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Abstrat

Multi-objetive evolutionary algorithms whih use non-dominated sorting and sharing have been mainly ritiized for their (i) O(MN

3

)

omputational omplexity (where M is the number of objetives and N is the population size), (ii) non-elitism approah, and (iii) the need

for speifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objetive evolutionary algorithm (we

alled it the Non-dominated Sorting GA-II or NSGA-II) whih alleviates all the above three diÆulties. Spei�ally, a fast non-dominated

sorting approah with O(MN

2

) omputational omplexity is presented. Seond, a seletion operator is presented whih reates a mating

pool by ombining the parent and hild populations and seleting the best (with respet to �tness and spread) N solutions. Simulation

results on a number of diÆult test problems show that the proposed NSGA-II, in most problems, is able to �nd muh better spread of

solutions and better onvergene near the true Pareto-optimal front ompared to PAES and SPEA|two other elitist multi-objetive EAs

whih pay speial attention towards reating a diverse Pareto-optimal front. Moreover, we modify the de�nition of dominane in order

to solve onstrained multi-objetive problems eÆiently. Simulation results of the onstrained NSGA-II on a number of test problems,

inluding a �ve-objetive, seven-onstraint non-linear problem, are ompared with another onstrained multi-objetive optimizer and muh

better performane of NSGA-II is observed. Beause of NSGA-II's low omputational requirements, elitist approah, parameter-less nihing

approah, and simple onstraint-handling strategy, NSGA-II should �nd inreasing appliations in the oming years.
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I. Introdution

The presene of multiple objetives in a problem, in priniple, gives rise to a set of optimal solutions (largely known as

Pareto-optimal solutions), instead of a single optimal solution. In the absene of any further information, one of these

Pareto-optimal solutions annot be said to be better than the other. This demands an user to �nd as many Pareto-

optimal solutions as possible. Classial optimization methods (inluding the multi-riterion deision-making (MCDM)

methods) suggest onverting the multi-objetive optimization problem to a single-objetive optimization problem by

emphasizing one partiular Pareto-optimal solution at a time. When suh a method is to be used for �nding multiple

solutions, it has to be applied many times, hopefully �nding a di�erent solution at eah simulation run.

Over the past deade, a number of multi-objetive evolutionary algorithms (MOEAs) have been suggested [18℄, [6℄,

[11℄, [24℄. The primary reason for this is their ability to �nd multiple Pareto-optimal solutions in one single simulation

run. Sine EAs work with a population of solutions, a simple EA an be extended to maintain a diverse set of solutions.

With an emphasis for moving towards the true Pareto-optimal region, an EA an be used to �nd multiple Pareto-optimal

solutions in one single simulation run.

The Non-dominated Sorting Geneti Algorithm (NSGA) proposed in Srinivas and Deb [18℄ was one of the �rst suh

evolutionary algorithms. Over the years, the main ritiism of the NSGA approah have been as follows:

High omputational omplexity of non-dominated sorting: The urrently-used non-dominated sorting algorithm has a

omputational omplexity of O(MN

3

) (where M is the number of objetives and N is the population size). This makes

NSGA a omputationally expensive algorithm for large population sizes. This large omplexity arises beause of the

omplexity involved in the non-dominated sorting proedure in every generation.

Lak of elitism: Reent results ([23℄, [16℄) show learly that elitism an speed up the performane of the GA signi�antly,

also an help preventing the loss of good solutions one they are found.

Need for speifying the sharing parameter �

share

: Traditional mehanisms of insuring diversity in a population so as to

get a wide variety of equivalent solutions have relied mostly on the onept of sharing. The main problem with sharing

is that it requires the spei�ation of a sharing parameter (�

share

). Though there has been some work on dynami sizing

of the sharing parameter [8℄, a parameter-less diversity preservation mehanism is desirable.

