, the DE algorithm
has become quite popular in the machine intelligence and
cybernetics communities. It has successfully been applied to
diverse domains of science and engineering, such as mechani-
cal engineering design [4], [5], signal processing [6], chemical
engineering [7], [8], machine intelligence, and pattern recog-
nition [9], [10]. It has been shown to perform better than the
genetic algorithm (GA) [11] or the particle swarm optimization
(PSO) [12] over several numerical benchmarks [13]. Many of

Manuscript received November 6, 2007; revised March 23, 2008 and July
11, 2008; accepted September 2, 2008. Current version published June 10,
2009.

S. Das and A. Konar are with the Department of Electronics and Telecom-
munication Engineering, Jadavpur University, Kolkata 700032, India (e-mail:
swagatamdas19@yahoo.co.in; konaramit@yahhoo.co.in).

A. Abraham is with the Center of Excellence for Quantifiable Quality of
Service, Norwegian University of Science and Technology, Trondheim, NO-
7491, Norway and Machine Intelligence Research Labs (MIR Labs), USA
(e-mail: ajith.abraham@ieee.org).

U. K. Chakraborty is with the Department of Math and Computer
Science, University of Missouri, St. Louis, MO 63121 USA (e-mail:
chakrabortyu@umsl.edu).

Digital Object Identifier 10.1109/TEVC.2008.2009457

the most recent developments in DE algorithm design and
applications can be found in [14]. Like other evolutionary
algorithms, two fundamental processes drive the evolution of a
DE population: the variation process, which enables exploring
different regions of the search space, and the selection process,
which ensures the exploitation of previous knowledge about
the fitness landscape.

Practical experience, however, shows that DE may occasion-
ally stop proceeding toward the global optimum even though
the population has not converged to a local optimum or any
other point [15]. Occasionally, even new individuals may enter
the population, but the algorithm does not progress by finding
any better solutions. This situation is usually referred to as
stagnation. DE also suffers from the problem of premature
convergence, where the population converges to some local
optima of a multimodal objective function, losing its diversity.
The probability of stagnation depends on how many different
potential trial solutions are available and also on their ca-
pability to enter into the population of the subsequent gen-
erations [15]. Like other evolutionary computing algorithms,
the performance of DE deteriorates with the growth of the
dimensionality of the search space as well. There exists a
good volume of works (a review of which can be found in
Section III), attempting to improve the convergence speed and
robustness (ability to produce similar results over repeated
runs) of DE by tuning the parameters like population size
N P , the scale factor F , and the crossover rate Cr .

In the present work, we propose a family of variants of
the DE/target-to-best/1 scheme [3, p.140], which was also
referred to as “Scheme DE2” in the first technical paper on
DE [1]. In some DE literature this algorithm is referred to as
DE/current-to-best/1 [16], [17]. To combine the exploration
and exploitation capabilities of DE, we propose a new hybrid
mutation scheme that utilizes an explorative and an exploitive
mutation operator, with an objective of balancing their effects.
The explorative mutation operator (referred to as the local
mutation model) has a greater possibility of locating the
minima of the objective function, but generally needs more
iterations (generations). On the other hand, the exploitative
mutation operator (called by us the global mutation model)
rapidly converges to a minimum of the objective function. In
this case there exists the danger of premature convergence to a
suboptimal solution. In the hybrid model we linearly combine
the two mutation operators using a new parameter, called the
weight factor. Four different schemes have been proposed and
investigated for adjusting the weight factor, with a view to alle-
viating user intervention and hand tuning as much as possible.

1089-778X/$25.00 © 2009 IEEE

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 527

Here we would like to mention that although a preliminary
version of this paper appeared as a conference paper in [18],
the present version has been considerably enhanced and it
differs in many aspects from [18]. It critically examines
the effects of the global and local neighborhoods on the
performance of DE and explores a few different ways of tuning
of the weight factor (see Section IV) used for unification
of the neighborhood models. In addition, it compares the
performance of the proposed approaches with several state-of-
the-art DE variants as well as other evolutionary algorithms
over a testbed of 24 well-known numerical benchmarks and
one real-world optimization problem in contrast to [18], which
uses only six benchmarks and provides limited comparison
results.

The remainder of this paper is organized as follows. In
Section II, we provide a brief outline of the DE family of
algorithms. Section III provides a short survey of previous
research on improving the performance of DE. Section IV
introduces the proposed family of variants of the DE/target-
to-best/1 algorithm. Experimental settings for the benchmarks
and simulation strategies are explained in Section V. Results
are presented and discussed in Section VI. Finally, conclusions
are drawn in Section VII.

II. DE ALGORITHM

Like any other evolutionary algorithm, DE starts with a
population of N P D-dimensional parameter vectors repre-
senting the candidate solutions. We shall denote subsequent
generations in DE by G = 0, 1, . . . , Gmax. Since the parameter
vectors are likely to be changed over different generations,
we may adopt the following notation for representing the i th
vector of the population at the current generation as

�Xi,G = [
x1,i,G , x2,i,G , x3,i,G , . . . , xD,i,G

]
. (1)

For each parameter of the problem, there may be a certain
range within which the value of the parameter should lie
for better search results. The initial population (at G =
0) should cover the entire search space as much as possi-
ble by uniformly randomizing individuals within the search
space constrained by the prescribed minimum and maximum
bounds: �Xmin = {x1,min, x2,min, . . . , xD,min} and �Xmax =
{x1,max, x2,max, . . . , xD,max}. Hence we may initialize the j th
component of the i th vector as

x j,i,0 = x j,min + randi, j (0, 1) · (x j,max − x j,min) (2)

where randi, j (0, 1) is a uniformly distributed random number
lying between 0 and 1 and is instantiated independently for
each component of the i-th vector. The following steps are
taken next: mutation, crossover, and selection (in that order),
which are explained in the following subsections.

A. Mutation

After initialization, DE creates a donor vector �Vi,G

corresponding to each population member or target vec-
tor �Xi,G in the current generation through mutation and
sometimes using arithmetic recombination too. It is the
method of creating this donor vector that differentiates

one DE scheme from another. Five most frequently re-
ferred strategies implemented in the public-domain DE
codes for producing the donor vectors (available online at
http://www.icsi.berkeley.edu/storn/code.html) are listed below

“DE/rand/1”: �Vi,G = �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

) (3)

“DE/best/1”: �Vi,G = �Xbest,G

+ F · (�Xri
1,G

− �Xri
2,G

) (4)

“DE/target-to-best/1”: �Vi,G = �Xi,G

+ F · (�Xbest,G − �Xi,G)

+ F · (�Xri
1,G

− �Xri
2,G

) (5)

“DE/best/2”: �Vi,G = �Xbest,G

+ F · (�Xri
1,G

− �Xri
2,G

)

+ F · (�Xri
3,G

− �Xri
4,G

) (6)

“DE/rand/2”: �Vi,G = �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

)

+ F · (�Xri
4,G

− �Xri
5,G

). (7)

The indices r i
1, r i

2, r i
3, r i

4, and r i
5 are mutually exclusive integers

randomly chosen from the range [1, N P], and all are different
from the base index i . These indices are randomly generated
once for each donor vector. The scaling factor F is a positive
control parameter for scaling the difference vectors. �Xbest,G

is the best individual vector with the best fitness (i.e., lowest
objective function value for a minimization problem) in the
population at generation G. Note that some of the strategies
for creating the donor vector may be mutated recombinants, for
example, (5) listed above, basically mutates a two-vector re-
combinant: �Xi,G +F ·(�Xbest,G − �Xi,G). The general convention
used for naming the various mutation strategies is DE/x/y/z,
where DE stands for differential evolution, x represents a
string denoting the vector to be perturbed, y is the number
of difference vectors considered for perturbation of x, and z
stands for the type of crossover being used (exp: exponential;
bin: binomial). The following section discusses the crossover
step in DE.

B. Crossover

To increase the potential diversity of the population, a
crossover operation comes into play after generating the
donor vector through mutation. The DE family of algorithms
can use two kinds of crossover schemes—exponential and
binomial [1]–[3]. The donor vector exchanges its components
with the target vector �Xi,G under this operation to form
the trial vector �Ui,G = [

u1,i,G , u2,i,G , u3,i,G , . . . , u D,i,G

]
. In

exponential crossover, we first choose an integer n randomly
among the numbers [1, D]. This integer acts as a starting point
in the target vector, from where the crossover or exchange
of components with the donor vector starts. We also choose
another integer L from the interval [1, D]. L denotes the
number of components; the donor vector actually contributes

528 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

 x'2

x'1

x1

x2

 Vi,G

 U4_i,G

U3_i,G

U1_i,G

U2_i,G

Xi,G

Fig. 1. Change of the trial vectors generated through the crossover operation
described in (9) due to rotation of the coordinate system.

to the target. After a choice of n and L , the trial vector is
obtained as

u j,i,G =
{

v j,i,G , for j = 〈n〉D, 〈n + 1〉D, . . . , 〈n + L − 1〉D

x j,i,G , for all other j ∈ [1, D]
(8)

where the angular brackets 〈 〉D denote a modulo function with
modulus D. The integer L is drawn from [1, D] according to
the following pseudo-code:

L = 0;
DO
{

L = L + 1;
} WHILE (((rand(0, 1) < Cr) AND (L < D)).

“Cr” is called the crossover rate and appears as a control
parameter of DE just like F . Hence in effect, probability (L ≥
υ) = (Cr)υ−1 for any υ > 0. For each donor vector, a new
set of n and L must be chosen randomly as shown above.

On the other hand, binomial crossover is performed on
each of the D variables whenever a randomly picked number
between 0 and 1 is less than or equal to the Cr value. In this
case, the number of parameters inherited from the donor has
a (nearly) binomial distribution. The scheme may be outlined
as

u j,i,G =
{

v j,i,G , if (randi, j (0, 1) ≤ Cr or j = jrand)

x j,i,G , otherwise
(9)

where randi, j (0, 1) ∈ [0, 1] is a uniformly distributed random
number, which is called a new for each j th component of
the i th parameter vector. jrand ∈ [1, 2, . . . , D] is a randomly
chosen index, which ensures that �Ui,G gets at least one
component from �Vi,G .

The crossover operation described in (9) is basically a
discrete recombination [3]. Fig. 1 illustrates a two-dimensional
example of recombining the parameters of two vectors �Xi,G

and �Vi,G , according to this crossover operator, where the po-
tential trial vectors are generated at the corners of a rectangle.
Note that �Vi,G can itself be the trial vector (i.e., �Ui,G = �Vi,G)
when Cr = 1. As can be seen from Fig. 1, discrete recombi-
nation is a rotationally variant operation. Rotation transforms
the coordinates of both vectors and thus changes the shape of

the rectangle as shown in Fig. 1. Consequently, the potential
location of the trial vector moves from the possible set (�U1_i,G ,
�U2_i,G) to (�U3_i,G , �U4_i,G). To overcome this limitation, a
new trial vector generation strategy “DE/current-to-rand/1”
is proposed in [19], which replaces the crossover operator
prescribed in (9) with the rotationally invariant arithmetic
crossover operator to generate the trial vector �Ui,G by linearly
combining the target vector �Xi,G and the corresponding donor
vector �Vi,G as follows:

�Ui,G = �Xi,G + K · (�Vi,G − �Xi,G).

Now incorporating (3) in (10) we have

�Ui,G = �Xi,G + K · (�Xr1,G + F · (�Xr2,G − �Xr3,G) − �Xi,G)

which further simplifies to

�Ui,G = �Xi,G + K ·(�Xr1,G − �Xi,G)+ F/ ·(�Xr2,G − �Xr3,G) (10)

where K is the combination coefficient, which has been
shown [19] to be effective when it is chosen with a uniform
random distribution from [0, 1] and F/ = K · F is a new
constant here.

C. Selection

To keep the population size constant over subsequent gen-
erations, the next step of the algorithm calls for selection to
determine whether the target or the trial vector survives to the
next generation i.e., at G = G + 1. The selection operation is
described as

�Xi,G+1 = �Ui,G , if f (�Ui,G) ≤ f (�Xi,G)

= �Xi,G , if f (�Ui,G) > f (�Xi,G) (11)

where f (�X) is the function to be minimized. So if the new
trial vector yields an equal or lower value of the objective
function, it replaces the corresponding target vector in the next
generation; otherwise the target is retained in the population.
Hence the population either gets better (with respect to the
minimization of the objective function) or remains the same
in fitness status, but never deteriorates. The complete pseudo-
code of the DE is given below:

1) Pseudo-Code for the DE Algorithm Family:
Step 1. Set the generation number G = 0 and randomly initial-
ize a population of N P individuals PG = {�X1,G , . . . , �X N P,G}
with �Xi,G = [

x1,i,G , x2,i,G , x3,i,G , . . . , xD,i,G
]

and each in-
dividual uniformly distributed in the range

[�Xmin, �Xmax
]
,

where �Xmin = {x1,min, x2,min, . . . , xD,min} and �Xmax =
{x1,max, x2,max, . . . , xD,max} with i = [

1, 2, . . . , N P
]
.

Step 2. WHILE the stopping criterion is not satisfied
DO
FOR i = 1 to N P //do for each individual sequentially
Step 2.1 Mutation Step

Generate a donor vector �Vi,G = {v1,i,G , . . . , vD,i,G}
corresponding to the i th target vector �Xi,G via one
of the different mutation schemes of DE [(3) to (7)].

Step 2.2 Crossover Step
Generate a trial vector �Ui,G = {u1,i,G , . . . , u D,i,G}
for the i th target vector �Xi,G through binomial

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 529

crossover (9) or exponential crossover (8) or through
the arithmetic crossover (10).

Step 2.3 Selection Step

Evaluate the trial vector �Ui,G .
IF f (�Ui,G) ≤ f (�Xi,G)
THEN �Xi,G+1 = �Ui,G , f (�Xi,G+1) = f (�Ui,G)

IF f (�Ui,G) < f (�Xbest,G)
THEN �Xbest,G = �Ui,G , f (�Xbest,G) = f (�Ui,G)
END IF

END IF
ELSE �Xi,G+1 = �Xi,G , f (�Xi,G+1) = f (�Xi,G).

END FOR

Step 2.4 Increase the Generation Count G = G + 1.
END WHILE

III. A REVIEW OF PREVIOUS WORK ON IMPROVING THE

DE ALGORITHM

Over the past few years researchers have been investigat-
ing ways of improving the ultimate performance of the DE
algorithm by tuning its control parameters. Storn and Price
in [1] have indicated that a reasonable value for N P could
be between 5D and 10D (D being the dimensionality of the
problem), and a good initial choice of F could be 0.5. The
effective value of F usually in the range [0.4, 1].

Gamperle et al. [20] evaluated different parameter settings
for DE on the Sphere, Rosenbrock’s, and Rastrigin’s functions.
Their experimental results revealed that the global optimum
searching capability and the convergence speed are very sen-
sitive to the choice of control parameters N P , F , and Cr .
Furthermore, a plausible choice of the population size N P is
between 3D and 8D, with the scaling factor F = 0.6 and the
crossover rate Cr in [0.3, 0.9]. Recently, the authors in [16]
claim that typically 0.4 < F < 0.95 with F = 0.9 is a good
first choice. Cr typically lies in (0, 0.2) when the function is
separable, while in (0.9, 1) when the function’s parameters are
dependent.

As can be seen from the literature, several claims and
counterclaims were reported concerning the rules for choosing
the control parameters, confusing engineers who try to solve
real-world optimization problems with DE. Further, many of
these claims lack sufficient experimental justification. There-
fore researchers consider techniques such as self-adaptation to
avoid manual tuning of the parameters of DE. Usually self-
adaptation is applied to tune the control parameters F and
Cr . Liu and Lampinen introduced fuzzy adaptive differential
evolution (FADE) [21] using fuzzy logic controllers, whose
inputs incorporate the relative function values and individuals
of successive generations to adapt the parameters for the
mutation and crossover operation. Based on the experimental
results over a set of benchmark functions, the FADE algorithm
outperformed the conventional DE algorithm. In this context,
Qin et al. proposed a self-adaptive DE (SaDE) [22] algorithm,
in which both the trial vector generation strategies and their
associated parameters are gradually self-adapted by learn-
ing from their previous experiences of generating promising
solutions.

Zaharie proposed a parameter adaptation strategy for DE
(ADE) based on the idea of controlling the population diver-
sity, and implemented a multipopulation approach [23]. Fol-
lowing the same line of thinking, Zaharie and Petcu designed
an adaptive Pareto DE algorithm for multiobjective optimiza-
tion and also analyzed its parallel implementation [24]. [25]
self-adapted the crossover rate Cr for multiobjective opti-
mization problems, by encoding the value of Cr into each
individual and simultaneously evolving it with other search
variables. The scaling factor F was generated for each variable
from a Gaussian distribution N (0, 1).

[26] introduced a self-adaptive scaling factor parameter
F . They generated the value of Cr for each individual from
a normal distribution N (0.5, 0.15). This approach (called
SDE) was tested on four benchmark functions and performed
better than other versions of DE. Besides adapting the con-
trol parameters F or Cr , some researchers also adapted the
population size. Teo proposed DE with self-adapting popula-
tions (DESAP) [27], based on Abbass’s self-adaptive Pareto
DE [25]. Recently, [28] encoded control parameters F and Cr
into the individual and evolved their values by using two new
probabilities τ1 and τ2. In their algorithm (called SADE), a set
of F values was assigned to each individual in the population.
With probability τ1, F is reinitialized to a new random value
in the range [0.1, 1.0], otherwise it is kept unchanged. The
control parameter Cr , assigned to each individual, is adapted
in an identical fashion, but with a different re-initialization
range [0, 1] and with the probability τ2. With probability τ2,
Cr takes a random value in [0, 1], otherwise it retains its
earlier value in the next generation.

[29] introduced two schemes for adapting the scale factor
F in DE. In the first scheme (called DERSF: DE with random
scale factor) they varied F randomly between 0.5 and 1.0 in
successive iterations. They suggested decreasing F linearly
from 1.0 to 0.5 in their second scheme (called DETVSF: DE
with time varying scale factor). This encourages the individ-
uals to sample diverse zones of the search space during the
early stages of the search. During the later stages, a decaying
scale factor helps to adjust the movements of trial solutions
finely so that they can explore the interior of a relatively small
space in which the suspected global optimum lies.

