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A.1 Unconstrained Uni-Modal Test Functions

This section includes five unconstrained, uni-modal test functions, none of
which should pose a problem for a robust optimizer. Not all sources agree
on the initial parameter bounds for these functions, but in practice these
variations do not dramatically affect run times or the probability of suc-
cess. For many EAs, the most difficult function to optimize in this uni-
modal test bed is the generalized Rosenbrock function. In addition, some
GAs may have problems solving Schwefel’s ridge function because it is a
highly eccentric, rotated hyper-ellipsoid with dependent parameters.

A.1.1 Sphere

This simple function tests a search method’s local optimization speed and
its response to changing dimension. To accommodate bit-encoded GAs,
early test beds usually specified the initial parameter bounds as [-5.12,
5.12], but Yao and Liu’s more recent and widely referenced test bed (Yao
and Liu 1997) initializes parameters with values chosen from the interval
[-100, 100].

f(x):D_lsz., (A.1)
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Fig. A.1. The sphere function
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A.1.2 Hyper-Ellipsoid

Some literature specifies [-5.12, 5.12] as the bounds for initializing this
function, but this book adopts the limits given in Yao and Liu (1997). To
decrease the eccentricity of the hyper-ellipsoid, some versions of this func-
tion use a term like (j + 1)’ as the pre-factor to x; instead of putting the pa-
rameter index in the exponent. This function can take a long time to solve
if an optimizer cannot adapt step sizes to suit each dimension.

D1 (A.2)
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Fig. A.2. The unrotated hyper-ellipsoid

A.1.3 Generalized Rosenbrock

The original Rosenbrock function was just two-dimensional, but it was
later generalized to this higher-dimensional version. The ridge in Fig. A.3
shows that this uni-modal function is non-convex. This function exhibits
limited parameter dependence that poses a problem for many optimizers.
Some studies use [-2.048, 2.048], while others use [-5.12, 5.12] for initial
parameter bounds. Yao and Liu initialized parameters with values chosen
from [-32, 32], but initial parameter bounds were [-30, 30] for studies in
this book.
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fx)= S 100. (xj+1 . i (v, - 1)2} (A.3)
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Fig. A.3. Rosenbrock’s function

A.1.4 Schwefel’s Ridge

When this function is posed as a minimization problem, the “ridge” in its
landscape becomes an elliptical “valley”. For some EAs, adapting to both
the orientation and high eccentricity of the ellipse can be a significant chal-
lenge. Some studies have used [-65.536, 65.536] as initial parameter
bounds, but this book adopts the bounds published in Yao and Liu (1997).

pif &\ (A4)
f(X)=Z[ij] ,
~100<x, <100, j=0,1,.,D1,
7)=0, x=0, e=1.0x10".
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Fig. A.4. Schwefel’s ridge function

A.1.5 Neumaier #3

This function also displays elliptical contours that are aligned with coordi-
nate diagonals, but the optimum is not centered in the initial bounding box.

D-1 D-1 (AS)
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Fig. A.5. Neumaier’s function number three
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A.2 Unconstrained Multi-Modal Test Functions

Uni-modal functions can reveal how an algorithm responds to dimension,
parameter dependence and disparities in step size, but few practical prob-
lems are so simple. The following multi-modal functions range from mod-
erately challenging to very difficult depending in part on the dimension at
which they are evaluated and on the amount of special knowledge about
the function that an optimizer exploits. Not all functions can be evaluated
at arbitrarily high dimensions.

A.2.1 Ackley

One of the most commonly cited multi-modal test functions is Ackley’s
function. At high dimension (e.g., D > 30), care must be taken with com-
puter code to ensure a precise result. For example, the constant e =
2.71828... in Eq. A.6 is best implemented as e = exp(1). Bounds are usu-
ally given as [-32, 32], but this book uses [-30, 30].

o o i.D—l )] i.D—l . (A.6)
F(x)==20-exp| —0.2 > > |—exp > > cos2z-x;) |[+20+e,
=0 =0

~30<x,<30, j=0,,..D-1,
fx)=0, x;=0, e=10x10"

Fig. A.6. The Ackley function at large scale
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f(x)

Fig. A.7. The Ackley function at small scale

Fig. A.8. Griewangk’s function

A.2.2 Griewangk

This mildly parameter-dependent function becomes relatively easier to
solve as D increases. The summation term creates a parabolic bowl while
the product of cosine terms generates the local optima. As D increases, the
contribution from the cosine terms becomes less significant and the local
basins of attraction become shallower. At the same time, the relative size
of the optimal basin of attraction increases. See Whitley et al. (1996) for
details. It is not uncommon that this function will require a relatively large
population to forestall premature convergence.
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Fig. A.9. Rastrigin’s function