In this paper, we address all of these issues and propose an improved version of NSGA, whih we all NSGA-II. From

the simulation results on a number of diÆult test problems, we �nd that NSGA-II outperforms two other ontemporary
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multi-objetive EAs|Pareto-arhived evolution strategy (PAES), [12℄ and strength Pareto EA (SPEA) [22℄|in terms

of �nding a diverse set of solutions and in onverging near the true Pareto-optimal set.

Constrained multi-objetive optimization is important from the point of view of pratial problem solving, but not

muh attention has been paid so far in this respet among the EA researhers. In this paper, we suggest a simple

onstraint handling strategy with NSGA-II, that suits well for any evolutionary algorithm. On four problems hosen

from the literature, NSGA-II has been ompared with another reently suggested onstrained handling strategy. These

results enourage the appliation of NSGA-II to more omplex and real-world multi-objetive optimization problems.

In the remainder of the paper, we briey mention a number of existing elitist multi-objetive EAs in setion II.

Thereafter, in setion III we desribe the proposed NSGA-II algorithm in details. Setion IV presents simulation results

of NSGA-II and ompares them with two other elitist multi-objetive EAs (PAES and SPEA). In setion V, we highlight

the issue of parameter interations, a matter whih is important in evolutionary omputation researh. Next setion

extends NSGA-II for handling onstraints and ompares the results with another reently-proposed onstraint handling

method. Finally, we outline the onlusions of this paper.

II. Elitist Multi-Objetive Evolutionary Algorithms

During 1993-95, a number of di�erent evolutionary algorithms were suggested to solve multi-objetive optimization

problems. Of them, Fonsea and Fleming's [6℄ MOGA, Srinivas and Deb's [18℄ NSGA, and Horn, Nafploitis, and

Goldberg's [11℄ NPGA enjoyed more attention. These algorithms demonstrated the neessary additional operators for

onverting a simple EA to a multi-objetive EA. Two ommon features on all three operators were the following: (i)

assigning �tness to population members based on non-dominated sorting and (ii) preserving diversity among solutions

of the same non-dominated front. Although they have been shown to �nd multiple non-dominated solutions on many

test problems and a number of engineering design problems, researhers realized the need of introduing more useful

operators (whih have been found useful in single-objetive EAs) so as to solve multi-objetive optimization problems

better. Partiularly, the interest has been to introdue elitism to enhane the onvergene properties of a multi-objetive

EA. In the study of Zitzler, Deb, and Thiele [23℄, it was learly shown that elitism helps in ahieving better onvergene

in MOEAs. Among the existing elitist MOEAs, Zitzler and Thiele's [24℄ strength Pareto EA (SPEA), Knowles and

Corne's Pareto-arhived evolution strategy (PAES) [12℄, and Rudolph's [16℄ elitist GA are well studied. We desribe

these approahes in brief. For details, readers are enouraged to refer to the original studies.

Zitzler and Thiele [24℄ suggested an elitist multi-riterion EA with the onept of non-domination in their strength

Pareto EA (SPEA). They suggested maintaining an external population at every generation storing all non-dominated

solutions disovered so far beginning from the initial population. This external population partiipates in all geneti

operations. At eah generation, a ombined population with the external and the urrent population is �rst onstruted.

All non-dominated solutions in the ombined population are assigned a �tness based on the number of solutions they

dominate and dominated solutions are assigned �tness worse than the worst �tness of any non-dominated solution.

This assignment of �tness makes sure that the searh is direted towards the non-dominated solutions. A deterministi

lustering tehnique is used to ensure diversity among non-dominated solutions. Although the implementation suggested

in [24℄ is O(MN

3

), with proper book-keeping the omplexity of SPEA an be redued to O(MN

2

).