DE/rand/1/either-or is a state-of-the-art DE variant de-
scribed by Price et al. [3, p.118]. In this algorithm, the trial
vectors that are pure mutants occur with a probability pF and
those that are pure recombinants occur with a probability 1 −
pF . The scheme for trial vector generation may be outlined as

�Ui,G = �Xri
1,G

+ F

· (�Xri
2,G

− �Xri
3,G

), if randi (0, 1) < pF

= �Xri
1,G

+ K

· (�Xri
2,G

+ �Xri
3,G

− 2. �Xri
1,G

), otherwise (12)

where, according to Price et al., K = 0.5 · (F + 1) serves as
a good choice of the parameter K for a given F .

Rahnamayan et al. have proposed an opposition-based DE
(ODE) [30] that is specially suited for noisy optimization
problems. The conventional DE algorithm was enhanced by

530 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

utilizing the opposition number-based optimization concept
in three levels, namely, population initialization, generation
jumping, and local improvement of the population’s best
member.

[31] proposed a hybridization of DE with the neighborhood
search (NS), which appears as a main strategy underpinning
evolutionary programming (EP) [32]. The resulting algorithm,
known as NSDE, performs mutation by adding a normally
distributed random value to each target-vector component in
the following way:

�Vi,G = �Xri
1,G

+
{ �di,G .N (0.5, 0.5), if randi (0, 1) < 0.5

�di,G .δ, otherwise
(13)

where �di,G = �Xri
2,G

− �Xri
3,G

is the usual difference vector,
N (0.5, 0.5) denotes a Gaussian random number with mean 0.5
and standard deviation 0.5, and δ denotes a Cauchy random
variable with scale parameter t = 1. Recently [33] used a self-
adaptive NSDE in the cooperative coevolution framework that
is capable of optimizing large-scale nonseparable problems
(up to 1000 dimensions). They proposed a random grouping
scheme and adaptive weighting for problem decomposition
and coevolution. Somewhat similar in spirit to the present pa-
per is the study by [34] on self-adaptive differential evolution
with neighborhood search (SaNSDE). SaNSDE incorporates
self-adaptation ideas from the SaDE [22] and proposes three
self-adaptive strategies: self-adaptive choice of the mutation
strategy between two alternatives, self-adaptation of the scale
factor F , and self-adaptation of the crossover rate Cr . We
would like to point out here that in contrast to Yang et al.’s
works on NSDE and SaNSDE, we keep the scale factor
nonrandom and use a ring-shaped neighborhood topology
(inspired by PSO [37]), defined on the index graph of the
parameter vectors, in order to derive a local neighborhood-
based mutation model. Also instead of F and Cr , the weight
factor that unifies two kinds of mutation models have been
made self-adaptive in one of the variants of DE/target-to-best/1
scheme, proposed by us. Section IV describes these issues in
sufficient details.

Noman and Iba [35], [36] proposed the Fittest Individual
Refinement (FIR); a crossover-based local search method for
DE. The FIR scheme accelerates DE by enhancing its search
capability through exploration of the neighborhood of the best
solution in successive generations.

As will be evident from Section IV, the proposed method
differs significantly from the works described in the last couple
of paragraphs. It draws inspiration from the neighborhood
topologies used in PSO [37]. Similar to DE, PSO has also
emerged as a powerful real parameter optimization technique
during the late 1990s. It emulates the swarm behavior of
insects, animals herding, birds flocking, and fish schooling,
where these swarms search for food in a collaborative manner.
A number of significantly improved variants of basic PSO have
been proposed in the recent past to solve both benchmark and
real-world optimization problems, for example, see [38], [39].
Earlier attempts to hybridize DE with different operators of
the PSO algorithm may be traced to [40] and [41].

IV. DE WITH A NEIGHBORHOOD-BASED

MUTATION OPERATOR

A. DE/target-to-best/1—A Few Drawbacks

Most of the population-based search algorithms try to bal-
ance between two contradictory aspects of their performance:
exploration and exploitation. The first one means the ability
of the algorithm to “explore” or search every region of the
feasible search space, while the second denotes the ability to
converge to the near-optimal solutions as quickly as possible.
The DE variant known as DE/target-to-best/1 (5) uses the best
vector of the population to generate donor vectors. By “best”
we mean the vector that corresponds to the best fitness (e.g.,
the lowest objective function value for a minimization prob-
lem) in the entire population at a particular generation. The
scheme promotes exploitation since all the vectors/genomes
are attracted towards the same best position (pointed to by
the “best” vector) on the fitness landscape through iterations,
thereby converging faster to that point. But as a result of
such exploitative tendency, in many cases, the population may
lose its global exploration abilities within a relatively small
number of generations, thereafter getting trapped to some
locally optimal point in the search space.

In addition, DE employs a greedy selection strategy (the
better between the target and the trial vectors is selected) and
uses a fixed scale factor F (typically in [0.4, 1]). Thus if
the difference vector �Xr1,G − �Xr2,G used for perturbation is
small (this is usually the case when the vectors come very
close to each other and the population converges to a small
domain), the vectors may not be able to explore any better
region of the search space, thereby finding it difficult to escape
large plateaus or suboptimal peaks/valleys. Mezura-Montes
et al., while comparing the different variants of DE for global
optimization in [17], have noted that DE/target-to-best/1 shows
a poor performance and remains inefficient in exploring the
search space, especially for multimodal functions. The same
conclusions were reached by Price et al. [3, p.156].

B. Motivations for the Neighborhood-Based Mutation

A proper tradeoff between exploration and exploitation
is necessary for the efficient and effective operation of a
population-based stochastic search technique like DE, PSO,
etc. The DE/target-to-best/1, in its present form, favors ex-
ploitation only, since all the vectors are attracted by the same
best position found so far by the entire population, thereby
converging faster towards the same point.

In this context we propose two kinds of neighborhood
models for DE. The first one is called the local neighborhood
model, where each vector is mutated using the best position
found so far in a small neighborhood of it and not in the entire
population. On the other hand, the second one, referred to as
the global mutation model, takes into account the globally best
vector �Xbest,G of the entire population at current generation
G for mutating a population member. Note that DE/target-to-
best/1 employs only the global mutation strategy.

A vector’s neighborhood is the set of other parameter
vectors that it is connected to; it considers their experience
when updating its position. The graph of interconnections is

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 531

called the neighborhood structure. Generally, neighborhood
connections are independent of the positions pointed to by
the vectors. In the local model, whenever a parameter vector
points to a good region of the search space, it only directly
influences its immediate neighbors. Its second degree neigh-
bors will only be influenced after those directly connected
to them become highly successful themselves. Thus, there
is a delay in the information spread through the population
regarding the best position of each neighborhood. Therefore,
the attraction to specific points is weaker, which prevents
the population from getting trapped in local minima. We
would like to mention here that vectors belonging to a local
neighborhood are not necessarily local in the sense of their
geographical nearness or similar fitness values. As will be seen
in the next section, the overlapping neighborhoods have been
created in DE according to the order of the indices of the
population members, following the neighborhood models in
PSO.

Finally, we combine the local and the global model using
a weight factor that appears as a new parameter in the
algorithm. The weight factor may be tuned in many different
ways. In what follows we describe these issues in sufficient
details. Note that the neighborhoods of different vectors were
chosen randomly and not according to their fitness values
or geographical locations on the fitness landscape, following
the PSO philosophy [37]. This preserves the diversity of the
vectors belonging to the same neighborhood.

C. Local and Global Neighborhood-Based
Mutations in DE

Suppose we have a DE population PG = [�X1,G, �X2,G , . . . ,
�X N P,G

]
where each �Xi,G (i = 1, 2, . . . , N P) is a D-

dimensional parameter vector. The vector indices are sorted
only randomly (as obtained during initialization) in order to
preserve the diversity of each neighborhood. Now, for every
vector �Xi,G we define a neighborhood of radius k (where k is
a nonzero integer from 0 to (N P − 1)

/
2, as the neighborhood

size must be smaller than the population size, i.e. 2k + 1 ≤
N P), consisting of vectors �Xi−k,G , . . . , �Xi,G , . . . , �Xi+k,G . We
assume the vectors to be organized on a ring topology with
respect to their indices, such that vectors �X N P,G and �X2,G

are the two immediate neighbors of vector �X1,G . The concept
of local neighborhood is schematically illustrated in Fig. 2.
Note that the neighborhood topology is static and has been
defined on the set of indices of the vectors. Although various
neighborhood topologies (like star, wheel, pyramid, 4-clusters,
and circular) have been proposed in the literature for the
PSO algorithms [42], after some initial experimentation over
numerical benchmarks, we find that in the case of DE (where
the population size is usually larger than in the case of
PSO) the circular or ring topology provides best performance
compared to other salient neighborhood structures.

For each member of the population, a local donor vector is
created by employing the best (fittest) vector in the neighbor-
hood of that member and any two other vectors chosen from
the same neighborhood. The model may be expressed as

�Li,G = �Xi,G +α ·(�Xn_besti ,G − �Xi,G)+β ·(�X p,G − �Xq,G) (14)

X2,G

X1,G

XNP,G

Xi+2,G

Xi+1,G

Xi,G

Xi–1,G

Xi–2,G

Fig. 2. Ring topology of neighborhood in DE. The dark spheres indicate a
neighborhood of radius 2 of the i th population member where i = 9.

where the subscript n_besti indicates the best vector in the
neighborhood of �Xi,G and p, q ∈ [i − k, i + k] with p �= q �=
i . Similarly, the global donor vector is created as

�gi,G = �Xi,G +α ·(�Xg_best,G − �Xi,G)+β ·(�Xr1,G − �Xr2,G) (15)

where the subscript g_best indicates the best vector in the
entire population at generation G and r1, r2 ∈ [1, N P] with
r1 �= r2 �= i . α and β are the scaling factors.

Note that in (14) and (15), the first perturbation term on the
right-hand side (the one multiplied by α) is an arithmetical
recombination operation, while the second term (the one
multiplied by β) is the differential mutation. Thus in both
the global and local mutation models, we basically generate
mutated recombinants, not pure mutants.

Now we combine the local and global donor vectors using
a scalar weight w ∈ (0, 1) to form the actual donor vector of
the proposed algorithm

�Vi,G = w.�gi,G + (1 − w). �Li,G . (16)

Clearly, if w = 1 and in addition α = β = F , the donor
vector generation scheme in (16) reduces to that of DE/target-
to-best/1. Hence the latter may be considered as a special case
of this more general strategy involving both global and local
neighborhood of each vector synergistically. From now on, we
shall refer to this version as DEGL (DE with global and local
neighborhoods). The rest of the algorithm is exactly similar to
DE/rand/1/bin. DEGL uses a binomial crossover scheme and
follows the pseudo-code given in Section III.

Note that in each generation, the vectors belonging to a
DE population are perturbed sequentially. If a target vector
�Xi,G is replaced with the corresponding trial vector �Ui,G ,
the neighborhood-best �Xn_besti ,G and the globally best vector
�Xg_best,G may also be updated by �Ui,G , provided the latter
yields a lower value of the objective function. In Section IV-E,
we discuss the additional computational complexity of updat-
ing the neighborhood-best vectors in DEGL after the replace-
ment of each target vector in a generation.

532 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

D. Control Parameters in DEGL

DEGL introduces four new parameters: α, β,w, and the
neighborhood radius k. Among them α and β are playing
the same role as the constant F in (5). Thus, in order
to reduce the number of parameters further, we take α =
β = F . The most crucial parameter in DEGL is perhaps
the weight factor w, which controls the balance between the
exploration and exploitation capabilities. Small values of w
(close to 0) in (16) favor the local neighborhood component,
thereby resulting in better exploration. On the other hand,
large values (close to 1) favor the global variant component,
promoting exploitation. Therefore, values of w around the
middle point, 0.5, of the range [0, 1] result in the most
balanced DEGL versions. However, such balanced versions
do not take full advantage of any special structure of the
problem at hand (e.g., unimodality, convexity, etc.). In such
cases, weight factors that are biased towards 0 or 1 may exhibit
better performance. Moreover, on-line adaptation of w during
the execution of the algorithm can enhance its performance.
Optimal values of the weight factor will always depend on the
problem at hand. We considered three different schemes for
the selection and adaptation of w to gain intuition regarding
DEGL performance and we describe them in the following
paragraphs.

1) Increasing Weight Factor: All vectors have the same
weight factor which is initialized to 0 and is increased up
to 1 during the execution of the algorithm. Thus, exploration
is favored in the first stages of the algorithm’s execution
(since w = 0 corresponds to the local neighborhood model)
and exploitation is promoted at the final stages, when w
assumes higher values. Let G denote the generation number,
wG the weight factor at generation G, and Gmax the maximum
number of generations. We considered two different increasing
schedules in our study.

a) Linear increment: w is linearly increased from 0 to 1

wG = G

Gmax
. (17)

b) Exponential increment: The weight factor increases
from 0 to 1 in an exponential fashion as follows:

wG = exp

(
G

Gmax
. ln(2)

)
− 1 (18)

This scheme results in slow transition from exploration to
exploitation in the early stages of the algorithm’s execution,
but exhibits faster transition in the later stages.

2) Random Weight Factor: In this scheme the weight factor
of each vector is made to vary as a uniformly distributed
random number in (0, 1) i. e. wi,G ∼ rand(0, 1). Such a
choice may decrease the convergence speed (by introducing
more diversity).

3) Self-Adaptive Weight Factor: In this scheme, each vector
has its own weight factor. The factor is incorporated in the
vector as an additional variable, augmenting the dimension
of the problem. Thus, a generation now consists of vectors
�ai,G = {�Xi,G , �Si,G}, where �Si,G = {wi,G} and wi,G is the
weight factor for vector �Xi,G . During the initialization phase
of DE, wi,G is randomly initialized in (0.0, 1.0). Next, while

evolving a vector �ai,G , at first local and global mutant vectors
�Li,G and �gi,G are formed for �Xi,G following (14) and (15).
The sub-vector �S undergoes global mutation only and weight
factors perturbing �S come from the same population members
�ar1,G and �ar2,G , which were also used to form �gi,G . The
mutation of wi,G leads to the formation of a new trial weight
factor w

/
i,G according to the following equation

w
/
i,G = wi,G +F.(wg_best,G −wi,G)+F.(wr1,G −wr2,G) (19)

where, wg_best,G is the weight factor associated with the best
parameter vector �Xg_best,G . The value of the newly formed
w

/
i,G is restricted to the range [0.05, 0.95] in the following

way

if w
/
i,G > 0.95, w

/
i,G = 0.95;

else if w
/
i,G < 0.05, w

/
i,G = 0.05 (20)

w
/
i,G is then used to combine �Li,G and �gi,G according

to (16) and this leads to the formation of the new donor para-
meter vector �Vi,G . The donor vector thus formed exchanges its
components with �Xi,G following the binomial crossover and
results in the production of the trial vector �Ui,G . Note that
the weight factor does not undergo crossover. Now, the newly
formed weight factor is promoted to the next generation only
if �Ui,G yields an equal or lower objective function value as
compared to �Xi,G : i. e.,

�ai,G+1 = {�Xi,G+1

= �Ui,G , �Si,G+1

= {w/
i,G}}, if f (�Ui,G) ≤ f (�Xi,G)

�ai,G+1 = {�Xi,G+1

= �Xi,G , �Si,G+1

= {wi,G}}, otherwise (21)

the process is repeated sequentially for each vector in a
generation. Note that the weight factors associated with the
neighborhood-best and globally best vectors are not updated
every time a trial vector replaces the corresponding target. The
weight factor for a parameter vector is changed only once
according to (19) and (20) in each generation. According to
the self-adaptation scheme, the dynamics of DEGL are allowed
to determine the optimal wi,G for each vector, individually,
capturing any special structure of the problem at hand.

Finally, we would like to point out that a proper selection of
the neighborhood size affects the tradeoff between exploration
and exploitation. However, there are no general rules regarding
the selection of neighborhood size, and it is usually based on
the experience of the user. The effect of neighborhood size
on the performance of DEGL has been further investigated in
Section VI-E.

E. Runtime Complexity of DEGL—A Discussion

Runtime-complexity analysis of the population-based sto-
chastic search techniques like DE, GA, etc. is a critical issue
by its own right. Following the works of Zielinski et al., [43]
we note that the average runtime of a standard DE algorithm

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 533

usually depends on its stopping criterion. While computing
the run-time complexity, we usually take into account the
fundamental floating-point arithmetic and logical operations
performed by an algorithm [44]. We may neglect very simple
operations like copy/assignment, etc., as these are merely data-
transfer operations between the ALU and/or CPU registers
and hardly require any complex digital circuitry like adder,
comparator, etc. [44], [45]. Now, in each generation of DE,
a loop over N P is conducted, containing a loop over D.
Since the mutation and crossover operations are performed
at the component level for each DE vector, the number of
fundamental operations in DE/rand/1/bin is proportional to
the total number of loops conducted until the termination of
the algorithm. Thus, if the algorithm is stopped after a fixed
number of generations Gmax, then the runtime complexity is
O(N P · D · Gmax).

For DE/target-to-best/1, runtime complexity of finding the
globally best vector depends only on comparing the objective
function value against the single best vector’s objective func-
tion value. Note that the best objective function evaluation
value must be upgraded for each newly generated trial vector,
if it replaces the target vector. Now that means in the worst
possible case (when the target vector is always replaced by
the trial vector), this is done N P · Gmax times. Thus, the
overall runtime remains O(max(N P ·Gmax, N P · D ·Gmax)) =
O(N P · D · Gmax).

In DEGL, besides the globally best vector, we have to take
into account the best vector of each neighborhood as well.
Each individual vector is endowed with a small memory, which
can keep track of the best vector in its neighborhood and
the corresponding objective function value. At the very onset,
once all the vectors are initialized, a search is performed to
detect the neighborhood-best for each individual. Note that
this search is performed only once at G = 0. In subsequent
generations, these locally best vectors only need to be updated
in the memory of the neighboring vectors. This is just like the
updating phase of the globally best vector in DE/target-to-
best/1 according to step 2.3 of the DE pseudo-code provided
earlier. Now let us try to estimate the cost of the initial search.
Note that the neighborhoods in DEGL are actually overlapping
in nature (on the index-graph) and this is illustrated in Fig. 3.
Any two adjacent vectors (with respect to their indices) will
have 2k + 1 + 1 − 2 = 2k number of common neighbors.