A.2.3 Rastrigin

Like the Ackley and Griewangk functions, Rastrigin’s function has many
local optima arrayed on the side of a larger bowl-shaped depression. This
function is separable as written and easily solved by methods that can ex-
ploit decomposable functions. It is much harder to solve when rotated.
Like Rosenbrock’s function, Rastrigin’s function is a generalization of a
two-dimensional function. Like the Ackley and Griewangk’s functions,
Rastrigin’s function is symmetric about its solution. Optimizers that search
the vicinity of the mean population vector will do well on these symmetric
functions because, like the local minima, the population will also be sym-
metrically distributed.
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x)zli(xf ~10-cos(27-x,)+10), (A9
=0
~512<x, <512, j=0,1,..,D—1,

/(x)=0, x7=0, e=1.0x10"

A.2.4 Salomon

The landscape for this parameter-dependent function resembles a pond
with ripples. Because this function is symmetric, methods that search the
vicinity of the population’s mean vector will likely perform well.

7(x)=—cos2z x|+ 0.1 [x]+1. (A9)
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Fig. A.10. Salomon’s function



522 Appendix

A.2.5 Whitley

Whitley’s function is a composition of the Griewangk and Rosenbrock
functions. This implementation uses the unweighted full matrix expansion
detailed in Whitley et al. (1996). This function’s landscape resembles
Rosenbrock’s function at large scale and Griewangk’s function at small
scale.

-1 D=1 yj%k (A.10)
f(x)zzz 4060—cos j’k)+1 ,

~100<x, <100, j=0,1,.,D~1,
7)=0, xi=1, e=1.0x10".
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Fig. A.11. Whitley’s function (large scale)
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Fig. A.13. Whitley’s function with values above 2 clipped

A.2.6 Storn’s Chebyshev

The goal of this 2" ICEO problem (Second ICEO 1997) is to find the coef-
ficients of a polynomial such that the value of the polynomial oscillates be-
tween 1 and —1 as its argument, z, varies in the same range. In addition, the
polynomial’s value is also constrained when z = 1.2 and z = —1.2. The solu-
tion gives the coefficients of a Chebyshev polynomial. The coefficients for
a Chebyshev polynomial of degree D — 1 can be expressed recursively as
TD+ l(Z) = ZZ'TD(Z) — TD— I(Z)’ D >0 and Odd, To(Z) = 1, TI(Z) = z. The ob-
jective function is designed as a three-term error function. The term, py, is
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the sum of m + 1, regularly sampled, squared deviations of the trial vec-
tor’s objective function value in the [-1, 1] containment zone. Optimal pa-
rameter values for this problem grossly differ in magnitude. The picture of
the two-dimensional version of this function does not give any indication

of the multiple local optima that occur at higher dimensions.

pl + pz + Ds»
D-1 )
P ifu<d u=2xf-(1.2)D_l_j,
0therw1se =i
D-1 )
Py = ifved v=>x,-(-1.2)"",
0therw1se =
(Wk *if w, >1 ‘
D-1 2% D-1-j
P = (Wk+ ifw, <=1, w, = Zx =1 ,
m
0 otherwise
p3 = pk, :O,l,...,m, m:32D’
k=0

- (1 2) 72.661 for D=9
D 10558.145 for D =17

—2DijS2D, j=01..,D-1, D>landodd, &=1.0x10""

[128,0,-256,0,160,0,—-32,0,1] for D=9
x =1 [32768,0,-131072,0,212992, 0, —180224,
0,84480,0,—21504,0, 2688,0,—128,0,1] for D =17.
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Fig. A.14. Storn’s Chebyshev polynomial fitting problem

A.2.7 Lennard-Jones

This problem is based on the Lennard-Jones atomic potential energy func-
tion. The goal is to position # atoms in three-dimensional space to mini-
mize their total potential energy. Since neither the cluster’s position nor its
orientation is specified, optimal parameter values are not unique.

(A.12)

i=0 j=i+1 i,j i,j

n=2 n-l 2 3
f(x)zz Z diz_di > di,j:[;(xyw_xsﬁk)z] >
D=3

~2<x,£2, j=0l..,D-1, n, n=23.. £=00L.