Knowles and Corne [12℄ suggested a simple MOEA using a single parent, single hild evolutionary algorithm, similar

to (1+1)-evolution strategy. Instead of using real parameters, authors have used binary strings and bit-wise mutations

to reate hildren. In their Pareto-arhived ES (PAES) with one parent and one hild, the hild is ompared with

respet to the parent. If the hild dominates the parent, the hild is aepted as the next parent and the iteration

ontinues. On the other hand, if the parent dominates the hild, the hild is disarded and a new mutated solution (a

new hild) is found. However, if the hild and the parent do not dominate eah other, the hoie between the hild and

the parent is made by omparing them with an arhive of best solutions found so far. The hild is ompared with the

arhive to hek if it dominates any member of the arhive. If yes, the hild is aepted as the new parent and all the

dominated solutions are eliminated from the arhive. If the hild does not dominate any member of the arhive, both

parent and hild are heked for their nearness with the solutions of the arhive. If the hild resides in a least rowded

region in the parameter spae among the members of the arhive, it is aepted as a parent and a opy of added to the

arhive. Crowding is maintained by deterministially dividing the entire searh spae in d

n

subspaes, where d is the

depth parameter and n is the number of deision variables and by updating the subspaes dynamially. Authors have

alulated the worst ase omplexity of PAES for N evaluations as O(aMN), where a is the arhive length. Sine the

arhive size is usually hosen proportional to the population size N , the overall omplexity of the algorithm is O(MN

2

).

Rudolph [16℄ suggested, but did not simulate, a simple elitist multi-objetive EA based on a systemati omparison

of individuals from parent and o�spring populations. The non-dominated solutions of the o�spring population are

ompared with that of parent solutions to form an overall non-dominated set of solutions, whih beomes the parent

population of the next iteration. If the size of this set is not greater than the desired population size, other individuals

from the o�spring population are inluded. With this strategy, he has been able to prove the onvergene of this

algorithm to the Pareto-optimal front. Although this is an important ahievement in its own right, the algorithm laks
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motivation for the seond task of maintaining diversity of Pareto-optimal solutions. An expliit diversity preserving

mehanism must be added to make it more usable in pratie. Sine the determinism of the �rst non-dominated front

is O(MN

2

), the overall omplexity of Rudolph's algorithm is also O(MN

2

).

In the following, we present the proposed non-dominated sorting GA approah whih uses a fast non-dominated

sorting proedure, an elitist-preserving approah, and a parameter-less nihing operator.

III. Elitist Non-dominated Sorting Geneti Algorithm (NSGA-II)

The non-dominated sorting GA (NSGA) proposed by Srinivas and Deb in 1994 [18℄ has been subjeted to a number

of ritiism, as mentioned earlier. In this setion, we suggest NSGA-II, whih alleviate all these diÆulties. We begin

by presenting a number of di�erent modules that form parts of NSGA-II.

A. A Fast Non-dominated Sorting Approah

In order to sort a population of size N aording to the level of non-domination, eah solution must be ompared with

every other solution in the population to �nd if it is dominated. This requires O(MN) omparisons for eah solution,

whereM is the number of objetives. When this proess is ontinued to �nd the members of the �rst non-dominated lass

for all population members, the total omplexity is O(MN

2

). At this stage, all individuals in the �rst non-dominated

front are found. In order to �nd individuals of the next front, the solutions of the �rst front are temporarily disounted

and the above proedure is performed again. The proedure is repeated to �nd subsequent fronts. As an be seen, the

worst ase (when there exists only one solution in eah front) the omplexity of this algorithm without any book-keeping

is O(MN

3

). In the following, we desribe a fast non-dominated sorting approah whih will require at most O(MN

2

)

omputations.

This approah is similar in priniple to the above approah, exept that a better book-keeping strategy is performed

to make it a faster algorithm. In this approah, every solution from the population is heked with a partially �lled

population for domination. To start with, the �rst solution from the population is kept in a set P

0

. Thereafter, eah

solution p (the seond solution onwards) is ompared with all members of the set P

0

one by one. If the solution p

dominates any member q of P

0

, then solution q is removed from P

0

. This way non-members of the non-dominated front

get deleted from P

0

. Otherwise, if solution p is dominated by any member of P

0

, the solution p is ignored. If solution p

is not dominated by any member of P

0

, it is entered in P

0

. This is how the set P

0

grows with non-dominated solutions.