Suppose Nk(�Xi,G) indicates the set of vectors belonging to
the immediate neighborhood of radius k for the vector �Xi,G .
Then evidently the cardinality of both the sets Nk(�Xi,G) ∩
N c

k (�Xi+1,G) and N c
k (�Xi,G) ∩ Nk(�Xi+1,G) is exactly 1 (where

N c
k stands for complement of the set Nk). We observe that

�Xi−k,G ∈ Nk(�Xi,G)∩N c
k (�Xi+1,G) and �Xi+k+1,G ∈ N c

k (�Xi,G)∩
Nk(�Xi+1,G). Now we start by detecting the best vector of
the neighborhood of any population member, say �Xi,G and
call it �Xn_besti ,G . This is equivalent to finding the lowest
entry from an array of 2k + 1 numbers (objective function
values) and requires 2k number of comparisons. Next, to
calculate the best vector in the neighborhood of �Xi+1,G , if
�Xn_besti ,G �= �Xi−k,G then we simply need to compare the
objective function values of �Xi+k+1,G and �Xn_besti ,G in order
to determine �Xn_besti+1,G . This requires only one comparison.

Neighborhood

Neighborhood of

Region of
Overlap

X2,G

Xi,G

Xi,G

Xi+1,GX1,G

XNP,G

Xi+1,G

Fig. 3. Overlapping of neighborhoods in DEGL.

But if unfortunately �Xn_besti ,G = �Xi−k,G , we shall have to find
the neighborhood best of �Xi+1,G by taking its 2k neighbors
into account and this requires O(k) runtime. Hence in the
worst possible case (when the current neighborhood’s best
vector is always excluded from the serially next vector’s neigh-
borhood) searching the best vectors of all the neighborhoods
is completed in O(N P · k) time.

Once the search for all neighborhood-bests is finished, in
subsequent generations, the best vector in the neighborhood
of �Xi,G is updated only if a newly generated trial vector
�Ui,G replaces the target vector �Xi,G and in addition to that
f (�Ui,G) < f (�Xn_besti ,G). It is possible that �Xn_besti ,G differs
from �Xn_besti+1,G , i.e., two vectors, adjacent on the index
graph, may have distinct neighborhood-best vectors. This
happens when the best vector in the neighborhood of �Xi+1,G

is �Xi+k+1,G . Under this condition, it is possible that �Ui,G is
better than �Xn_besti ,G but not better than �Xn_besti+1,G . Hence
in order to update the best vectors in the memories of all
the neighbors of �Xi,G (when f (�Ui,G) < f (�Xn_besti ,G) is
satisfied), we have to compare the objective function values
of �Ui,G and the neighborhood-bests in the memories of 2k
neighbors of �Xi,G . Thus in the worst possible case, updating
of all the local best vectors in the memories of the neighbors
of each vector requires O(N P · k) comparisons in each
generation. Evidently, over Gmax generations, the number of
additional comparisons necessary is O(N P · k · Gmax). This
implies that the worst case complexity of DEGL is actually
O(max(N P · k · Gmax, N P · D · Gmax)). Now, the asymptotic
order of complexity for DEGL remains O(N P · D · Gmax) if
k ≤ D. Please note that this condition is usually satisfied when
DEGL is applied to the optimization of higher dimensional
functions. For example, the usual population size for DE is
N P = 10D. If the neighborhood size is approximately 10%
of the population size (which, as can be seen later, provides
reasonably good results with DEGL), we have 2k + 1 =
(0.1) · N P = D ⇒ k = [(D − 1)/2] with D > 1. Clearly, in
this case we have k ≤ D. Simple algebraic calculations show
that this condition holds true if the neighborhood size is below
20% of the population size N P and D > 1. Hence, we can
say that under such conditions, O(max(N P · k · Gmax, N P ·
D · Gmax)) = O(N P · D · Gmax) and thus DEGL does not
impose any serious burden on the runtime complexity of the
existing DE variants.

534 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE I

CODE-FUNCTION RUNTIME PROFILES FOR DE/RAND/1/BIN AND DEGL

Algorithm
Total execution

time (in
milliseconds)

Code-function runtime as % of CPU time

init_pop mutate_vector Recombine
select

_and_update
DE_operator evaluate_cost Main

DE/rand/1/bin
9382.703

(1825.335)
0.122

(0.0051)
16.728
(0.628)

29.661
(1.481)

8.726
(7.335)

28.824
(3.561)

13.721
(2.727)

2.018
(0.114)

DEGL
9739.684

(1473.627)
0.109

(0.0046)
15.431
(0.937)

16.362
(2.771)

16.839
(6.361)

36.836
(1.663)

12.954
(1.638)

1.469
(0.118)

In order to validate the arguments made above, we pro-
vide in Table I the results of code-function profiling for
our implementations of classical DE (DE/rand/1/bin) and
DEGL (with random weight factor) using the profiler available
with MS Visual C++ 6.0. Both the algorithms were coded
in the C language and run on the simple 50-dimensional
sphere function (f1 in the list of benchmarks provided in Ta-
ble IV). The least complex sphere function was chosen so
that most of the CPU time may be spent on the DE op-
erators and not on function evaluations. Here our primary
objective is to observe what percentage of the total CPU
time is used by the evolutionary operators of DEGL and
DE/rand/1/bin. Both algorithms use the same prime mod-
ules or code-functions: init_pop (for initializing population),
mutate_vector (for performing mutation and creating donor
vector), recombine (to perform crossover and create the trial
vector), select_and_update (to compare the objective func-
tion values of trial and target vectors and in DEGL also
to update the neighborhood bests if for the i th vector, the
condition f (�Ui,G) < f (�Xn_besti ,G) holds), DE_Operator
(module that calls the functions mutate_vector, recombine,
and select_and_update for each vector sequentially), evalu-
ate_cost (function that evaluates the objective function for
a parameter vector), and the main. The programs were run
on a Pentium IV, 2.2-GHz PC, with 512-KB cache and 2
GB of main memory in Windows Server 2003 environment.
In Table I we provide the code function profiling results as
means (with standard deviations in parentheses) of 1000 runs
of the programs, each run continued up to 105 cost function
evaluations (FEs).

Table I shows that, as expected, the total execution time for
DEGL is only marginally higher than that for DE/rand/1/bin.
This is because around 16.9% of the total CPU time is
consumed by the select_and_update function in DEGL, due to
the extra comparisons required for updating the neighborhood-
bests. However, if we select a stopping criterion based on
a threshold objective function value, instead of the stopping
criterion based on maximum number of FEs, DEGL can even
take less computation time as compared to DE/rand/1/bin in
some cases. This is because DEGL can attain the threshold
objective function value much quicker, consuming signifi-
cantly smaller number of FEs, due to the better tradeoff
between exploration and exploitation abilities achieved by its
neighborhood-based mutation operators. This fact has been il-
lustrated by providing, in Tables II and III, the mean processor
time taken by both the algorithms for both stopping criteria

over five most popular benchmark functions used for testing
the evolutionary algorithms. Note that both the algorithms
start from the same initial population and run under the
same software and hardware platforms. All the numerical
benchmarks dealt in here are in 25 dimensions, have their
true optima at 0.00, and for all of them the target threshold
value was set at 1.00e-05 in Tables II and III. A detailed
description of these functions can be found in Table IV in the
following section. Each result is the average of 50 independent
runs.

We would like to point out that, in the evolutionary comput-
ing literature, comparison of the computational costs of various
evolutionary algorithms is usually performed on the basis of
the number of FEs they take to reach a predefined function
value. Processor time cannot serve as a reliable metric in this
context because first, it is not independent of the hardware
and software platforms used, and second, it may provide some
unfair advantage to algorithms that use lower computational
overheads. In addition, the processor time depends on the style
of coding an algorithm [46]. The advantage of measuring the
runtime complexity by counting the number of FEs is that the
correspondence between this measure and the processor time
becomes stronger as the function complexity increases. In Sec-
tion VI, we compare the computational cost and convergence
speed of a number of DE-variants using this measure. The
tables included in this section are intended only to provide an
approximate feel of the relative time complexities of DEGL
and classical DE.

Table II shows that when DEGL and DE/rand/1/bin are run
for the same number of FEs (corresponding to the same num-
ber of generations for both, as they have the same population
size), the processor time required by the former is slightly
higher than that of the latter. Table III, however, indicates
that DEGL may reach the predefined threshold value with less
processor time as compared to DE/rand/1/bin.

V. EXPERIMENTAL SETUP

A. Benchmark Functions

We have used a test bed of 21 traditional numerical bench-
marks (Table IV) [47] and three composition functions from
the benchmark problems suggested in CEC 2005 [48] to
evaluate the performance of the new DE variant. The 21
traditional benchmarks described by Yao et al. have been
reported in Table IV where D represents the number of
dimensions. For f1 − f13 we have tested for D = 25 to 100 in

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 535

TABLE II

COMPARISON OF ABSOLUTE RUN-TIMES OF DEGL AND

DE/RAND/1/BIN, WHEN BOTH THE ALGORITHMS WERE RUN FOR A

FIXED NUMBER OF FES

Function

Mean processor time (in
milliseconds) and standard
deviation (in parentheses)

DE/rand/1/bin DEGL

Step function (f6) 3692.84 (688.25) 3973.38 (827.51)

Rosenbrock’s
function (f5)

6726.57
(1425.53)

7061.48
(1930.51)

Rastrigin’s function
(f9)

5883.54 (629.63) 6273.38 (447.23)

Ackley’s function
(f11)

5094.68
(1624.83)

5268.46 (324.68)

Griewank’s function
(f12)

5635.92
(1023.35)

6163.28 (729.46)

TABLE III

COMPARISON OF ABSOLUTE RUN-TIMES OF DEGL AND

DE/RAND/1/BIN, WHEN BOTH THE ALGORITHMS WERE RUN UNTIL

THEY ATTAIN A PRE-DEFINED OBJECTIVE FUNCTION VALUE

Function
Threshold
objective-

function value
to reach

Mean processor time
(in milliseconds) and
standard deviation (in

parentheses)

DE/rand/1/bin DEGL

Step function
(f6)

1.00-05
3022.84
(271.22)

2873.38
(712.58)

Rosenbrock’s
function (f5)

1.00-05
5718.92

(1425.53)
5448.37

(1628.31)

Rastrigin’s
function (f9)

1.00-05
2483.56
(442.67)

1682.94
(538.19)

Ackley’s
function (f11)

1.00-05
839.68

(154.41)
692.70
(32.61)

Griewank’s
function (f12)

1.00-05
4836.29

(1023.35)
4667.25

(1416.47)

steps of 25. Among these benchmarks, functions f1 − f13 are
multidimensional problems. Functions f1 − f5 are unimodal
(there is some recent evidence [49] that f5 is multimodal for
D > 3). Function f6 is a step function with one minimum
and is discontinuous. Function f7 is a noisy quartic function,
where random [0, 1) is a uniformly distributed random number
in [0, 1).

Functions f8− f13 are multimodal, with the number of local
minima increasing exponentially with the problem dimension
[47]. They apparently belong to the most difficult class
of problems for many optimization algorithms. Functions
f14 − f21 are low-dimensional functions which have only a

ϕ2i−1(�X) =
D∑

j=i

cos

⎛
⎝ j∑

k=|2i− j−1|−1

xk

⎞
⎠ , i = 1, 2, . . . , D

ϕ2i (�X) = 0.5 +
D∑

j=i+1

cos

⎛
⎝ j∑

k=|2i− j−1|−1

xk

⎞
⎠ , i = 1, 2, . . . , D − 1

ϕm+i (�X) = −ϕi (�X), i = 1, 2, . . . , m. (23)

few local minima. For unimodal functions, the convergence
rates of the DE algorithms are more interesting than the final
results of optimization, as there are other methods which are
specifically designed to optimize unimodal functions. For mul-
timodal functions, the final results are much more important
since they reflect an algorithm’s ability of escaping from poor
local optima and locating a good near-global optimum. We
omitted f19 and f20 from Yao et al.’s study [47] because of
difficulties in obtaining the definitions of the constants used
in these functions.

The three composition functions f18(�X), f19(�X), and
f21(�X), taken from CEC 2005 benchmarking problems [48],
are here marked as CF1, CF2, and CF3 respectively. All
of them are nonseparable, rotated, and multimodal functions
containing a large number of local optima. For all of them, the
search range is �X ∈ [−5, 5]D . The global optimum of both
CF1 and CF2 is f (�X∗) = 10 and that for CF3 is f (�X∗) = 360.
The detailed principle of the composite functions is given in
[48].

For the generalized penalized functions f12 and f13,
in Table I, note that

u(xi , a, k, m) = k(xi − a)m, if xi > a
= 0, if − a ≤ xi ≤ a
= k(−xi − a)m, if xi < −a

and

yi = 1 + 1

4
(1 + xi).

Values of the other constants used in the expressions of the
benchmark functions can be found in [47].

B. Other Optimization Problems Considered

In this section we describe two interesting real-world prob-
lems that have been used to test the efficacy of the DEGL
family. The problems are selected according to the level of
difficulty that they present to the proposed algorithms.

1) Spread Spectrum Radar Poly-Phase Code Design Prob-
lem: A famous problem of optimal design arises in the field of
spread spectrum radar poly-phase codes [50]. Such a problem
is very well suited for the application of global optimization
algorithms like DE. The problem can be formally stated as

Global min f (�X) = max{ϕ1(�X), . . . , ϕ2m(�X)} (22)

where

�X = {(x1, . . . , xD) ∈ D|0 ≤ x j ≤ 2π,

j = 1, . . . , D} and m = 2 − D − 1

with

536 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE IV

TWENTY FIRST TRADITIONAL BENCHMARK FUNCTIONS [47]

Function D Search range Optimum value

f1(�X) =
D∑

i=1
x2

i
25, 50, 75,

and 100
−100 ≤ xi ≤ 100 f1(�0) = 0

f2(�X) =
D∑

i=1
|xi | +

D∏
i=1

xi
25, 50, 75,

and 100
−10 ≤ xi ≤ 10 f2(�0) = 0

f3(�X) =
D∑

i=1
(

i∑
j=1

x j)
2 25, 50, 75,

and 100
−100 ≤ xi ≤ 100 f3(�0) = 0

f4(�X) = max|xi |, 1 ≤ i ≤ D
25, 50, 75,

and 100
−100 ≤ xi ≤ 100 f4(�0) = 0

f5(�X) =
D−1∑
i=1

[
100(xi+1 − x2

i)2 + (xi − 1)2
]

25, 50, 75,
and 100

−30 ≤ xi ≤ 30 f5(�1) = 0

f6(�X) =
D∑

i=1
(�xi + 0.5�)2 25, 50, 75,

and 100
−100 ≤ xi ≤ 100 f6(�p) = 0,− 1

2 ≤ pi < 1
2

f7(�x) =
(

D∑
i=1

i.x4
i

)
+ rand [0, 1) 25, 50, 75,

and 100
−1.28 ≤ xi ≤ 1.28 f7(�0) = 0

f8(�X) =
D∑

i=1
−xi . sin

(√|xi |
) 25, 50, 75,

and 100
−500 ≤ xi ≤ 500

f8(420.97) = −41898.3
for D = 100

f9(x) =
D∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

25, 50, 75,
and 100

−5.12 ≤ xi ≤ 5.12 f9(
⇀
0) = 0

f10(�X) = −20 exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)
−

exp

(
1
D

D∑
i=1

cos 2πxi

)
+ 20 + e

25, 50, 75,
and 100

−32 ≤ xi ≤ 32 f10(
⇀
0) = 0

f11(�X) = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos(xi√
i
) + 1 25, 50, 75,

and 100
−600 ≤ xi ≤ 600 f11(

⇀
0) = 0

f12(�X) = π
D {10 sin2(πy1) +

D−1∑
i=1

(xi − 1)2.
[
1 + 10 sin2(πyi+1)

]

+(yD − 1)2} +
D∑

i=1
u(xi , 10, 100, 4)

25, 50, 75,
and 100

−50 ≤ xi ≤ 50 f12(
−→−1) = 0

f13(�X) = 0.1{sin2(3πx1) +
D−1∑
i=1

(xi − 1)2.
[
1 + sin2(3πxi+1)

]

+(xD − 1){1 + sin2(2πxn)} +
D∑

i=1
u(xi , 5, 100, 4)

25, 50, 75,
and 100

−50 ≤ xi ≤ 50
f13(1, . . . , 1,−4.76)

= −1.1428

f14(�X) =
⎛
⎝ 1

500 +
25∑
j=1

(
j + 1 +

1∑
i=0

(xi − ai j

)6
⎞
⎠

−1

2 −65.54 ≤ xi ≤ 65.54
f14(

−−−−→−31.95)

= 0.998

f15(�X) =
10∑

i=0
(ai − x0(b2

i +bi x1)

b2
i +bi x2+x3

)2 4 −5 ≤ xi ≤ 5
f15(0.1928, 0.1908, 0.1231, 0.1358)

= 0.0003075

f16(�X) = 4x2
0 − 2.1x4

0 + 1
3 x6

0 + x0x1

−4x2
1 + 4x4

1

2 −5 ≤ xi ≤ 5
f16(−0.09, 0.71)

= −1.0316

f17(�X) = (x1 − 5.1
4π2 x2

0 + 5
π x0 − 6)2+

10(1 − 1
8π) cos(x0) + 10

2 −5 ≤ xi ≤ 5
f17(9.42, 2.47)

= 0.398

f18(�X) = {1 + (x0 + x1 + 1)2(19 − 14x0 + 3x2
0

−14x1 − 6x0x1 + 3x2
1)}{30 + (2x0 − 3x1)2

(18 − 32x0 + 12x2
0 + 48x1 − 36x0x1 + 27x2

1)}
2 −2 ≤ xi ≤ 2

f18(1.49e − 05, 1.00)

= 3

f19(�X) = −
5∑

i=1
((�X − �ai)

T (�X − �ai) + ci)
−1 4 −10 ≤ xi ≤ 10 f19(�4) = −10.1532

f20(�X) = −
7∑

i=1
((�X − �ai)

T (�X − �ai) + ci)
−1 4 −10 ≤ xi ≤ 10 f20(�4) = −10.4029

f21(�X) = −
10∑

i=1
((�X − �ai)

T (�X − �ai) + ci)
−1 4 −10 ≤ xi ≤ 10 f21(�4) = −10.5364

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 537

2
0
0
2

4

6

8

4
6

8
10 0

2
4

6
8

10

Fig. 4. f (�X) of (22) for D = 2.