Table A.1. Optimal function values for n=2 to n=19 “atoms”

n fix) n fx)

2 -1.0 11 -37.967600
3 -3.0 12 -44.326801
4 -6.0 13 —47.845157
5 —12.712062 14 -52.322627
6 —16.505384 15 -56.815742
7 —19.821489 16 —61.317995
8 —24.113360 17 -66.530949
9 —28.422532 18 —72.659782
10 —32.765970 19 —77.177704
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A.2.8 Hilbert

The elements of an nxn Hilbert matrix, H, are #;,=1/(i+j+1),i=0,1, 2,
oon—1,7=0,1,2, ..., n— 1. The goal of this problem is to find H", the
inverse Hilbert matrix. Because it is ill defined, H"' becomes increasingly
difficult to accurately compute as » increases. For this function, parameters
in x (D = »”) are first are mapped to a square matrix, Z. Next, the identity
matrix, I, is subtracted from the matrix product HZ. The (error) function
returns the sum of the absolute value of the elements of W = HZ-I. Like
the Chebyshev problem, parameter values are of grossly different magni-
tude. Equation A.13 provides a sample result for D =9 (n = 3).

pl gl (A.13)
1= 5w

1
i=0 k=0

1
=(h ) h,= , i,k=0]l..n—1, D=n>
’ Toi+k+1

H
Z= (Zi,k )’ Zik = Xitnk>
D

-27<x, 2%, j=0l.,D-1, £=1.0x10",
)=0,
9 -36 30
Z =|-36 192 -180|, forn=3.
30 -180 180

A.2.9 Modified Langerman

This 2™ ICEO function (Second ICEO 1997) function relies on a vector (¢
in Table A.2) and a matrix (A in Table A.3) of real-valued constants. The
vector, ¢, contains thirty constants, while A is a matrix that contains the
coordinates of thirty points in ten dimensions. Points are indexed by rows
and coordinates are indexed by columns, e.g., numbers in the k™ row are
the coordinates of the point A;, k=0, 1, 2, ..., 29. The optimum is the
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point in A that has the lowest corresponding value of ¢. Although origi-
nally designed to use all thirty points in A, this implementation, like the
code posted for the 2™ ICEO, uses only the first five. Data for both ¢ and
A are available on the CD-ROM that accompanies this book.

(A.14)
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Fig. A.15. The Modified Langerman function

Table A.2. Values for ¢=(cy)

k Cr k Cr k Ck k Cr k Ck

0 0.806 6 0.524 12 0.463 18 0.828 24 0.332
1 0517 7 0.902 13 0.714 49  0.964 25 0817
2 0.100 & 0.531 14 0.352 20 0.789 26 0.632
3 0.908 9 0.876 15 0.869 21 0.360 27 0.883
4 0965 10 0.462 16 0.813 22 0369 28 0.608
5  0.669 11 0.491 17 0.811 23 0.992 29 0.326
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Table A.3. Values for A=(g;;). The columns are counted by j (parameter index)
while the points, A, are numbered by row and are counted by «.

9.681 0.667 4.783 9.095 3.517 9325 6.544 0211 5.122 2.020
9.400 2.041 3.788 7.931 2882 2672 3568 1284 7.033 7.374
8.025 9.152 5114 7.621 4564 4711 2996 6.126 0.734 4.982
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
8.074 8777 3.467 1.863 6.708 6349 4534 0276 7.633 1.567
7.650 5.658 0.720 2.764 3.278 5283 7474 6274 1409 8.208
1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.187 5.448
8314 2261 4224 1781 4.124 00932 8.129 8.658 1208 5.762
0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637
7.305 2228 1242 5928 9.133 1.826 4.060 5204 8713 8.247
0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016
2.699 3.516 5.874 4.119 4461 7496 8.817 0.690 6.593 9.789
8327 3.897 2017 9570 9.825 1.150 1395 3.885 6.354 0.109
2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564
4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670
8304 7.559 8567 0322 7.128 8392 1472 8524 2277 7.826
8.632 4409 4832 5768 7.050 6.715 1.711 4323 4.405 4.591
4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740
2440 6.686 4.299 1.007 7.008 1.427 9.398 8480 9.950 1.675
6.306 8583 6.084 1.138 4350 3.134 7.853 6.061 7.457 2258
0.652 2343 1370 0.821 1.310 1.063 0.689 8.819 8.833 9.070
5558 1272 5756 9.857 2279 2764 1284 1.677 1244 1.234
3352 7.549 9817 9437 8.687 4.167 2570 6.540 0.228 0.027
8.798 0.880 2370 0.168 1.701 3.680 1.231 2390 2499 0.064
1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5292 1.224
0.432 8.645 8.774 0.249 8.081 7.461 4416 0.652 4.002 4.644
0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229
4263 1.074 7.286 5.599 8291 5200 9.214 8.272 4398 4.506
9.496 4.830 3.150 8270 5.079 1231 5731 9.494 1883 9.732
4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500

A.2.10 Shekel’s Foxholes

This 2™ ICEO version of the Shekel’s foxholes function (Second ICEO
1997) also relies on the set of points listed in A and on the constants in c,
but unlike the Modified Langerman function, this function uses all thirty
points. Minima for both D = 5 and D = 10 are provided below. This func-
tion is hard for optimizers that tend to prematurely converge.
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mel (A.15)
fE)=-y

e=(c,) A=la,;) k=0L.,m=1, m=30,
0<x,<10, j=0,..D-1, D<10, £=00l,

*) —10.4056 for D=5
—10.2088 for D=10,

*

x =A,; for D=5, 10.