When all solutions of the population is heked, the remaining members of P

0

onstitute the non-dominated set.

P

0

= find-nondominated-front(P)

P

0

= f1g inlude �rst member in P

0

for eah p 2 P ^ p 62 P

0

take one solution at a time

P

0

= P

0

[ fpg inlude p in P

0

temporarily

for eah q 2 P

0

^ q 6= p ompare p with other members of P

0

if p � q, then P

0

= P

0

nfqg if p dominates a member of P

0

, delete it

else if q � p, then P

0

= P

0

nfpg if p is dominated by other members of P

0

,

do not inlude p in P

0

Here, we observe that the seond population member is ompared with only one solution of P

0

, the third solution with

at most two solutions of P

0

, and so on. This requires a maximum of O(N

2

) domination heks. Sine eah domination

hek requiresM funtion value omparisons, the maximum omplexity of this approah to �nd the �rst non-dominated

front is also O(MN

2

).

In order to validate this omplexity estimate, we reate di�erent random populations of N solutions, eah with a an

objetive vetor of size M . Eah member in the objetive vetor is hosen between zero and one at random. Thereafter,

solutions are ompared for domination aording to the above algorithm and the total number of omparisons required

to identify the �rst non-dominated front is ounted. This quantity is alulated for a number of di�erent random

populations and an average is alulated. Figure 1 shows the variation of this quantity with di�erent population sizes

and for M = 4, 10, and 20. It is lear that the number of omparisons (or omputational omplexity) inreases with

N . By �tting a urve through the experimental quantities, we observe that the variation is polynomial and beomes

quadrati with largeM , as shown in Table I. The �gure shows that slope of these �tted straight lines on the log-log plot

inreases with M . The table shows these slopes as the exponent on N . As the number of objetive funtions inrease,

the exponent inreases to approximately two.

To �nd other fronts, the members of P

0

will be disounted from P and the above proedure is repeated, as outlined

below.



4

1000

10000

100000

1e+06

1e+07

100 200 300 400 500 700 1000

N
um

be
r 

of
 c

om
pa

ri
so

ns

Population size, N

M = 10
M = 20

M = 4

Fig. 1. Variation of omputational omplexity to �nd the �rst non-dominated front in a random population with population size, N . The

lines are drawn by �tting straight lines with the observed points in the log-log sale.

TABLE I

Computational omplexity of finding the first non-dominated set for different M .

M Variation

4 25:354N

1:1248

10 8:145N

1:8834

20 9:772N

2:0032

F = fast-non-dominated-sort(P) F is a set of non-dominated fronts

i = 1 i is the front ounter and is initialized to one

until P 6= ;

F

i

= find-nondominated-front(P) �nd the non-dominated front

P = PnF

i

remove non-dominated solutions from P

i = i+ 1 inrement the front ounter

At the end of this operation, solutions of the �rst non-dominated front are stored in F

1

, solutions of the seond

non-dominated front are stored in F

2

, and so on.

B. Diversity Preservation

We mentioned earlier that along with onvergene to the Pareto-optimal set, it is also desired that an EA maintains

a good spread of solutions in the obtained set of solutions. The original NSGA used the well-known sharing funtion

approah, whih has been found to maintain sustainable diversity in a population with appropriate setting of its asso-

iated parameters. The sharing funtion method involves a sharing parameter �

share

, whih sets the extent of sharing

desired in a problem. This parameter is related to the distane metri hosen to alulate the proximity measure between

two population members. The parameter �

share

denotes the largest value of that distane metri within whih any two

solutions share eah other's �tness. This parameter is usually set by the user, although there exist some guidelines [3℄.