According to [50] the above problem has no polynomial
time solution. The objective function for D = 2 is shown in
Fig. 4.

2) Application to Parameter Estimation for Frequency-
Modulated (FM) Sound Waves: Frequency-modulated (FM)
sound synthesis plays an important role in several modern
music systems. This section describes an interesting applica-
tion of the proposed DE algorithms to the optimization of
parameters of an FM synthesizer. A few related works that
attempt to estimate parameters of the FM synthesizer using
the genetic algorithm can be found in [51], [52]. Here we
introduce a system that can automatically generate sounds
similar to the target sounds. It consists of an FM synthesizer, a
DE optimizer, and a feature extractor. The system architecture
is shown in Fig. 5. The target sound is a .wav file. The
DE algorithm initializes a set of parameters and the FM
synthesizer generates the corresponding sounds. In the feature
extraction step, the dissimilarities of features between the
target sound and synthesized sound are used to compute the
fitness value. The process continues until synthesized sounds
become very similar to the target.

The specific instance of the problem discussed here
involves determination of six real parameters. �X =
{a1, ω1, a2, ω2, a3, ω3} of the FM sound wave given
by (24) for approximating it to the sound wave given
in (25) where θ = 2π

/
100. The parameters are defined in

the range [−6.4, +6.35]. The formula for the estimated sound
wave and the target sound wave may be given as

y(t) = a1. sin(ω1.t.θ

+ a2. sin(ω2.t.θ + a3. sin(ω3.t.θ))) (24)

y0(t) = 1.0. sin(5.0.t.θ

− 1.5. sin(4.8.t.θ + 2.0. sin(4.9.t.θ))). (25)

The goal is to minimize the sum of squared errors between
the estimated sound and the target sound, as given by (26).
This problem involves a highly complex multimodal function
having strong epistasis (interrelation among the variables),
with optimum value 0.0

f (�X) =
100∑
t=0

(y(t) − y0(t))
2. (26)

FM Synthesizer

Feature Extraction/
Comparison

The Optimizer
(DE)

Best Parameter
Vector

Target
Sound

Estimated
Waveform

Fitness

Fig. 5. Architecture of the optimization system.

Owing to the great difficulty of solving this problem with
high accuracy without specific operators for continuous opti-
mization (like gradual GAs [52]), we stop the algorithm when
the number of function evaluations exceeds 105. As in the
previous experiments, here also the runs of the competing DE
variants start with the same initial population.

C. Algorithms for Comparison

At first, four versions of the proposed DEGL algorithm
(with different schedules for changing the weight factor w)
are compared with the DE/target-to-best/1/bin. These four
versions are referred to as DEGL/LIW (DEGL with linearly in-
creasing weight factor), DEGL/EIW (DEGL with exponential
increasing weight factor), DEGL/RandW (DEGL with random
weight factor) and DEGL/SAW (DEGL with self-adaptive
weight factor). We included a DEGL algorithm with a fixed
value of w for all the vectors in this comparative study. For this
scheme we choose w = 0.5 (which provides equal importance
to both local and global mutation schemes and appears to be
the best performer as compared to other fixed values of w
varying between 0.1 to 1.0 in steps of 0.1). The reason for
including this scheme is to illustrate the effectiveness of the
time-varying or adaptive weight factor over a fixed weight
factor. In order to investigate the effect of the explorative
mutation operator, the local-only DEGL (with w = 0) was
also taken into account in the comparative study.

Simulations were carried out to obtain a comparative per-
formance analysis of DEGL/SAW (that appears to be the best
performing algorithm from the first set of experiments) with
respect to: 1) DE/rand/1/bin [1], 2) DE/target-to-best/1/bin
[19], 3) DE/rand/1/either-or [3], 4) SADE [28], and 5) NSDE
[31]. Among the competitors, the first two belong to the
classical DE family of Storn and Price. The DE/rand/1/bin
algorithm was chosen because of its wide popularity in solving
numerical optimization or engineering problems [3].

D. Initial Population and Method of Initialization

For all the contestant algorithms we used the same popula-
tion size, which is 10 times the dimension D of the problem.
To make the comparison fair, the populations for all the DE
variants (over all problems tested) were initialized using the
same random seeds. Fogel and Beyer [53] have shown that the
typical method of symmetric initialization, which is used to
compare evolutionary computations, can give false impressions
of relative performance. In many comparative experiments,
the initial population is uniformly distributed about the entire

538 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE V

AVERAGE AND THE STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 50 INDEPENDENT RUNS AND THE SUCCESS RATE TESTED ON

FUNCTIONS f8 TO f13 AND COMPOSITE FUNCTIONS CF1 TO CF3

functions
Mean best value (Standard deviation)

DE/target-to-
best/1/bin

DEGL with
fixed w = 0.5

DEGL with
w = 0

DEGL/LI DEGL/EI DEGL/RandW
DEGL/SAW
(Cr = 0.9)

f8
−3.94382e+04

(5.83e−06)
−3.8756e+04
(7.00e−06)

−3.5621e+04
(8.58e−06)

−4.03634e+04
(3.81e−05)

−4.18436e+04
(5.22e−05)

−4.09039e+04
(8.39e−06)

−4.18983e+04
(6.98e−06)

f9
8.38673e−02
(5.06e−03)

8.35525e−02
(4.96e−02)

5.1215e−03
(3.81e−03)

3.46138e−06
(5.91e−07)

2.90833e−06
(5.91e−06)

8.93821e−21
(5.4342e−18)

1.7728e−26
(3.88e−25)

f10
6.76249e−01
(4.27e−01)

6.65735e−01
(7.07e−01)

2.09364e−01
(4.38e−01)

5.48844e−02
(1.68e−01)

3.93270e−04
(3.28e−02)

3.00895e−10
(7.16e−07)

8.52742e−17
(1.365e−15)

f11
5.27284e−05
(4.63e−07)

9.07997e−06
(9.02e−05)

6.46925e−06
(3.49e−08)

8.63652e−06
(1.02e−04)

4.82634e−06
(3.63e−06)

8.92369e−12
(6.02e−13)

4.11464e−15
(6.02e−16)

f12
5.21919e−02
(2.94e−04)

5.25646e−03
(7.15e−06)

5.25646e−03
(7.15e−06)

4.34325e−04
(3.69e−05)

5.13084e−03
(3.59e−04)

4.74317e−04
(4.05e−05)

3.00496e−18
(4.82e−17)

f13
2.30179e+01
(4.38e−01)

1.35424e+01
(3.67e−02)

1.77582e+01
(6.33e−04)

−4.86485e−01
(1.08e−10)

−1.00864e+00
(1.44e−05)

−1.10554e+00
(6.98e−02)

−1.14282e+00
(9.02e−05)

CF1
7.35430e+02
(1.546e+02)

7.36630e+02
(4.326e+01)

7.37321e+02
(7.235e+01)

6.98553e+02
(1.236e+02)

6.98661e+02
(2.123e+02)

7.847894e+02
(3.353e+02)

6.19227e+02
(6.8341e+01)

CF2
8.65593e+02
(2.541e+02)

8.54723e+02
(2.482e+01)

8.34774e+02
(1.554e+01)

7.82114e+02
(1.231e+02)

6.70442e+02
(1.133e+02)

6.40562e+02
(2.643e+02)

5.60543e+02
(9.7837e+01)

CF3
9.73340e+02
(3.221e+02)

9.13774e+02
(5.689e+02)

9.18563e+02
(4.663e+01)

1.12504e+03
(2.236e+02)

8.16728e+02
(2.836e+02)

8.41423e+02
(2.643e+02)

6.74823e+02
(5.8471e+01)

search space, which is usually defined to be symmetric about
the origin. In addition, many of the test functions are crafted to
have optima at or near the origin, including the test functions
for this paper. A uniform distribution of initial population
members has two potential biases for such functions. In
this paper we have adopted an asymmetrical initialization
procedure following the work reported in [54]. The procedure
limits the initial process to just a portion of the feasible search
space (as shown in the third column of Table IV), which is
a region defined to be half the distance from the maximum
point along each axis back toward the origin. Consequently,
as the number of dimensions is increased, the volume of the
initialization space in the asymmetric initialization procedure
decreases exponentially as compared to that of the symmetric
initialization (whose limits are provided in Table IV).

For the spread spectrum radar code design problem, each
variable is randomly initialized in the interval [0, 2π]. The
search was kept confined in this region. On the other hand,
for the FMS problem, the initialization range of each of the
six variables was kept at [0, 6.35], while the search was
constricted in the region [−6.4, 6.35] for all the variables.

VI. NUMERICAL RESULTS AND DISCUSSIONS

A. Comparison of Different DEGL Schemes

In this section we compare the performance of six variants
of the proposed DEGL algorithm (with different strategies
for tuning the weight factor w) and the DE/target-to-best/1
scheme, which uses only a global neighborhood and may
be seen as a special case of the DEGL with w = 1 and
α = β. All the seven contestant algorithms in this section use
the same population size, the same intial population, and the

same stopping criterion (i.e., the same number of maximum
FEs). Here the results are shown for D = 100 and each run
of an algorithm is continued upto 5 000 000 FEs. Since all
the algorithms have the same population size (10 · D), this
corresponds to a maximum of approximately 5000 generations
for each problem.

In the self-adaptive scheme (DEGL/SAW) for adjusting w,
the weight factor of each vector was randomly initialized,
using a uniform distribution, and constrained within [0.05,
0.95]. This range gave fairly good results with DEGL/SAW
algorithm.

We choose the crossover rate Cr = 0.9, and scale factors
α = β = F = 0.8. After some experimentation, we find
that a neighborhood size approximately equal to 10% of the
population size provides reasonably accurate results for DEGL
over nearly all the problems we study here. Hence we stick
to a 10% neighborhood size everywhere in this comparative
study for DEGL. Section VI-E presents a detailed discussion
of the effect of the neighborhood size on DEGL performance.

The mean and the standard deviation (within parentheses)
of the best-of-run values for 50 independent runs of each of
the five contestant algorithms are presented in Table V for the
six hardest benchmark functions functions f8 to f13 (each in
100 dimensions) and also for the three composite functions
CF1 to CF3 (each in 10 dimensions), taken from the list
of CEC’05 benchmarks [48]. The best solution in each case
has been shown in bold. Final accuracy results for all the
algorithms studied here have been reported with precision as
recorded by the IEEE standard for binary floating-point arith-
metic (IEEE 754). Results for relatively easier benchmarks
follow a similar trend and have not been included in order to
save space.

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 539

From Table V, it is interesting to see that there are always
one or more versions of DEGL that outperform the standard
DE/target-to-best/1/bin scheme. This reflects the effectiveness
of the incorporation of the hybrid mutation operator in DE.
We also note that in all the cases the time-varying weight
factors outperform the schemes with fixed weight factor.
It is interesting to see that DEGL with a fixed w for all
vectors yields final accuracies very close to that produced
by the DE/target-to-best/1/bin scheme. However, performance
of the local-only DEGL with w = 0 remains comparable to
DEGL with w = 0.5 but poorer than the three other DEGL
schemes with time-varying weight factor. Most of the runs
of DEGL with w = 0 fail to converge very near to the
global optima within the prescribed number of FEs due to
its sluggish behavior during the final stages of the search.
This suggests that a judicious tradeoff between the explorative
and the exploitative mutation operators is the key to the
success of the search-dynamics of DEGL. The self-adaptive
DEGL/SAW scheme exhibited very good performance over all
the test problems, indicating the ability of DEGL to capture
the dynamics of the problem under test and determine the
proper weight factor. In Fig. 6 the evolution of the weight
factor over successive generations has been shown for the
best vector of the median run of DEGL/SAW over functions
f8– f13. The standard deviations have also been plotted at the
sampled generations in the same figure.

Very interestingly, Fig. 6 indicates that the general tendency
of the evolutionary learning is at first a decrease of the
weight factor (favoring exploration at earlier stages) and then
increasing the weight factor towards a high value (favoring
exploitation at later stages of the search).

In the following sections we report results of comparison
between DEGL/SAW and other state-of-the-art DE variants.
We exclude the other variants of DEGL to save space and also
considering the fact that DEGL/SAW outperformed all other
schemes of controlling the weight factor over the selected test
suite.

B. Comparison of DEGL/SAW With State-of-the-Art
DE Variants

In this section, we compare DEGL/SAW with five other
DE variants mentioned in Section V-C. The comparative
study focuses on four important aspects of all the competitor
algorithms: 1) The quality of the final solutions produced
by each algorithm, irrespective of the computational time it
consumes; 2) The speed of convergence measured in terms
of the number of FEs required by an algorithm to reach a
predefined threshold value of the objective function; 3) the
frequency of hitting the optima (or success rate) measured in
terms of the number of runs of an algorithm that converge
to a threshold value within a predetermined number of FEs;
and 4) the issue of scalability, i.e., how the performance of
an algorithm changes with the growth of the search-space
dimensionality.

The parametric setup for DEGL was kept same as before.
For DE/rand/1/bin and DE/target-to-best/1/bin we have taken
F = 0.8, Cr = 0.9, and N P = 10 · D. In the case of

f8

f9

f10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
No. of Generations

0.4

0.35

0.3

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

V
al

ue
 o

f
w

 in
 D

E
G

L
/S

A
W

(a) Variation of w for DEGL/SAW over functions f8 to f10

0.8

0.7

0.6

0.5

0.4

0.3

5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
No of Generations

V
al

ue
 o

f
w

 in
 D

E
G

L
/S

A
W

f11

f12

f13

(b) Variation of w for DEGL/SAW over functions f11 to f13

Fig. 6. Self-adaptation characteristics of the best vector of median run for
the DEGL/SAW scheme.

DE/rand/1/either-or, we took pF = 0.4 [3]. For NSDE and
SADE, the best set of parameters was employed from the
relevant literature [31] and [28], respectively. Once set, the
same parameters were used over all the tested problems and
no further hand tuning was allowed for any of the algorithms.

1) Comparison of Quality of the Final Solution: To judge
the accuracy of different DE variants, we first let each of
them run for a very long time over every benchmark function,
until the number of FEs exceeds a given upper limit (which
was fixed depending on the complexity of the problem). The
mean and the standard deviation (within parentheses) of the
best-of-run values for 50 independent runs of each of the six
algorithms are presented in Tables VI, VII, and VIII. Missing
standard deviation values in any result table in this paper
indicate zero standard deviation. Although the experiments
were conducted for D = 25, 50, 75, and 100 for functions
f1 to f13, we report here results for 25 and 100 dimensions
in order to save space. Please note that the omitted results
follow a similar trend as those reported in Tables VI, VII,
and VIII.

Since all the algorithms start with the same initial population
over each problem instance, we used paired t-tests to compare

540 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE VI

AVERAGE AND THE STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 50 INDEPENDENT RUNS

AND THE SUCCESS RATE TESTED ON f1 TO f8

Function
Dim

Max
FEs

Mean best value (Standard deviation)

DE/rand/1/bin
DE/target-

to-best/1/bin
DE/rand/1
/either-or

SADE [27] NSDE [30] DEGL/SAW
Statistical

significance

f1
25 5 × 105 6.8594e−29

(4.984e−23)
5.7093e−25
(2.109e−19)

7.3294e−36
(5.394e−34)

4.0398e−35
(3.905e−32)

9.5462e−35
(3.009e−34)

8.7845e−37
(3.823e−35) .

100 5 × 106 8.4783e−24
(4.664e−22)

2.5693e−23
(3.746e−21)

4.9382e−26
(4.9382e−25)

5.8472e−24
(3.8271e−23)

8.3812e−23
(3.925e−25)

3.6712e−25
(4.736e−23)

.

f2
25 5 × 105 7.5462e−29

(6.731e−29)
5.7362e−25
(4.837e−10

7.4723e−31
(2.736e−34)

8.3392e−26
(4.837e−28)

8.9437e−30
(1.003e−30)

4.9392e−36
(3.928e−34) +

100 5 × 106 1.6687e−09
(6.77e−10)

3.5273e−06
(1.68e−08)

6.2827e−13
(1.91e−15)

2.6595e−12
(3.36e−14)

9.1395e−10
(3.36e−10)

6.9982e−14
(1.34e−16) +

f3
25 5 × 105 4.9283e−11

(2.03e−11)
6.2713e−09
(4.82e−10)

5.8463e−24
(4.737e−24)

4.2761e−14
(3.87e−14)

3.0610e−09
(4.22e−10)

1.2094e−26
(3.827e−25) +

100 5 × 106 6.5712e−10
(2.91e−10)

5.6125e−10
(3.22e−12)

3.4315e−11
(5.07e−12)

4.5641e−10
(5.29e−13)

7.3412e−10
(6.12e−10)

5.8832e−13
(3.06e−16) +

f4
25 5 × 105 8.3611e−14

(6.37e−13)
5.3711e−10
(9.03e−09)

1.6281e−14
(3.42e−13)

3.0229e−14
(1.37e−15)

2.0936e−11
(1.09e−08)

4.9932e−15
(1.18e−14) +

100 5 × 106 3.0095e−12
(3.26e−11)

3.0005e−08
(3.69e−09)

9.4442e−13
(3.29e−14)

3.7001e−11
(1.08e−13)

6.0927e−09
(4.45e−08)

3.5677e−14
(4.55e−13) +

f5
25 5 × 105 9.8372e−23

(4.837e−24)
3.0345e−10
(3.69e−09)

4.9372e−25
(3.726e−21)

5.6472e−26
(9.367e−24)

2.6473e−25
(4.536e−25)

6.8948e−25
(4.361e−26)

.