Fig. A.16. The Shekel’s foxholes function

A.2.11 Odd Square

This 2™ ICEO function (Second ICEO 1997) resembles Salomon’s func-
tion except that the ripples are rectangular, not circular. Because the Odd
Square is symmetric about the solution, methods that search the vicinity of
the population’s mean vector will likely do well on this problem. In
Eq. A.16, d is D times the square of the single, largest coordinate differ-
ence between the trial vector and the center point, b.
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27 d+0.01
D-1

d=D.max((xj —bj)zl h=Z(xj —bj)z,
=0

-5-r<x;<57x, j=0l.,D-1, D<20, &£=0.0l],

f(x):—eXp(‘_"’j-cos<ﬁ.d).(l+ 0.02-h j (A16)

f(x*):—1.14383, X =many solutions near b,
b=[1,13,0.8-0.4,-1.3,1.6,—0.2,—0.6,0.5,1.4,
1,1.3,0.8-0.4,—1.3,1.6,—0.2,—0.6,0.5,1.4]

ool
u“mm:\{'\{g{ﬂrm:rﬁ%l’#}}‘\m\\g{{{\‘{\\\\\ g
3, \h\\\li\\\ﬁ‘{ﬁﬁ%l“%}\\\\\ o
1;55’ 2 -5 —135 -

Fig. A.17. The Odd Square function

A.2.12 Katsuura

To be computed accurately, this function needs a floating-point format that
supports more than 32 bits of precision when m > 32. The function “nint()”
returns the nearest integer to the argument.

D-1 m A.17
f(x):H(1+(j+1)~Znint(2k .xj).z-"J, —otm=zs,
=0 k=1

~1000<x, <1000, j=0,1,..D—1,
7x)=1, x,=0, e=1.0x10".
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A.3 Bound-Constrained Test Functions

A.3.1 Schwefel

This classic test function has a solution that lies on a coordinate system di-
agonal. In this version, the objective function is normalized by D so that
Ax") is the same regardless of dimension. Success here can depend heavily
on how bound constraints are handled. This function is separable.

15
=5 2% sinf o)

j=01..D1, £=001,

(A.18)

~500<x, <500,
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Fig. A.18. Schwefel’s function

A.3.2 Epistatic Michalewicz
This 2™ ICEO function (Second ICEO 1997) also has a solution that lies
near the limits of the allowed search space.
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T

Dol 2 1).02 zm (A.19)
f(x)=Zsin(yj)-{sin((]+l)ij] , m=10,

X; ~cos(76tj—xj+1 ~sin[§j if (j+1)mod(2)=1

y; = xj,-sin(2]+xj~cos(76[j if (j+1)mod2)=0, j=D-1

Ypa=Xp, if j=D-1

O<x,<7z, j=0L.,D-1, D>],
(x*)= {— 4.68766 for D=5
—-9.66015 for D=10
[2.693170,0.258897,2.074365,1.022922,1.720470] for D=5
x =1 [2.693170,0.258897,2.074365,1.022922,2.275369,
0.500115,2.137603,0.793609,2.818757,1.570796] for D=10

3 [[_—555116-017

nr—=-02
-094

Fig. A.19. The epistatic Michalewicz function

A.3.3 Rana

This is one of the extended functions described in Whitley et al. (1996) in
which a two-dimensional primitive function is evaluated with consecutive
pairs of parameters, e.g., (0, 1), (1, 2), ..., (D — 1, 0), so that the last term
pairs the trial vector’s first and last parameters (a “full-wrap” evaluation).
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D-1 A.20
f(x):ij ~sin(0()-cos(ﬂ)+ X(j+1)modD 'cos(a)‘sin(,b’), ( )

J
aqu‘xﬁl +l-x,|, f= ‘xj+1+1+xj

~512<x,<512,  j=0l..D—1, D>I,
fx)==511.708, x;=-512, £=001.

7/

$ &
# 5 >

2

7

1000 7%
>3
&

2

200

500 - -520
s -520 510 -500 480 480 470 480

%

Fig. A.20. Rana’s function
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