There are two diÆulties with this sharing funtion approah:

1. The performane of the sharing funtion method in maintaining a spread of solutions largely depends on the hosen

�

share

value.

2. Sine eah solution must be ompared with all other solutions in the population, the overall omplexity of the sharing

funtion approah is O(N

2

).

In the proposed NSGA-II, we replae the sharing funtion approah with a rowded omparison approah whih

eliminates both the above diÆulties to some extent. It will be lear in a while that the new approah does not require
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any user-de�ned parameter for maintaining diversity among population members. Also, the suggested approah has a

better omputational omplexity. To desribe this approah, we �rst de�ne a density estimation metri and then present

the rowded omparison operator.

B.1 Density Estimation

To get an estimate of the density of solutions surrounding a partiular solution in the population, we alulate the

average distane of two points on either side of this point along eah of the objetives. This quantity i

distane

serves as

an estimate of the size of the largest uboid enlosing the point i without inluding any other point in the population

(we all this the rowding distane). In Figure 2, the rowding distane of the i-th solution in its front (marked with

solid irles) is the average side-length of the uboid (shown with a dashed box).

Cuboid

f

f

1

2

i
i-1

i+1

0

l

Fig. 2. The rowding distane alulation is shown.

The rowding distane omputation requires sorting of the population aording to eah objetive funtion value

in their asending order of magnitude. Thereafter, for eah objetive funtion, the boundary solutions (solutions with

smallest and largest funtion values) are assigned an in�nite distane value. All other intermediate solutions are assigned

a distane value equal to the absolute di�erene in the funtion values of two adjaent solutions. This alulation is

ontinued with other objetive funtions. The overall rowding distane value is alulated as the sum of individual

distane values orresponding to eah objetive.

The following algorithm learly outlines the rowding distane omputation proedure of all solutions in an non-

dominated set I:

rowding-distane-assignment(I)

l = jIj number of solutions in I

for eah i, set I[i℄

distane

= 0 initialize distane

for eah objetive m

I = sort(I;m) sort using eah objetive value

I[1℄

distane

= I[l℄

distane

= 1 so that boundary points are always seleted

for i = 2 to (l � 1) for all other points

I[i℄

distane

= I[i℄

distane

+ (I[i+ 1℄:m� I[i� 1℄:m)

Here I[i℄:m refers to the m-th objetive funtion value of the i-th individual in the set I. The omplexity of this

proedure is governed by the sorting algorithm. SineM independent sorting of at mostN solutions (when all population

members are in one front I) are involved, the above algorithm has O(MN logN) omputational omplexity.

After all population members in the set I are assigned a distane metri, we an ompare two solutions for their

extent of proximity with other solutions. A solution with a smaller value of this distane measure is, in some sense, more

rowded by other solutions. This is exatly what we ompare in the proposed rowded omparison operator, desribed

below.

B.2 Crowded Comparison Operator

The rowded omparison operator (�

n

) guides the seletion proess at the various stages of the algorithm towards a

uniformly spread-out Pareto-optimal front. Let us assume that every individual i in the population has two attributes:

1. non-domination rank (i

rank

), and

2. rowding distane (i

distane

).

We now de�ne a partial order �

n

as :
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i �

n

j if (i

rank

< j

rank

) or ((i

rank

= j

rank

) and (i

distane

> j

distane

) )

That is, between two solutions with di�ering non-domination ranks we prefer the solution with the lower (better)

rank. Otherwise, if both solutions belong to the same front then we prefer the solution whih is loated in a lesser

rowded region.

With these three new innovations|a fast non-dominated sorting proedure, a fast rowded distane estimation pro-

edure, and a simple rowded omparison operator, we are now ready to desribe the NSGA-II algorithm.