100 5 × 106 8.4511e−05
(2.748e−05)

2.6183e−01
(1.329e−03)

8.5462e−23
(4.635e−23)

8.6471e−25
(3.782e−24)

5.9208e−08
(2.03e−09)

1.5463e−25
(7.301e−22) .

f6
25 5 × 105 6.0938e−32

(9.362e−40)
7.6473e−41
(3.827e−37)

2.6839e−45
(3.837e−43)

1.6729e−36
(2.637e−32)

4.0361e−28
(2.949e−34)

9.5627e−48
(2.732e−45) +

100 5 × 106 3.2387e−14
(2.67e−09)

4.0102e−12
(3.85e−13)

8.3026e−15
(5.51e−16)

6.4897e−21
(3.938e−19)

5.8924e−15
(6.00e−13)

9.4826e−22
(7.483e−24) +

f7
25 5 × 105 4.9391e−03

(5.92e−04)
9.0982e−03
(2.08e−04)

6.9207e−04
(4.26e−06)

3.7552e−02
(9.02e−03)

4.3482e−03
(6.50e−04)

1.0549e−07
(2.33e−06) +

100 5 × 106 2.8731e−02
(2.33e−02)

3.3921e−02
(3.32e−02)

4.3332e−03
(5.76e−02)

5.9281e−02
(4.31e−03)

9.8263e−02
(2.90e−03)

6.9921e−06
(4.56e−05) +

f8
25 5 × 105 −1.0182e+04

(2.83e−04)
−1.0236e+04
(3.81e−05)

−1.0475e+04
(2.27e−06)

−1.0475e+04
(2.27e−06)

−1.1472e+04
(2.91e−03)

−1.0475e+04
(3.77e−03) NA

100 5 × 106 −4.18315e+04
(2.83e−04)

−3.9382e+04
(5.83e−06)

−4.18445e+04
(5.22e−05)

−4.18091e+04
(2.49e−06)

−4.18091e+04
(2.49e−06)

−4.18983e+04
(6.98e−06) .

the means of the results produced by best and the second best
algorithms (with respect to their final accuracies). The t-tests
are quite popular among researchers in evolutionary computing
and they are fairly robust to violations of a Gaussian distrib-
ution with large number of samples like 50 [55]. In the 10th
columns of Tables VI, VII, and VIII we report the statistical
significance level of the difference of the means of best two
algorithms. Note that here ‘+’ indicates the t value of 49
degrees of freedom is significant at a 0.05 level of significance
by two-tailed test, ‘.’ means the difference of means is not
statistically significant and ‘NA’ stands for Not Applicable,
covering cases for which two or more algorithms achieve the
best accuracy results.

A close inspection of Tables VI–VIII indicates that the per-
formance of the proposed DEGL/SAW algorithm has remained
clearly and consistently superior to that of the two classi-
cal DE schemes (DE/rand/1/bin and DE/target-to-best/1/bin)
as well as the three state-of-the-art DE variants. One may
note from Tables VI and VII that for a few relatively sim-
pler test-functions like the Sphere (f1), Schwefel’s problem
2.22 (f2), 25-dimensional Step function (f6), generalized

Rastrigin’s function (f9), generalized Griewank’s function
(f11), and the Shekel’s family function f22, most of the
algorithms end up with almost equal accuracy. Substantial
performance differences however, are noticed for the rest of
the more challenging benchmark functions and especially for
functions with higher dimensions like 100. In the case of
the multimodal functions f8 to f13, the three state-of-the-
art DE variants (DE/rand/1/either-or, SADE, and NSDE) and
DEGL/SAW outperformed the two classical DE algorithms:
DE/rand/1/bin and DE/target-to-best/1/bin. The quality of the
solutions produced by the SADE, DE/target-to-best/1/bin, and
NSDE algorithm is close to that of the DEGL in a few cases
(e.g., the 25-dimensional f12, f14, and the 2-dimensional f16
and f18 functions).

It is interesting to see that out of the 34 benchmark
instances, in 25 cases DEGL outperforms its nearest
competitor in a statistically significant fashion. In three cases
(f1 with D = 100, f8 with D = 25, f9 with D = 100, and
f12 with D = 25) DE/rand/1/either-or achieved best average
accuracy beating DEGL, which remained the second best
algorithm. Paired t-tests, however, confirm that the difference

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 541

TABLE VII

AVERAGE AND THE STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 50 INDEPENDENT RUNS TESTED ON f9 TO f21

Func D Max FEs

Mean best value (Standard deviation)

DE/rand/1/bin
DE/target-to-

best/1/
bin

DE/rand/1/
either-or

SADE [27] NSDE [30] DEGL/SAW
Statistical

significance

f9
25 5×105 1.0453e−03

(8.04e−02)
9.5278e−01
(4.72e−01)

1.7109e−23
(2.726e−24)

6.7381e−24
(3.728e−21)

4.8392e−21
(8.872e−20)

5.8492e−25
(5.333e−27) .

100 5×106 2.1121e−02
(4.86e−03)

6.76249e−01
(4.27e−01)

8.4719e−23
(9.36e−22)

5.8824e−21
(4.83e−20)

5.5732e−05
(5.93e−04)

1.7728e−22
(3.88e−20)

.

f10
25 5×105 4.1902e−08

(3.36e−08)
9.8035e−03
(6.80e−03)

6.9437e−15
(4.86e−15)

7.8343e−15
(2.85e−15)

5.9749e−10
(3.2231e−04)

5.9825e−23
(1.00e−22) +

100 5×106 7.6687e−05
(6.767e−05)

6.76249e−01
(4.237e−01)

6.9398e−13
(4.852e−13)

3.0665e−12
(5.125e−13)

4.1232e−05
(7.496e−06)

8.52742e−17
(1.365e−15) +

f11
25 5×105 6.8318e−22

(3.837e−25)
7.94504e−07
(8.03e−08)

3.0905e−34
(7.462e−34)

1.8274e−28
(7.682e−29)

7.9318e−26
(3.774e−28)

2.9931e−36
(4.736e−35) +

100 5×106 2.1962e−10
(8.45e−11)

5.27284e−05
(4.63e−07)

3.2928e−12
(2.77e−13)

8.9569e−13
(1.02e−14)

5.0392e−10
(4.29e−08)

4.11464e−15
(6.02e−16) +

f12
25 5×105 7.0931e−16

(6.22e−15)
2.8962e−13
(2.25e−10)

5.1469e−32
(4.22e−29)

9.3718e−24
(6.193e−28)

5.8471e−21
(3.728e−21)

7.2094e−27
(4.838e−28)

+

100 5×106 4.2455e−10
(2.96e−09)

5.21919e−02
(2.94e−04)

2.9137e−15
(4.30e−16)

2.8417e−15
(1.45e−14)

4.8923e−12
(8.45e−13)

3.00496e−18
(4.82e−17) +

f13
25 5×105 −1.12836e+00

(4.46e−08)
−4.86485e−01

(1.08e−10)
−1.1382e+00
(3.29e−10)

−1.14280e+00
(3.85e−07)

−1.14276e+00
(3.44e−09)

−1.14282e+00
(5.81e−06) +

100 5×106 2.0621e−02
(5.58e−03)

5.81493e−01
(1.08e−02)

2.19321e+00
(3.32e−01)

−1.1014e+00
(6.98e−03)

−1.10266e+00
(7.84e−05)

−1.14282e+00
(9.02e−05) +

f14 2 5×105 9.9813292e−01
(5.42e−10)

9.9860553e−01
(4.26e−03)

9.9800390e−01
(1.13e−16)

9.9800884e−01
(1.93e−18)

9.9860346e−01
(1.07e−02)

9.9800390e−01
(1.15e−18) NA

f15 4 5×105 4.0361420e−04
(2.81e−04)

4.8242655e−04
(6.41e−05)

3.6734442e−04
(5.13e−05)

3.7044472e−04
(9.82e−07)

3.7320963e−04
(4.33e−03)

3.7041849e−04
(2.11e−09) +

f16 2 5×105 −1.029922e+00
(1.82e−08)

−1.031149e+00
(2.44e−08)

−1.031242e+00
(4.98e−06)

−1.031630e+00
(9.73e−12)

−1.031630e+00
(3.33e−10)

−1.031630e+00
(4.28e−10) NA

f17 2 5×105 3.9788959e−01
(6.39e−06)

3.9789793e−01
(6.28e−07)

3.9788915e−01
(6.82e−06)

3.9788783e−01
(2.68e−06)

3.9788392e−01
(4.09e−06)

3.9788170e−01
(8. 54e−04) .

f18 2 5×105 3.0834435e+00
(4.73e−01)

3.146090e+00
(5.83e−01)

3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 NA

f19 2 5×105 −1.0042985e+01
(4.32e−05)

−6.840054e+00
(3.87e+00)

−1.010974e+01
(2.67e−05)

−1.015050e+01
(4.59e−04)

−1.014876e+01
(3.57e−03)

−1.015323e+01
(7.34e−08) +

f20 2 5×105 −1.0400382e+01
(8.54e−10)

−1.040073e+01
(4.53e−08)

−1.040068e+01
(9.24e−10)

−1.040189e+01
(6.94e−05)

−1.040089e+01
(3.00e−08)

−1.040295e+01
(5.93e−04) +

f21 2 5×105 −1.0536082e+01
(2.87e−03)

−7.023436e+01
(4.78e−05)

−1.0474381e+01
(6.88e−03)

−1.0536234e+01
(2.46e−06)

−1.023436e+01
(2.72e−02)

−1.053641e+01
(3.90e−08) +

TABLE VIII

AVERAGE AND THE STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 50 INDEPENDENT RUNS TESTED ON COMPOSITE FUNCTIONS CF1 TO

CF3 TAKEN FROM THE CEC’05 BENCHMARKS

Func D
Max
FEs

Mean best value (Standard deviation)

DE/rand/1
/bin

DE/target-
to-best/1/

bin

DE/rand/1/
either-or

SADE [27] NSDE [30]
DEGL/
SAW

(Cr = 0.9)

DEGL/
SAW

(Cr = 1)

Statistical
Significance

CF1 10 5×106 6.400300e+02
(2.3428e+02)

7.92834e+02
(3.0922e+02)

6.280932e+02
(2.0703e+02)

5.334983e+02
(3.9672e+01)

6.230469e+02
(4.5297e+01)

6.19227e+02
(6.8341e+01)

5.03826e+02
(4.0995e+01) +

CF2 10 5×106 6.340356e+02
(2.6635e+02)

7.993241e+02
(4.6723e+02)

6.157323e+02
(9.8836e+01)

5.15284e+02
(2.0784e+02)

7.198302e+02
(4.8735e+02)

7.60543e+02
(9.7837e+01)

4.18542e+02
(8.9984e+01) +

CF3 10 5×106 8.56392e+02
(9.4863e+01)

1.12873e+03
(6.7394e+01)

7.48427e+02
(5.8473e+01)

7.88492e+02
(4.4342e+01)

8.93824e+02
(3.8764e+01)

6.74823e+02
(5.8471e+01)

4.76239e+02
(3.7842e+01) +

of their means is not statistically significant for f1 and f9 in
100 dimensions.

As long as Cr < 1, DEGL will not be rotationally invariant,
i.e., its performance will depend on the orientation of the

coordinate system in which vectors are evaluated [3]. Since
the composite functions CF1, CF2, and CF3 are rotated in
nature, we also solve them using DEGL/SAW with Cr =
1. Table V shows that this rotationally invariant version of

542 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE IX

NO. OF SUCCESSFUL RUNS, MEAN NO. OF FES AND STANDARD DEVIATION (IN PARENTHESES) REQUIRED TO CONVERGE TO THE CUT-OFF FITNESS

OVER THE SUCCESSFUL RUNS FOR FUNCTIONS f8 TO f11

Function D
Threshold
objective
function
value

No. of successful runs, mean no. of FEs, and (standard deviation) required
to converge to the prescribed threshold fitness

DE/rand/1/bin
DE/target-to-

best/1/bin
DE/rand/1
/either-or

SADE [28] NSDE [31] DEGL/SAW

f1
25 1.00e−20

50,
109 372.5
(4773.28)

50,
376 421.20
(10 983.46)

50,
98 204.24
(2942.87)

50,
104 982.64
(5182.67)

50,
105 727.80
(3427.57)

50,
91 935.40
(3888.45)

100 1.00e−20
50,

687 322.24
(12 153.67)

50,
1033 567.40
(58 391.56)

50,
403 922.56
(3814.25)

50,
738 720.84
(28 731.88)

50,
565 382.24
(2827.56)

50,
498 521.54
(10 832.41)

f2
25 1.00e−20

50,
266 371.40
(31 923.45)

50,
417 382.80
(23 221.45)

50,
198 342.22
(3421.68)

50,
306 742.28
(18 534.55)

50,
300 371.48
(9034.26)

50,
157 234.76
(4451.72)

100 1.00e−20
13,

2034 583.46
(18 235.48)

6,
2935 411.45
(21 893.56)

28,
1062 744.69
(44 583.41)

23,
1257 362.57

(3417.34)

20,
1782 336.10
(36 710.05)

34,
978 357.83
(23 727.45)

f3
25 1.00e−20

12,
298 341.67
(24 376.27)

5,
378 392.20
(34 621.22)

50,
123 682.54
(63 827.06)

16,
296 473.93
(27 268.45)

7,
363 986.82
(52 741.78)

50,
110 528.68
(13 873.51)

100 1.00e−20
13,

2638 224.33
(57 398.21)

10,
4562 312.70
(17 372.68)

15,
2745 218.47
(37 123.69)

14,
2696 359.51
(14 225.47)

13,
2671 982.93
(46 188.26)

18,
2063 728.48
(27 351.57)

f4
25 1.00e−20

16,
376 291.47
(12 836.48)

8,
467 262.25
(26 111.78)

19,
309 309.52
(17 829.46)

17,
292 478.83
(8372.58)

11,
408 291.79
(26 721.77)

21,
294 812.82
(36 173.52)

100 1.00e−20
19,

3174 782.17
(17 283.49)

3,
4453 782.67
(18 253.58)

22,
3228 379.27

(4824.81)

17,
3139 382.38
(33 728.42)

5,
4140 835.40
(22 338.86)

25,
2263 976.44
(28 371.46)

f5
25 1.00e−20

50,
356 253.38
(82 732.33)

17,
478 290.91
(57 263.72)

50,
315 633.92
(47 192.57)

50,
267 319.74
(23 556.24)

50,
299 831.26
(48 382.57)

50,
338 279.08
(28 846.37)

100 1.00e−20 1, 3398272 0
50,

3067 263.78
(56 723.83)

50,
2844 738.62
(66 729.38)

3,
4563 742.33
(128 123.57)

50,
2709 313.82
(12 338.11)

f6
25 1.00e−20

50,
189 367.38
(83 412.84)

50,
132 676.28
(6769.48)

50,
122 845.64
(7378.36)

50,
173 490.18
(7638.46)

50,
235 177.72
(13 223.94)

50,
96 832.24
(4631.66)

100 1.00e−20
18,

2357 827.59
(33 253.68)

16,
3098 277.26
(83 921.47)

20,
2299 868.50
(27 632.58)

47,
1824 359.69
(27 733.61)

25,
3622 719.24
(47 378.19)

50,
1238 461.98
(36 278.64)

f7
25 1.00e−20 0 0

2,
467 236.50
(43 827.83)

0 0
4,

417 823.25
(27 192.82)

100 1.00e−20 0 0
1,

3689 267.48
0 0

3,
3163 563.67
(78 282.58)

f8
25

−1.0410e
+04

12,
19 817.50
(8723.837)

17,
13 039.65
(336.378)

50,
12 410.04
(1201.278)

50, 9887.50
(822.281)

32,
37 847.82
(4431.90)

50, 9492.64
(871. 76)

100
−4.1800e

+04

3,
359 834.33
(4353.825)

1, 51729
13,

133 282.73
(5362.366)

25,
363 291.80
(2338.944)

20,
2178 283.50
(24 332.78)

35,
39 928.45
(231.627)

f9
25 1.00e−20

19,
345 328.18
(41 128.91)

13,
46 843.92

(34 521.372)

50,
330 272.74
(3642.289)

50,
195 823.88
(4249.392)

44,
345 654.73

(326.84)

50,
87 148.34
(1325.72)

100 1.00e−20
5,

1840 322.80
(3852.196)

2,
2022 275.50
(27 327.24)

50,
838 932.48
(23 677.66)

50,
744 938.28

(34 147.928)

16,
3290 384.57
(53 209.58)

50,
539 282.72
(26 547.09)

f10
25 1.00e−20

14,
226 816.89
(44 721.76)

4,
412 675.25
(16 834.37)

34,
238 372.74
(32 325.67)

32,
236 290.86
(15 533.08)

26,
287 812.83
(14 039.54)

50,
224 883.78
(13 212.87)

100 1.00e−20
13,

1873 625.56
(29 123.902)

2,
4486 372.50
(98 273.57)

15,
1782 210.66
(72 233.371)

13,
1065 920.64
(24 383.71)

7,
2082 983.84
(81 744.84)

27,
925 628.73
(7823.28)

f11
25 1.00e−20

50,
333 948.52

(12 314.821)

6,
356 061.52
(11 300.97)

50,
225 092.84
(12 123.19)

50,
316 382.04
(35 338.83)

50,
369 283.71
(45 478.88)

50,
196 258.22
(14 235.83)

100 1.00e−20
26,

1887 635.65
(44 612.34)

12,
2833 416.96
(17 218.06)

29,
2633 782.74
(10 217.26)

34,
1936 287.62
(14 235.37)

27,
2235 653.56
(30 362.67)

43,
1627 092.58
(11 217.31)

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 543

TABLE X

NO. OF SUCCESSFUL RUNS, MEAN NO. OF FES AND STANDARD DEVIATION (IN PARENTHESES) REQUIRED TO CONVERGE TO THE CUT-OFF FITNESS

OVER THE SUCCESSFUL RUNS FOR FUNCTIONS f12 TO f21

Func D
Threshold
objective
function
value

No. of successful runs, mean no. of FEs, and (standard deviation) required
to converge to the prescribed threshold fitness