C. The Main Loop

Initially, a random parent population P

0

is reated. The population is sorted based on the non-domination. Eah

solution is assigned a �tness (or rank) equal to its non-domination level (1 is the best level, 2 is the next-best level and

so on). Thus, minimization of �tness is assumed. At �rst, the usual binary tournament seletion, reombination, and

mutation operators are used to reate a hild population Q

0

of size N . Sine elitism is introdued by omparing urrent

population with previously-found best non-dominated solutions, the proedure is di�erent after the initial generation.

We �rst desribe a generation of the proposed algorithm:

R

t

= P

t

[Q

t

ombine parent and hildren population

F = fast-nondominated-sort(R

t

) F = (F

1

;F

2

; : : :), all non-dominated fronts of R

t

P

t+1

= ; and i = 1

until jP

t+1

j+ jF

i

j � N till the parent population is �lled

rowding-distane-assignment(F

i

) alulate rowding distane in F

i

P

t+1

= P

t+1

[ F

i

inlude i-th non-dominated front in the parent pop

i = i+ 1 hek the next front for inlusion

Sort(F

i

;�

n

) sort in desending order using �

n

P

t+1

= P

t+1

[ F

i

[1 : (N � jP

t+1

j)℄ hoose the �rst (N � jP

t+1

j) elements of alF

i

Q

t+1

= make-new-pop(P

t+1

) use seletion, rossover and mutation to reate

a new population Q

t+1

t = t+ 1 inrement the generation ounter

The above step-by-step proedure shows that NSGA-II algorithm is simple and straightforward. First, a ombined

population R

t

= P

t

[Q

t

is formed. The population R

t

will be of size 2N . Then, the population R

t

is sorted aording

to non-domination. Sine all previous and urrent population members are inlude in R

t

, the elitism is ensured. Now,

solutions belonging to the best non-dominated set F

1

are of best solutions in the ombined population and must be

emphasized more than any other solution in the ombined population. If the size of F

1

is smaller then N , we de�nitely

hoose all members of the set F

1

for the new population P

t+1

. The remaining members of the population P

t+1

is hosen

from subsequent non-dominated fronts in the order of their ranking. Thus, solutions from the set F

2

are hosen next,

followed by solutions from the set F

3

, and so on. This proedure is ontinued till no more sets an be aommodated.

Let us say that the set F

l

is the last non-dominated set beyond whih no other set an be aommodated. In general,

the ount of solutions in all sets from F

1

to F

l

would be larger than the population size. To hoose exatly N population

members, we sort the solutions of the last front using the rowded omparison operator �

n

, in the desending order and

hoose the best solutions needed to �ll all population slots. The NSGA-II proedure is also shown in Figure 3. The new

sorting
Non−dominated Crowding

distance
sorting

Rejected

P F_2

F_3

F_1

Q

t

t

tR

Pt+1

Fig. 3. A sketh of NSGA-II.

population P

t+1

of size N is now used for seletion, rossover and mutation to reate a new population Q

t+1

of size N .
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It is important to note that we use a binary tournament seletion operator but the seletion riterion is now based on

the rowded omparison operator �

n

. Sine this operator requires both the rank and rowded distane of eah solution

in the population, we alulate these quantities while forming the population P

t+1

, as shown in the above algorithm.

Let us now look at the omplexity of one iteration of the entire algorithm. The basi operations and their worst ase

omplexities are as follows:

1. Non-dominated sorting is O(M(2N)

2

),

2. Crowding distane assignment is O(M(2N) log(2N)), and

3. Sorting on �

n

is O(2N log(2N)).

As an be seen, the overall omplexity of the above algorithm is O(MN

2

), whih is governed by the non-dominated

sorting part of the algorithm.

The diversity among non-dominated solutions is introdued by using the rowding omparison proedure whih is used

in the tournament seletion and during the population redution phase. Sine solutions ompete with their rowding

distane (a measure of density of solutions in the neighborhood), no extra nihing parameter (suh as �

share

needed in

the NSGA) is required here. Although the rowding distane is alulated in the objetive funtion spae, it an also

be implemented in the parameter spae, if so desired [2℄. However, in all simulations performed in this study, we have

used the objetive funtion spae nihing.