DE/rand/1/bin
DE/target-

to-best/1/bin
DE/rand/1/

either-or
SADE [28] NSDE [31] DEGL/SAW

f12
25 1.00e−20

35,
294 584.44

(22 563.378)

30,
3472 185.67
(13 382.229)

42,
209 372.87
(12 742.03)

50,
126 574.64
(16 833.89)

46,
478 732.05,
(3884.04)

50,
150 039.62
(4831.28)

100 1.00e−20
8,

3122 658.25
(62 922.84)

5,
3908 138.80
(13 937.383)

23,
2664 722.53
(47 212.38)

20,
1637 409.40
(18 219.526)

10,
2673 864.70
(53 121.65)

27,
1436 190.89
(13627. 82)

f13
25 −1.1428e+00

13,
230 372.52
(7313.297)

3,
428 023.33

(84 517.371)

26,
237 639.09
(14 573.96)

42,
213 739.78

(12 347.391)

24, 738742.
34

(24 322.82)

48,
121 940.72
(33 398.90)

100 −1.1428e+00 1, 3328426 0 0
14,

1702 654.85
(21 743.57)

25,
1283 665.44

(9487.37)

28,
398 493.74
(25 134.38)

f14 2 9.9800390e−01
19,

94 233.57
(2312.57)

14,
89 371.53
(1409.26)

46,
68 392.37
(5231.48)

27,
84 032.58
(3842.53)

15,
77 362.94
(4437.28)

47,
67 823.84
(3725.36)

f15 4 3.705e−04 0 0
13,

58 935.28
(3822.72)

33,
68 293.46
(2219.58)

20,
73 821.05
(6319.48)

41,
65 783.38
(1749.51)

f16 2 −1.03170e+00
32,

83 920.68
(2124.56)

37,
98 529.61
(1098.59)

27,
83 782.79
(1271.47)

50,
77 129.34
(3731.63)

50,
71 036.28
(1211.48)

50,
67 382.39
(1726.49)

f17 2 3.980e−01
41,

103 273.57
(2231.68)

43,
79 382.42
(907.31)

43,
75 823.45
(3281.68)

38,
78 939.37
(1325.46)

47,
84 983.94
(2258.10)

49,
73 727.83
(4308.58)

f18 2 3.00e+00
21,

67 392.59
(3381.62)

23,
77 539.42
(4839.86)

50,
89 482.78
(3238.56)

50,
79 035.28
(3381.98)

50,
80 382.70
(419.49)

50,
69 837.62
(1724.08)

f19 2 −1.01550e+01
23,

109 372.48
(3341.67)

34,
98 922.93
(3212.68)

44,
68 672.70
(1332.67)

41,
67 478.37
(2001.83)

37,
79 820.42
(1692.78)

46,
58 372.96
(3827.58)

f20 2 −1.04500e+01
35,

84 721.07
(3412.39)

42,
107 482.69
(10 824.57)

48,
58 373.47
(2221.680

47,
48 372.83
(2294.83)

44,
85 933.58
(3329.74)

50,
56 098.08
(3187.44)

f21 2 −1.05500e+01
26,

86 743.93
(6983.07)

30,
85 999.67
(2901.83)

32,
84 892.66
(2319.59)

46,
68 492.69
(2326.09)

23,
100 232.67
(3721.78)

49,
67 583.93
(3317.58)

TABLE XI

NO. OF SUCCESSFUL RUNS, MEAN NO. OF FES AND STANDARD DEVIATION (IN PARENTHESES) REQUIRED TO CONVERGE TO THE CUT-OFF FITNESS

OVER THE SUCCESSFUL RUNS FOR COMPOSITE FUNCTIONS CF1 TO CF3

Func D

Threshold
objective
function
value

No. of successful runs, mean no. of FEs, and (standard deviation)
required to converge to the prescribed threshold fitness

DE/rand/1
/bin

DE/target-
to-best/1

/bin

DE/rand/1/
either-or

SADE [28] NSDE [31]
DEGL/SAW
(Cr = 0.9)

DEGL/SAW
(Cr = 1)

CF1 10 8.10e+02
34,

2683 073.04
(45 214.48)

19,
3835 238.75
(18 183.95)

42,
637 222.35
(39357. 23)

50,
1823 847.64
(52 932.821)

12,
624 732.56

(35 330.493)

36,
1707 873.04
(13 434.482)

50,
1645 938.75
(18 843.905)

CF2 10 8.10e+02
33,

530 857.85
(13 439.09)

21,
2539 841.89
(87 438.490)

25,
942 325.40
(3173.74)

25,
818 472.16
(7384.492)

37,
510 932.79
(3438.473)

36,
1230 857.85
(13 139.409)

39,
83 401.86
(5438.46)

CF3 10 1.20e+03
17,

3645 817.50
(95 823.83)

17,
4834 039.65
(35 336.78)

41,
1597 232.03
(37 811.28)

40,
196 887.50
(12 372.28)

24,
3139 492.64
(54 431.26)

45,
149 817.56
(2339.37)

50,
913 039.68
(3576.78)

DEGL performs significantly better on the composite test
functions as compared to the DEGL with Cr = 0.9. However,
the performance over the 21 traditional benchmarks (which are
unrotated) is nearly the same for both the versions. In order

to save space we have not shown the results of DEGL/SAW
with Cr = 1 in Tables VI and VII.

2) Comparison of the Convergence Speed and Success Rate:
In order to compare the speeds of different algorithms, we

544 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

SADE

DE/target-to-best/1/ bin
DE/rand/1/ bin

DEGL/SAW
NSDE

DE/rand/1/ either-or

x106No. of FEs

(a)

0 54.543.532.521.510.5

105

10–20

10–15

10–10

10–5

100

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

x106No. of FEs

0 54.543.532.521.510.5

105

10–20

10–15

10–10

10–5

100

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

SADE

DE/target-to-best/1/ bin
DE/rand/1/ bin

DEGL/SAW
NSDE

DE/rand/1/ either-or

(b)

SADE

DE/target-to-best/1/ bin
DE/rand/1/bin

DEGL/SAW
NSDE

DE/rand/1/ either-or

x106No. of FEs

0 54.543.532.521.510.5

105

10–25

10–20

10–15

10–10

10–5

100

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

(c)

SADE

DE/target-to-best/1/ bin
DE/rand/1/bin

DEGL/SAW
NSDE

DE/rand/1/ either-or

x106No. of FEs

0 54.543.532.521.510.5

1010

105

10–25

10–20

10–15

10–10

10–5

100

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

(d)

x106No. of FEs

0 54.543.532.521.510.5

103

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

DE/rand/1/either-or
SADE
NSDE
DEGL/SAW (with Cr = 1)
DE/target-to-best/1/bin
DE/rand/1/bin

(e)

103

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

x106No. of FEs

0 54.543.532.521.510.5

DE/rand/1/either-or
SADE
NSDE
DEGL/SAW (with Cr = 1)
DE/target-to-best/1/bin
DE/rand/1/bin

(f)

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

No. of FEs

DE/rand/1/either-or
SADE
NSDE
DEGL/SAW(with Cr=1)
DE/target-to-best/1/bin
DE/rand/1/bin

0

103

x 106

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(g)

Fig. 7. Progress towards the optimum solution for median run of six algorithms over seven difficult test functions. (a) Generalized Ackley’s function (f10).
(b) Generalized Griewnk’s function (f11). (c) Generalized Rastrigin’s Function (f9). (d) Generalized Rosenbrock’s function (f5). (e) Composite function CF1.
(f) Composite function CF2. (g) Composite function CF3.

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 545

select a threshold value of the objective function for each
benchmark problem. For functions with minima at zero, this
threshold is at 10−20. To obtain an unbiased comparative
performance, for other functions, this value is chosen to be
somewhat larger than the minimum objective function value
found by each algorithm in Tables VI, VII, and VIII. We
run each algorithm on a function and stop as soon as the
best fitness value determined by the algorithm falls below
the predefined threshold. Then we note the number of FEs
the algorithm takes. A lower number of FEs corresponds to a
faster algorithm. Tables IX, X, and XI report the number of
runs (out of 50) that managed to find the optimum solution
(within the given tolerance) as well as the mean number of FEs
and standard deviations (within parenthesis) required by the
algorithms to converge within the prescribed threshold value.
Entries marked as 0 indicate that no runs of the corresponding
algorithm converged below the threshold objective function
value. Missing values of standard deviation in these tables
also indicate a zero standard deviation.

Tables VI and IX indicate that, not only does DEGL/SAW
yield the most accurate results for nearly all the benchmark
problems, but it does so consuming the least amount of
computational time. In addition, the number of runs that
converge below a prespecified cut-off value is also greatest
for DEGL over most of the benchmark problems covered here.
This indicates the higher robustness (i.e., the ability to produce
similar results over repeated runs on a single problem) of the
algorithm as compared to its other four competitors. Usually in
the community of stochastic search algorithms, robust search is
weighted over the highest possible convergence rate [56], [57].

The convergence characteristics of seven difficult test func-
tions are shown in Fig. 7 in terms of the fitness value of the
median run of each algorithm. All the graphs except for the
composite functions CF1 to CF3 have been drawn for D = 100
dimensions. Convergence graphs for the composite functions
appear for D = 10 dimensions.

3) Scalability Comparison: Performance of most of the
evolutionary algorithms (including DE and PSO) deteriorates
with the growth of the dimensionality of the search space.
Increase of dimensions implies a rapid growth of the hyper-
volume of the search space and this in turn slows down the
convergence speed of most of the global optimizers. Here
we show how the performance of the six DE variants scale
against the growth of dimensions from 25 to 100. Fig. 8 shows
the scalability of the six algorithms over four difficult test
functions - how the average computational cost (measured in
number of FEs required to yield a threshold fitness value) to
find the solution varies with an increase in the dimensionality
of the search space.

We note that the computational cost of both DEGL/SAW
and SADE (to yield a given accuracy) increases most slug-
gishly with the search space dimensionality for the following
test-functions: f5, f10, f11, and f9.

C. Comparison With Other State-of-the-Art
Evolutionary Techniques

In this section we compare the performance of DEGL/SAW
with that of four state-of-the-art evolutionary and swarm-based

optimization techniques, well-known as CPSO-H [38], IPOP-
CMA-ES [58], MA-S2 [59], and G3 with PCX [60]. Below
we briefly describe each of these algorithms.

1) CPSO-H: van den Bergh and Engelbrecht proposed a
cooperative particle swarm optimizer (CPSO) in [36]. Al-
though CPSO uses one-dimensional (1-D) swarms to search
each dimension separately, the results of these searches are
integrated by a global swarm to significantly improve the
performance of the original PSO on multimodal problems.
The CPSO-H algorithm uses a hybrid swarm, consisting of
a maximally split cooperative swarm (D one-dimensional
swarms for one D-dimensional parameter vector) and a plain
swarm. Both components employ identical values for the
acceleration coefficients (C1 = C2 = 1.49) and the inertial
factor ω decreasing linearly with time. They use a maximum
velocity �Vmax clamped to the search domain [38].

2) IPOP-CMA-ES: Covariance matrix adaptation evolution
strategy (CMA-ES) [61], [62] is an evolutionary strategy that
uses informed mutation based on local structural information,
but does not directly bias its search motion toward other
individuals of the population. Auger and Hansen have recently
proposed a restart CMA-ES [58], where the population size is
increased (IPOP) for each restart. By increasing the population
size, the search characteristic becomes more global after each
restart. This variant is named IPOP-CMA-ES.

3) MA-S2: Memetic algorithms (MAs) [63], [64] are based
on the hybridization of genetic algorithm (GA) with local
search (LS) techniques. In this paper, MA-S2 [59] stands for an
adaptive Meta-Lamarckian learning-based MA that employs
a stochastic approach (the biased roulette wheel strategy)
making use of the knowledge gained online to select a suitable
local method with the GA.

4) G3 with PCX: The main research effort in the field of
real parameter GA is more or less focussed on the design of
efficient recombination operators used to create offspring from
parent solutions. Deb et al. [60] proposed a generic parent-
centric recombination scheme (PCX) and integrated it with
a steady state, elite preserving, scalable, and computationally
fast population alteration model of the GA, which they named
the G3 (generalized generation gap) model. Their results indi-
cate that the G3 model with PCX can outperform many other
existing GA models when tested on the standard benchmark
functions.

We employ the best parametric set-up for all these algo-
rithms as prescribed in their respective sources. The mean and
the standard deviation (within parentheses) of the best-of-run
values of 50 independent runs for each algorithm have been
presented in Tables XII and XIII. In order to save space, we
report only the hardest problem instances (multidimensional
functions with D = 100) in these tables. The algorithms
compared in this section have different population sizes and
also differ in their initial population structure. Thus to test
the statistical significance of the results, we used two-tailed
unpaired t tests between the two best algorithms. The results of
t test have been indicated in the 9-th column of Table XII and
10-th column of Table XIII. Note that here ‘+’ indicates the
t value of 98 degrees of freedom is significant within a 95%
confidence interval by two-tailed test, ‘.’ means the difference

546 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

Search Space Dimensionality

N
o.

 o
f

FE
s

R
eq

ui
re

d
to

 c
on

ve
rg

e 2.5

2

1.5

1

0.5

 3

0
30 40 50 60 70 80 9020 100

DE/rand/1/bin

DE/rand/1/either-or
DEGL/SAW

DE/target-to-best/1/bin
NSDE
SADE

 x 106

(a) Generalized Ackley’s Function (f10)

4.5

 x 106

4

DE/rand/1/bin

DE/rand/1/either-or
DEGL/SAW

Search Space Dimensionality

DE/target-to-best/1/bin
NSDE
SADE

3.5

N
o.

 o
f

FE
s

re
qu

ir
ed

 to
 c

on
ve

rg
e

3

2.5

2

1.5

1

0.5

 5

0
30 40 50 60 70 80 9020 100

(b) Generalized Griewank’s Function (f11)

DE/target-to-best/1/ bin

DE/rand/1/ either-or
DEGL/SAW

SADE
NSDE

DE/rand/1 /bin

0
30 40 50 60 70 80 9020 100

0.5

1

1.5

2

2.5

3

3.5
x106

N
o.

 o
f

FE
s

re
qu

ir
ed

 to
 c

ov
er

ag
e

Search Space Dimensionality

(c) Generalized Rastrigin’s Function (f9)

DE/target-to-best/1/ bin

DE/rand/1/ either-or
DEGL/SAW

SADE
NSDE

DE/rand/1 /bin

20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

4

0

4.5

3.5

x106

N
o.

 o
f

FE
s

re
qu

ir
ed

 to
 c

ov
er

ag
e

Search Space Dimensionality

(d) Generalized Rosenbrock’s Function (f5)

Fig. 8. Variation of mean number of FEs required for convergence to predefined threshold accuracy with increase in dimensionality of the search space.

of means is not statistically significant and ‘NA’ stands for Not
Applicable, covering cases in which two or more algorithms
achieve the best accuracy results.

These simulation results show that DEGL/SAW is superior
to all the other algorithms in terms of the average final
accuracy over 12 cases reported in Table XII and two cases
in Table XIII. DEGL/SAW yields results comparable to
two or more algorithms for six cases in Table XII. It is
interesting to see that out of the 12 cases in Table XII, where
DEGL/SAW was able to beat all its contestant algorithms,
for nine instances the difference between the means of
DEGL/SAW and its nearest competitor is statistically
significant. From Table XII, we find that CPSO-H was able
to outperform DEGL/SAW (and all the other contestants)
over the 100-dimensional Schwefel’s problem 1.2 (f3) and
IPOP-CMA-ES alone achieved the greatest accuracy for the
100-dimensional generalized penalized function (f12) beating
DEGL/SAW. For f3, DEGL/SAW remained the third best

algorithm (after CPSO-H and G3 with PCX) while for the
f12 function, it secured the second place in terms of final
accuracy. However, the last column of Table XII shows the
difference of means of DEGL/SAW and IPOP-CMA-ES is
not statistically significant in the case of the f12 function.

For lower dimensional multimodal functions f14 to f21,
almost all the algorithms end up with nearly equal levels
of final accuracy, f19 being an exception where DEGL/SAW
appeared to perform significantly better as compared to all
other algorithms. For the higher dimensional and multimodal
functions f8 to f13, however, CPSO-H and IPOP-CMA-ES
remained as the toughest competitor of DEGL/SAW. Note that
over these functions DEGL/SAW remained statistically better
as compared to the MA-S2 algorithm, which also employs
local search strategies in an adaptive fashion with GA. Except
for the generalized penalized function f12, DEGL/SAW met or
beat the IPOP-CMA-ES over all other multimodal functions in
100 dimensions. The final accuracy provided by DEGL/SAW

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 547

TABLE XII

AVERAGE AND STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTIONS FOR 50 INDEPENDENT RUNS AND THE SUCCESS RATE TESTED ON f1 TO f21

Func D Max FEs

Mean best value (Standard deviation)

CPSO-H
IPOP-CMA-

ES
MA-S2 G3 with PCX DEGL/SAW

Statistical
significance

f1 100 5 × 106 6.5635e−22
(7.234e−28)

9.6853e−23
(7.232e−26)

7.5364e−22
(3.454e−25)

2.8002e−20
(6.467e−14)

8.3812e−23
(3.925e−25) .

f2 100 5 × 106 7.4164e−08
(6.225e−07)

2.7429e−03
(1.648e−07)

6.2899e−04
(1.91e−15)

2.6595e−06
(3.36e−10)

9.1395e−10
(3.36e−10) +

f3 100 5 × 106 3.5712e−23
(7.239e−22)

2.5358e−08
(1.923e−09)

8.0005e−07
(8.947e−05)

3.7659e−10
(2.596e−10)

9.7852e−10
(6.132e−08)

+

f4 100 5 × 106 6.5132e−13
(1.795e−16)

1. 7685e−12
(4.949e−06)

4.8865e−12
(2.209e−13)

7.4823e−13
(3.773e−09)

3.7068e−14
(1.08e−12) .

f5 100 5 × 106 1.5041e−01
(9.423e−01)

6.0499e−22
(8.345e−24)

1.5639e−20
(2.700e−20)

5.7778e−18
(2.233e−19)

1.5463e−25
(7.301e−22) +

f6 100 5 × 106 1.4532e−15
(1.713e−16)

2.1052e−20
(8.691e−21)

1.4455e−13
(3.938e−11)

7.0054e−17
(2.644e−14)

8.6493e−22
(8.483e−23) +

f7 100 5 × 106 8.5829e−13
(1.492e−03)

2.9890e−03
(7.086e−01)

9.6648e−05
(2.331e−09)

1.7984e−02
(6.834e−03)

6.9921e−06
(4.56e−05) +

f8 100 5 × 106 −4.0572e+04
(9.481e−06)

−4.18783e+04
(1.129e−04)

−4.18774e+04
(4.227e−05)

−4.03386e+04
(2.349e−05)

−4.18983e+04
(6.98e−06) +

f9 100 5 × 106 1.7382e−01
(4.093e−02)

9.24702e−21
(4.324e−21)

7.32562e−04
(2.781e−05)

5.92381e−03
(3.779e−04)

1.7728e−22
(3.838e−23) +

f10 100 5 × 106 1.7725e−12
(2.489e−13)

8.85280e−17
(7.638e−14)

3.71596e−09
(9.328e−08)

3.47432e−10
(7.146e−09)

3.52742e−17
(1.365e−15) +

f11 100 5 × 106 2.5361e−02
(7.2281e−03)

3.67528e−14
(6.932e−14)

1.56794e−13
(3.6433e−09)

8.92369e−11
(8.157e−15)

4.11464e−15
(6.02e−16) +

f12 100 5 × 106 4.2042e−10
(6.955e−11)

4.45366e−19
(3.634e−16)

2.75934e−09
(8.359e−06)

6.86492e−04
(8.035e−03)

8.00496e−19
(4.82e−17)

.

f13 100 5 × 106 −1.142822e+00
(9.472e−06)

−1.142822e+00
(1.342e−03)

−1.00864e+00
(1.44e−05)

−1.10967e+00
(8.345e−01)

−1.142823e+00
(9.032e−05) NA

f14 2 5 × 106 9.9800390e−01
(7.228e−16)

9.9800390e−01
(2.673e−16)

9.9800400e−01
(9.373e−09)

9.9800390e−01
(1.138e−16)

9.9800390e−01
(1.15e−18) NA

f15 4 5 × 106 3.706461e−04
(1.551e−06)

3.7041849e−04
(4.837e−10)

3.706851e−04
(2.558e−05)

4.156548e−04
(2.981e−04)

3.7041849e−04
(2.11e−09) NA

f16 2 5 × 106 −1.031630e+00
(7.236e−11)

−1.031630e+00
(3.668e−11)

−1.031628e+00
(4.538e−08)

−1.031630e+00
(2.548e−09)

−1.031630e+00
(1.749e−10) NA

f17 2 5 × 106 3.9788231e−01
(2.683e−06)

3.9788170e−01
(1.260e−08)

3.9788794e−01
(7.638e−06)

3.9788396e−01
(6.039e−06)

3.9788170e−01
(8. 544e−04) NA

f18 2 5 × 106 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 NA

f19 2 5 × 106 −1.015306e+00
(2.453e−06)

−1.015314e+01
(8.071e−07)

−1.015058e+01
(1.593e−06)

−1.014888e+01
(5.568e−01)

−1.015323e+01
(7.341e−08) +

f20 2 5 × 106 −1.040236e+01
(3.116e−06)

−1.040293e+01
(7.974e−10)

−1.040125e+01
(1.944e−05)

−1.040089e+01
(3.00e−08)

−1.040295e+01
(5.923e−04) .

f21 2 5 × 106 −1.053427e+01
(1.593e−08)

−1.053641e+01
(6.049e−07)

−1.053669e+01
(1.446e−03)

−1.023386e+01
(9.638e−02)

−1.053641e+01
(3.90e−08) NA

improves significantly as compared to all other algo-
rithms for three hardest unimodal functions: the generalized
Rosenbrock’s function (f5), the discontinuous step function
(f6), and the noisy quartic function (f7).

The convergence characteristics of the contestant algorithms
over the six hardest test functions have been shown in Fig. 9
in terms of the objective function value of the median run
of each algorithm. For the step function, characterized by
plateaus and discontinuity, DEGL/SAW maintained a steady
convergence rate that finally finished at the lowest objective
function value, while the local search-based MA-S2 showed
a much slower convergence. Usually a local search method
that relies on geographical neighborhoods performs poorly
on the step function because the algorithm mainly searches

in a relatively small local neighborhood. On the other hand,
DEGL employs a geographically randomized neighborhood
structure (local only in the sense of vector indices), and the
individuals can make longer jumps enabling them to move
from one plateau to a lower one with relative ease.

Fig. 9 reveals that for Ackley (f10), Rastrigin (f9), and
Griewank (f11), as well as harder composite functions CF1
and CF2, initially CPSO-H and IPOP-CMA-ES converge at
the quickest rate among all the algorithms. However, in the
neighborhood of the global optima, DEGL/SAW overtakes
both of them, attaining greater final accuracy. The composite
function CF1 appears as an exception to this trend (that is
also exhibited by the convergence graphs of other functions,
which were omitted to save space), where the convergence

548 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE XIII

AVERAGE AND STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTIONS FOR 50 INDEPENDENT RUNS TESTED ON COMPOSITE FUNCTIONS CF1 TO

CF3 TAKEN FROM THE CEC’05 BENCHMARKS

Func D
Max
FEs

Mean best value (Standard deviation)

CPSO-H
IPOP-CMA-

ES
MA-S2 G3 with PCX

DEGL/SAW
(Cr = 0.9)

DEGL/SAW
(Cr = 1)

Statistical
Significance

CF1 10 5 × 106 5.24167e+02
(1.046e+01)

3.83592e+02
(1.236e+02)

1.98661e+03
(2.123e+02)

1.847894e+03
(3.353e+02)

6.19227e+02
(6.8341e+01)

5.03826e+02
(4.0995e+01)

+

CF2 10 5 × 106 9.23762e+02
(6.718e+01)

6.82114e+02
(1.8469e+01)

1.53459e+03
(1.133e+02)

1.49463e+04
(7.846e+02)

7.60543e+02
(9.7837e+01)

4.18542e+02
(8.9984e+01) +

CF3 10 5 × 106 7.58269e+02
(9.462e+02)

5.12504e+02
(2.586e+02)

7.16728e+02
(2.836e+02)

1.91423e+03
(2.643e+02)

6.74823e+02
(5.8471e+01)

4.76239e+02
(3.7842e+01) +

rate of CMA-ES remained higher than DEGL/SAW until the
maximum number of FEs were reached.

D. Comparative Performance Over Real-Life Optimization
Problems

This section investigates the performance of the six com-
petitive DE-variants over two real-world optimization prob-
lems, viz., the spread spectrum radar poly-phase code de-
sign problem and the sound frequency modulator synthesis
problem. Both problems have been briefly described earlier in
Section V-B.

In Table XIV, we show the mean and the standard deviation
(within parentheses) of the best-of-run values for 30 indepen-
dent runs of each of the six algorithms over the two most
difficult instances of the radar poly-phase code design problem
(for dimensions D = 19 and D = 20). Table XV reports the
results of the same experiments performed over the FM syn-
thesizer problem. Figs. 9 and 10 graphically present the rate of
convergence of the DE-variants for these two problems (graphs
in Fig. 9 have been shown for 20 dimensions for the radar
code design problem). The 8-th column in Table XIV and the
7-th column in Table XV indicate the statistical significance
level obtained from a paired t test between the best and the
next-to-best performing algorithms in each case.

Tables XIV and XV show that DEGL/SAW outperforms
all the other DE-variants in terms of final accuracy over two
instances of the radar poly-phase code design problem as well
as the FMS problem.

E. Selection of the Neighborhood Size

The proper selection of the neighborhood’s size (equal to
2k + 1, where k is the neighborhood radius) in DEGL affects
the tradeoff between exploitation and exploration. For solving
any given optimization problem, this selection remains an
open problem. In practice, it is up to the practitioner and is
based solely on his/her experience. Some empirical guidelines
may, however, be provided based on the fact that if the
neighborhood size is large (near the population size), then
because of the overlapping of the neighborhoods of successive
vectors, neighborhood-best of a number of vectors can be
similar to the globally best vector in the entire population. This
again increases the attraction of most of the vectors towards
a specific point in the search space and results in loss of the

explorative power of the algorithm. Our experiments suggest
that a neighborhood size that is above 40% of the population
size makes the performance of DEGL comparable to that of the
DE/target-to-best/1/bin. Again, too small a neighborhood runs
the risk of losing diversity of the population, as the difference
vector in the local mutation model [(14)] may become too
small. This is due to the fact that the vectors belonging to
a small neighborhood may quickly become very similar to
each other. We empirically observe that for N P = 10 · D,
the overall performance of the algorithm is not very sensitive
to the neighborhood size varying between 10% and 20%
of N P . Other choices for the population size N P and the
corresponding radius of the neighborhood are topics of future
research.

Below we provide the overall success rate of the
DEGL/SAW algorithm for neighborhood size varying from
5–70% of N P , over 100-dimensional multimodal functions
f10 and f11. Since both the functions have their optima at the
origin (0), we plot the percentage of runs that successfully
yielded a final accuracy below 10−15 for different neigh-
borhood sizes. We relaxed the threshold objective function
value from 10−20, so that at least one run of DEGL for
all neighborhood sizes may converge below the threshold
value.

Thorough experimentation with all the test problems shows
that a neighborhood size of around 10% provides reasonably
accurate results with high success rates over most of the
benchmark problems covered here.

F. Correlation Between the Neighborhood Size and Weight
Factor

Both the neighborhood size and the weight factor w are
related to the balancing of the explorative and exploitative ten-
dencies of DEGL. Establishment of any theoretical correlation
between these two parameters remains an interesting problem
for future research. In this section we provide a discussion
on such correlation, based on our empirical results on the
benchmark functions.

If we keep w constant throughout, then for neighborhood
sizes (2k + 1, where k is the neighborhood radius) varying
between approximately 15–25% of N P , reasonably good
accuracy is achieved with 0.45 < w < 0.55 over most
of the uni- and multimodal benchmarks. Larger values of

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 549

1010

105

100

10–5

10–10

10–15

10–20

10–25

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

(l
og

)

0 0.5

No. of FEs

1 1.5 2 2.5 3 3.5 4 4.5 5

 x 106

DEGL/SAW
IPOP-CMA-ES
CPSO-H
MA-S2

G3 with PCX

(a)

100

10–5

10–10

10–15

10–20

105

10–25

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

(l
og

)

0.5

No. of FEs

1 1.5 2 2.5 3 3.5 4 4.50 5

 x 106

DEGL/SAW
IPOP-CMA-ES
CPSO-H
MA-S2

G3 with PCX

(b)

x106No. of FEs

0 54.543.532.521.510.5

105

10–20

10–15

10–10

10–5

100

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

MA-S2

G3 with PCX
DEGL/SAW
IPOP-CMA-ES
CPSO-H

(c)
x106No. of FEs

0 54.543.532.521.510.5

105

10–15

10–10

10–5

10–0

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

MA-S2

G3 with PCX
DEGL/SAW
IPOP-CMA-ES
CPSO-H

(d)

CPSO-H

DEGL/SAW (with Cr = 1)
G3 wth PCX

IPOP-CMA-ES

MA-S2

x106No. of FEs

0 54.543.532.521.510.5

103

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

(e)

CPSO-H

DEGL/SAW (with Cr = 1)
G3 wth PCX

IPOP-CMA-ES

MA-S2

x106No. of FEs

0 54.543.532.521.510.5

103

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

(f)

x106No. of FEs

0 54.543.532.521.510.5

104

102

103

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

 (
L

og
)

MA-S2

G3 with PCX
DEGL/SAW (with cr = 1)
IPOP-CMA-ES
CPSO-H

(g)

Fig. 9. Convergence characteristics for median run of five algorithms over seven difficult benchmark functions. (a) Step Function (f6), (b) Generalized
Rastrigin’s Function (f9), (c) Generalized Ackley’s Function (f10), (d) Generalized Griewnk’s Function (f11), (e) Composite Function CF1, (f) Composite
Function CF2, (g) Composite Function CF3.

550 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

TABLE XIV

AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BEST-OF-RUN SOLUTIONS FOR 30 RUNS OVER THE SPREAD

SPECTRUM RADAR POLY-PHASE CODE DESIGN PROBLEM (NUMBER OF DIMENSIONS D = 19 AND D = 30). FOR ALL CASES

EACH ALGORITHM WAS RUN UP TO 5 × 106 FES

D
Mean best-of-run solution (Std Dev)

DE/rand/1/bin
DE/target-to-

best/1/bin
DE/rand/1/

either-or
SADE [28] NSDE [31] DEGL/SAW

Statistical
Significance

19
7.4849e−01
(8.93e−03)

7.6535e−01
(5.93e−04)

7.5834e−01
(9.56e−04)

7.5932e−01
(3.88e−05)

7.6094e+01
(4.72e−03)

7.4439e−01
(5.84e−04) .

20
8.5746e−01
(4.83e−03)

9.3534e−01
(4.55e−02)

8.3982e−01
(3.98e−03)

8.3453e−01
(6.53e−04)

8.4283e−01
(3.44e−02)

8.0304e−01
(2.73e−03) +

TABLE XV

AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BEST-OF-RUN SOLUTIONS FOR 50 RUNS OF SIX ALGORITHMS ON THE FREQUENCY

MODULATOR SYNTHESIS PROBLEM. EACH ALGORITHM WAS RUN FOR 105 FES

Mean best-of-run solution (Std Deviation)

DE/rand/1/bin
DE/target-to-

best/1/bin
DE/rand/1
/either-or

SADE NSDE DEGL/SAW
Statistical
Signifi-
cance

1.7484e−01
(4.268e−02)

1.8255e+00
(1.158e−01)

3.8523e−04
(2.995e−04)

7.8354e−02
(5.8254e−03)

9.4559e−03
(6.924e−01)

4.8152e−09
(6.2639e−08) +

100

101

10–1

102

Fi
tn

es
s(

L
og

 s
ca

le
)

0.5

No. of FEs

1 1.5 2 2.5 3 3.5 4 4.50 5

 x 106

DE/rand/1/either-or
SADE
DE/rand/1/bin
DEGL/SAW
NSDE
DE/target-to-best/1/bin

Fig. 10. Progress to the optimum solution for spread spectrum radar poly-
phase code problem (D = 20).

w in [0.7, 1.0], result in marginally better results compared
to DE/target-to-best/1/bin but comparable or worse than one
or more DE-variants tested here. However, for still smaller
neighborhood size varying between 5 and 15% of N P , the
optimal range of w for best accuracy is observed in [0.6, 0.75].
For neighborhood sizes roughly above 65% of the population
size N P none of the time-varying weight factor schemes (de-
scribed in Section IV-D) provided significant improvement of
DEGL over DE/target-to-best/1/bin. This is expected because
when the neighborhood size approaches the population size,
the global and local mutation models do not differ significantly
with respect to their best vectors and the role of weight factor
becomes less prominent.

In the case when w is made self-adaptive, if the
neighborhood-size is below 30% of N P , DEGL exhibits

10–8

10–6

10–4

10–2

100

10–10

102

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

(l
og

)

1 2 3 4 5 6 7 8 90 10

DE/rand/1/either-or

SADE

DE/rand/1/bin

DEGL/SAW

NSDE
DE/target-to-best/1/bin

No. of FEs x 104

Fig. 11. Progress to the optimum solution for the FMS problem.

an evolutionary learning strategy that initially promotes
exploration of the feasible search volume, but during the
later stages of search favors exploitation and thus aids quick
convergence to the global optimum. This trend has also been
shown in Fig. 6 for various benchmark functions. However,
we observe that if the neighborhood size is increased beyond
30%, the evolutionary learning gradually becomes erratic and
for neighborhood sizes beyond 60% of N P , the self-adaptive
characteristics of w become almost random over generations
for most of the benchmarks. This tendency has been shown in
Fig. 13 for the generalized Ackley’s function f10. This figure
indicates that if the neighborhood size approaches N P , the
adaptation mechanisms of w can hardly guide the search. We
intend to investigate these facts more thoroghly in a future
communication.

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 551

Ackeley’s Function (f10) Griewank’s Function (f11)
21

5%
10%
20%
30%
40%
50%
60%
70%

0

10

20

30

40

50

60

70

80

90
Su

cc
es

s
R

at
e

(%
)

Fig. 12. Variation of the overall success rate of DEGL/SAW with increasing
neighborhood size (for 100-dimensional functions f10 and f11). Neighbor-
hood sizes are indicated in the legend.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0
50

0
50

00
45

00
40

00
35

00
30

00
25

00
20

00
15

00
10

00

V
al

ue
 o

f
w

 in
 D

E
G

L
 /

SA
W

No. of Generations

10%
20%
30%
40%
50%
60%

Fig. 13. Self-adaptation characteristics of the best vector of the DEGL/SAW
scheme on the generalized Ackley’s function (f10) for different neighborhood
sizes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hybrid DE-type muta-
tion/recombination operator that is a linear combination of two
other mutation/recombination operators (an explorative and an
exploitive operator), in an attempt to balance their effects.
The new operator depends on a user-defined weight factor
w. To circumvent the problem of determining a proper value
of w for each problem, we proposed six different schemes
for selecting and tuning this parameter. Among these, the
self-adaptive weight scheme performed best on most of the
benchmark functions tested.

The neighborhood-based DE mutation, equipped with self-
adaptive weight factor, attempts to make a balanced use of the
exploration and exploitation abilities of the search mechanism
and is therefore more likely to avoid false or premature conver-
gence in many cases. An extensive performance comparison
with five significant DE variants and four other state-of-the-
art evolutionary optimization techniques indicated that the
proposed approaches enhance DE ability to accurately locate

solutions in the search space. The use of the self-adaptive
mutation scheme can lead to reliable optimization since it
alleviates the problems generated by poor tradeoff between
the explorative and exploitative tendencies of the algorithm,
such as decreased rate of convergence, or even divergence and
premature saturation.

This, however, does not lead us to claim that the DEGL fam-
ily of algorithms may outperform their contestants over every
possible objective function since it is impossible to model all
possible complexities of real-life optimization problems with
the limited test-suite that we used for testing the algorithms.
In addition, the performance of the competitor DE variants
may also be improved by blending other mutation strategies
with judicious parameter tuning, a topic of future research.
The conclusion we can draw at this point is that DE with the
suggested modifications can serve as an attractive alternative
for optimizing a wide variety of objective functions.

The present paper can be extended in several directions.
Future research may focus on providing some empirical or
theoretical guidelines for selecting the neighborhood size
over different types of optimization problems. The effect
of other neighborhood topologies (star-shaped, wheel-shaped,
fully connected, etc.) on the performance of DEGL should be
investigated theoretically. It would be interesting to study the
performance of the DEGL family when the various control
parameters (N P , F , and Cr) are self-adapted following the
ideas presented in [22], [28].

REFERENCES

[1] R. Storn and K. V. Price, “Differential evolution–A simple and efficient
adaptive scheme for global optimization over continuous spaces,” In-
stitute of Company Secretaries of India, Chennai, Tamil Nadu. Tech.
Report TR-95-012, 1995.

[2] R. Storn and K. V. Price, “Differential Evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] R. Storn, K. V. Price, and J. Lampinen, Differential Evolution–A
Practical Approach to Global Optimization. Berlin, Germany: Springer-
Verlag, 2005.

[4] T. Rogalsky, R. W. Derksen, and S. Kocabiyik, “Differential evolution in
aerodynamic optimization,” in Proc. 46th Annu. Conf. Can. Aeronautics
Space Inst., 1999, pp. 29–36.

[5] R. Joshi and A. C. Sanderson, “Minimal representation multi-sensor
fusion using differential evolution,” IEEE Trans. Syst., Man, Cybern.,
Part A, vol. 29, no. 1, pp. 63–76, Jan. 1999.

[6] S. Das and A. Konar, “Design of two dimensional IIR filters with modern
search heuristics: A comparative study,” Int. J. Comput. Intell. Applicat.,
vol. 6, no. 3, pp. 329–355, 2006.

[7] F.-S. Wang and H.-J. Jang, “Parameter estimation of a bio-reaction model
by hybrid differential evolution,” in Proc. IEEE Congr. Evol. Comput.
2000, vol. 1. Piscataway, NJ: IEEE Press, pp. 410–417.

[8] J. Lampinen. (1999). A bibliography of differential evolution algorithm.
Lappeenranta University of Technology. Department of Information
Technology, Laboratory of Information Processing, Tech. Report [On-
line]. Available: http://www.lut.fi/jlampine/debiblio.htm

[9] M. Omran, A. P. Engelbrecht, and A. Salman, “Differential evo-
lution methods for unsupervised image classification,” in Proc. 7th
Congr. Evol. Comput. (CEC-2005), vol. 2. Piscataway, NJ: IEEE Press,
pp. 966–973.

[10] S. Das, A. Abraham, and A. Konar, “Adaptive clustering using improved
differential evolution algorithm,” IEEE Trans. Syst., Man, Cybern. A,
vol. 38, no. 1, pp. 218–237, Jan. 2008.

[11] J. H. Holland, Adaptation Natural, and Artificial Syst.. Ann Arbor, MI:
Univ. Michigan Press, 1975.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

552 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

[13] J. Vesterstrøm and R. Thomson, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proc. 6th Congr. Evol. Comput.
(CEC-2004), vol. 2. Piscataway, NJ: IEEE Press, Jun. 2004, pp. 1980–
1987.

[14] U. K. Chakraborty, Advances Differential Evolution, Heidelberg,
Germany: Springer-Verlag, 2008.

[15] J. Lampinen and I. Zelinka, “On stagnation of the differential evolu-
tion algorithm,” in Proc. MENDEL 2000, 6th Int. Mendel Conf. Soft
Computing, Brno, Czech Republic, Jun. 2000, pp. 76–83.

[16] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real parameter optimiza-
tion with differential evolution,” in Proc. IEEE Congr. Evol. Comput.
(CEC-2005), vol. 1. Piscataway, NJ: IEEE Press, pp. 506–513.

[17] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. C. Coello, “A com-
parative study of differential evolution variants for global optimization,”
in Proc. Genetic Evol. Comput. Conf. (GECCO 2006), pp. 485–492.

[18] U. K. Chakraborty, S. Das, and A. Konar, “Differential evolution with
local neighborhood,” in Proc. IEEE Congr. Evol. Comput. (CEC-2006),
Piscataway, NJ: IEEE Press, pp. 7395–7402.

[19] K. V. Price, “An introduction to differential evolution,” in New Ideas
Optimization. London, U.K.: McGraw-Hill, 1999, pp. 293–298.

[20] R. Gamperle, S. D. Muller, and A. Koumoutsakos, “Parameter study for
differential evolution,” in Proc. WSEAS NNA-FSFS-EC 2002, Interlaken,
Switzerland, Feb. 2002, pp. 293–298.

[21] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algo-
rithm,” Soft Computing–Fusion Found., Methodologies Applicat., vol. 9,
no. 6, pp. 448–462, 2005.

[22] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[23] D. Zaharie, “Control of population diversity and adaptation in differen-
tial evolution algorithms,” in Proc. MENDEL 2003, 9th Int. Conf. Soft
Computing, Brno, Czech Republic, Jun. 2003, pp. 41–46.

[24] D. Zaharie and D. Petcu, “Adaptive pareto differential evolution and its
parallelization,” in Proc. 5th Int. Conf. Parallel Process. Appl. Math.,
LNCS vol. 3019. Czestochowa, Poland, Sep. 2003, pp. 261–268.

[25] H. Abbass, “The self-adaptive pareto differential evolution algorithm,”
in Proc. 2002 Congr. Evol. Comput., vol. 1. Honolulu, HI, May 2002,
pp. 831–836.

[26] M. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive differential
evolution,” Int. Conf. comput. intell. security, Pt. 1, Springer Lecture
Notes in Artificial Intelligence 3801, pp. 192–199, 2005.

[27] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” in Soft Computing–Fusion Found., Methodologies Applicat.,
vol. 10, no. 8, pp. 673–686, Jun. 2006.

[28] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[29] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in Proc. ACM-SIGEVO
GECCO, Washington, D.C., Jun. 2005, pp. 991–998.

[30] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
Based Differential Evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1,
pp. 64–79, Feb. 2008.

[31] Z. Yang, J. He, and X. Yao, Making a Difference to Differential
Evolution, in Advances in Metaheuristics for Hard Optimization. New
York: Springer-Verlag, 2007, pp. 415–432.

[32] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics.
Berlin, Germany: Springer-Verlag, 1999.

[33] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Inform. Sci., vol. 178, no. 15, pp. 2985–
2999, 2008.

[34] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with
neighborhood search,” in Proc. IEEE Congr. Evol. Comput. (CEC-2008),
Hong Kong, China, Jun. 2008, pp. 1110–1116.

[35] N. Noman and H. Iba, “Enhancing differential evolution performance
with local search for high dimensional function optimization,” in Proc.
2005 Conf. Genetic Evol. Comput., Jun. 2005, pp. 967–974.

[36] N. Noman and H. Iba, “Accelerating Differential Evolution Using an
Adaptive Local Search,” IEEE Trans. Evol. Comput., vol. 12, no. 1,
pp. 107–125, Feb. 2008.

[37] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A unified particle swarm
optimization scheme,” in Proc. Lecture Ser. Computer and Comput. Sci.,
Proc. Int. Conf. Comput. Meth. Sci. Eng. (ICCMSE 2004), vol. 1. Zeist,
Netherlands: VSP Int. Sci. Publishers, pp. 868–873.

[38] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[39] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Compre-
hensive Learning Particle Swarm Optimizer for Global Optimization
of Multimodal Functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3,
pp. 281–295, Jun. 2006.

[40] W.-J. Zhang and X.-F. Xie. (2003) DEPSO: Hybrid particle swarm
with differential evolution operator. in Proc. IEEE Int. Conf.
Syst., Man Cybern., vol. 4, pp. 3816–3821, [Online]. Available:
http://citeseer.ist.psu.edu/635224.html

[41] S. Das, A. Konar, and U. K. Chakraborty, “An improved particle swarm
optimization algorithm for faster global search,” in Proc. ACM-SIGEVO
Genetic Evol. Comput. Conf. (GECCO-2005), Washington, D.C., Jun.
2005.

[42] R. Mendes and J. Kennedy, “The fully informed particle swarm: Simpler,
maybe better,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 204–210,
Jun. 2004.

[43] K. Zielinski, D. Peters, and R. Laur, “Run time analysis regarding
stopping criteria for differential evolution and particle swarm op-
timization,” in Proc. 1st Int. Conf. Experiments/Process/Syst. Mod-
elling/Simulation/Optimization, Athens, Greece, 2005.

[44] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms. Reading, MA: Addison-Wesley, 1983.

[45] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms, 1st ed. Cambridge, MA: MIT Press and New York: McGraw-Hill,
1990.

[46] P. Collet, J. Louchet, and E. Lutton, “Issues on the optimization of
evolutionary algorithms code,” in Proc. 2002 Congr. Evol. Comput.
(CEC ’02), vol. 2. Honolulu, HI, May 2002, pp. 1103–1108.

[47] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[48] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” Nanyang Technol.
Univ., Singapore, Tech. Report and IIT, Kanpur, India, KanGAL Report
#2005005, May 2005.

[49] Y. W. Shang and Y. H. Qiu, “A note on the extended Rosenbrock
function,” Evol. Comput., vol. 14, no. 1, pp. 119–126, 2006.

[50] N. Mladenović, J. Petrovic, V. Kovacevic-Vujicic, and M. Cangalovic,
“Solving spread-spectrum radar polyphase code design problem by tabu
search and variable neighborhood search,” Eur. J. Oper. Res., vol. 151,
no. 2, pp. 389–399, 1st Dec. 2003.

[51] A. Horner, J. Beauchamp, and L. Haken, “Genetic algorithms and their
application to FM matching synthesis,” Comput. Music J., vol. 17, no. 4,
pp. 17–29, 1993.

[52] F. Herrera and M. Lozano, “Gradual distributed real-coded genetic
algorithms,” IEEE Trans. Evol. Comput., vol. 4, no. 1, pp. 43–62, Apr.
2000.

[53] D. Fogel and H.-G. Beyer, “A note on the empirical evaluation of
intermediate recombination,” Evol. Comput., vol. 3, no. 4, pp. 491–495,
1995.

[54] P. J. Angeline, “Evolutionary optimization versus particle swarm opti-
mization: Philosophy and the performance difference,” in Proc. 7th Int.
Conf. Evol. Programming-—Evol. Programming VII, LNCS vol. 1447,
1998, pp. 84–89.

[55] B. Flury, A First Course in Multivariate Statistics. vol. 28, New York:
Springer, 1997.

[56] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control
in evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2,
pp. 124–141, Jul. 1999.

[57] A. Konar, Comput. Intelligence: Principles, Techniques, and Applica-
tions. New York: Springer, 2005.

[58] A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in Proc. IEEE Congr. Evol. Comput. (CEC
2005), vol. 2. Sep. 2005, pp. 1769–1776.

[59] Y.-S. Ong and A. J. Keane, “Meta-lamarckian learning in memetic
algorithms,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 99–110, Apr.
2004.

[60] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evol. Comput., vol. 10,
no. 4, pp. 371–395, 2002.

[61] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp. 159–
195, 2001.

DAS et al.: DIFFERENTIAL EVOLUTION USING A NEIGHBORHOOD-BASED MUTATION OPERATOR 553

[62] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation,”
in Proc. 1996 IEEE Conf. Evol. Comput. (ICEC ’96), Berlin, Germany,
May 1996, pp. 312–317.

[63] Recent Advances in Memetic Algorithms. Berlin, Heidelberg, Germany:
New York: Springer-Verlag, 2004.

[64] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: Model, taxonomy, and design issues,” IEEE Trans. Evol. Com-
put., vol. 9, no. 5, pp. 474–488, Oct. 2005.

Swagatam Das was born in Kolkata, India, in 1980.
He received the B.E. and M.E. degrees in control
engineering and the Ph.D. degree in engineering, all
from Jadavpur University, Kolkata, India, in 2003,
2005, and 2009, respectively.

He is presently a Lecturer in the Department
of Electronics and Telecommunication Engineering,
Jadavpur University. His current research interests
include evolutionary computing, swarm intelligence,
pattern recognition, bioinformatics, control systems
engineering, and digital signal processing. He has

published more than 60 research articles in peer-reviewed journals and
international conferences. He is presently coauthoring a text book on swarm
intelligence and a research monograph, both to be published by Springer by
mid-2009.

Dr. Das is the recipient of the Best Paper Award at the Sixth International
Conference on Intelligent Systems Design and Applications (ISDA2006) held
in Jinan, Shandong, China. He serves as an Editorial Board member of the
International Journal of Artificial Intelligence and Soft Computing. He has
been a reviewer for journals such as Pattern Recognition, IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION, IEEE/ACM TRANSACTIONS

ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, Signal Processing,
Information Sciences, and Neurocomputing.

Ajith Abraham (M’96–SM’07) received the Ph.D.
degree from Monash University, Melbourne, Aus-
tralia, in 2001.

He is currently with the Center for Quantifi-
able Quality of Service in Communication Systems
(Q2S), Center of Excellence, Norwegian University
of Science and Technology (NTNU), Trondheim,
Norway and Machine Intelligence Research Labs
(MIR Labs). He has worldwide academic experience
of nearly ten years with formal appointments in
Monash University, Australia; Oklahoma State Uni-

versity; Chung-Ang University, Seoul; Jinan University, China; Rovira i Virgili
University, Spain; Dalian Maritime University, China; Yonsei University,
Seoul; Open University of Catalonia, Spain; and NTNU, Norway. For about
two and a half years, he was working under the Institute of Information
Technology Advancement Professorship Program funded by the South Korean
Government. He was working with three multi-national companies: Keppel
Engineering, Singapore; Hyundai Engineering, Korea; and Ashok Leyland
Ltd, India where he was involved in different industrial research and develop-
ment projects for nearly eight years. He has authored or coauthored more than
500 research publications in peer-reviewed reputed journals, book chapters,
and conference proceedings. His primary research interests are in advanced
computational intelligence, with a focus on using global optimization tech-
niques for designing intelligent systems. Their application areas include Web
services, information security, Web intelligence, social networks, financial
modeling, multicriteria decision making, data mining, etc. He has given more
than 25 plenary lectures and conference tutorials in these areas.

Dr. Abraham Co-chairs the IEEE Systems Man and Cybernetics Soci-
ety Technical Committee on Soft Computing. He is a regular reviewer
of IEEE INTELLIGENT SYSTEMS, IEEE TRANSACTIONS ON KNOWL-
EDGE AND DATA ENGINEERING, IEEE TRANSACTIONS ON NEURAL NET-
WORKS, IEEE TRANSACTIONS ON FUZZY SYSTEMS, IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION, IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICS, and IEEE TRANSACTIONS ON POWER

SYSTEMS. He serves on the Editorial Boards of more than 30 international
journals and has also guest-edited 30 special issues on various topics for
international journals. Since 2001, he has been actively involved in the hybrid
intelligent systems and the Intelligent Systems Design and Applications series
of annual international conferences. He was the recipient of five Best Paper
Awards.

Amit Konar (M’97) received the B.E. degree from
Bengal Engineering and Science University, Shibpur,
India, in 1983 and the M.E., M.Phil., and Ph.D.
degrees from Jadavpur University, Kolkata, in 1985,
1988, and 1994, respectively.

He is currently a Professor in the Department
of Electronics and Telecommunication Engineering,
Jadavpur University. He is also the Joint Coordinator
of the Jadavpur University Excellence Program in
Cognitive Science, and a founding Coordinator of
the M.Tech. Course on Intelligent Automation and

Robotics. His research areas include the study of computational intelligence
algorithms and their applications to the entire domain of electrical engi-
neering and computer science. Specifically, he worked on fuzzy sets and
logic, neuro-computing, evolutionary algorithms, Dempster-Shafer theory, and
Kalman filtering, and applied the principles of computational intelligence
in image understanding, VLSI design, mobile robotics, pattern recognition,
bioinformatics, and computational finance. He has supervised 10 Ph.D. theses
in different areas of machine intelligence. He has published or presented
about 200 papers in international journals and conferences. He is the author
of six books, including two popular texts: ARTIFICIAL INTELLIGENCE

AND SOFT COMPUTING and BEHAVIORAL AND COGNITIVE MODELING

OF THE HUMAN BRAIN (CRC Press) in 2000, and COMPUTATIONAL

INTELLIGENCE: PRINCIPLES, TECHNIQUES AND APPLICATIONS (Springer)
in 2005. He serves as the Editor-in-Chief of the INTERNATIONAL JOURNAL

OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, and is also a
member of the Editorial Board of five other international journals, including
NEUROCOMPUTING (Elsevier) and Hybrid INTELLIGENT SYSTEMS (IOS
Press). He was a recipient of AICTE-accredited 1997–2000 Career Award for
Young Teachers for his significant contribution in teaching and research. He
was a Visiting Professor for the Summer Courses in University of Missouri,
St. Louis, in 2006. He is in the Program committee of several international
conferences, held in Europe, America, Australia, and Asia.

Uday Kumar Chakraborty obtained the Ph.D.
degree on stochastic models of genetic algorithms.

Currently, he is an Associate Professor of Com-
puter Science at the University of Missouri, St.
Louis. He has held positions at the CAD Center,
Calcutta, CMC Limited (Calcutta and London),
Jadavpur University, Calcutta, and the German
National Research Center for Computer Science,
Bonn. His research interests include evolutionary
computation, soft computing, scheduling, and com-
puter graphics. He is the co-author/editor of 3 books

and 90 articles in journals and conference proceedings. He is an Area
Editor of NEW MATHEMATICS & NATURAL COMPUTATION and an editor
of JOURNAL OF COMPUTING AND INFORMATION TECHNOLOGY, and serves
on the Editorial Boards of three other journals. He has guest-edited special
issues on evolutionary computation of many computer science journals and has
served as track chair or program committee member of numerous international
conferences.