IV. Simulation Results

In this setion, we �rst desribe the test problems used to ompare the performane of NSGA-II with PAES and

SPEA. For PAES and SPEA, we have idential parameter settings as suggested in the original studies. For NSGA-II,

we have hosen a reasonable set of values and have not made any e�ort in �nding the best parameter setting. We leave

this task for a future study.

A. Test Problems

We �rst desribe the test problems used to ompare di�erent multi-objetive evolutionary algorithms. Test problems

are hosen from a number of signi�ant past studies in this area. Veldhuizen [20℄ ited a number of test problems

whih many researhers have used in the past. Of them, we hoose four problems, we all them SCH (from Sha�er's

study [17℄), FON (from Fonsea and Fleming's study [8℄), POL (from Poloni's study [14℄), and KUR (from Kursawe's

study [13℄). In 1999, the �rst author has suggested a systemati way of developing test problems for multi-objetive

optimization [2℄. Zitzler, Deb, and Thiele [23℄ followed those guidelines and suggested six test problems. We hoose

�ve of those six problems here and all them ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All problems have two objetive

funtions. None of these problems have any onstraint. We desribe these problems in Table II. The table also shows

the number of variables, their bounds, the Pareto-optimal solutions, and the nature of the Pareto-optimal front for eah

problem.

All approahes are run for a maximum of 250 generations and with a population size 100. We use a rossover

probability of p



= 0:9 and a mutation probability of p

m

= 1=n or 1=` (where n is the number of deision variables for

real-oded GAs and ` is the string length for binary-oded GAs). For NSGA-II (real-oded), we use distribution indies

[5℄ for rossover and mutation operators as �



= 20 and �

m

= 20, respetively. The population obtained at the end of

250 generations (the population after elitism mehanism is applied) is used to alulate a ouple of performane metris,

whih we disuss in the next subsetion. For PAES, we use a depth value d equal to 4 and an arhive size a of 100. We

use all population members of the arhive obtained at the end of 250 generations to alulate the performane metris.

For SPEA, we use a population of size 80 and an external population of size 20, so that overall population size beomes

100. We use the ombination of these two populations at the �nal generation to alulate the performane metris used

in this study. For PAES, SPEA, and NSGA-II (binary oded) we have used 30 bits to ode eah deision variable.

B. Performane Measures

Unlike in single-objetive optimization, there are two goals in a multi-objetive optimization|(i) onvergene to the

Pareto-optimal set, and (ii) maintenane of diversity in solutions of the Pareto-optimal set. Clearly, these two tasks

annot be measured with one performane metri adequately. A number of performane metris have been suggested in

the past [7℄, [22℄. But, here, we de�ne two performane metris whih are more diret in evaluating eah of the above

two goals in a solution set obtained by a multi-objetive optimization algorithm.

The �rst metri, �, measures the extent of onvergene to a known set of Pareto-optimal solutions. Sine, multi-

objetive algorithms would be tested on problems having a known set of Pareto-optimal set, the alulation of this metri

is possible. But, we realize that suh a metri annot be used for any arbitrary problem. First, we �nd a set of H = 500

uniformly-spaed solutions from the true Pareto-optimal front in the objetive spae. For eah solution obtained with

an algorithm, we ompute the minimum Eulidean distane of it from H hosen solutions on the Pareto-optimal front.

The average of these distanes is used as the �rst metri � (the onvergene metri). Figure 4 shows the alulation

proedure of this metri. The shaded region is the feasible searh region and the solid urved lines speify the Pareto-
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TABLE II

Test problems used in this study. All objetive funtions are to be minimized.

Problem n Variable Objetive Optimal Comments

bounds funtions solutions

SCH 1 [�10

3

; 10

3

℄ f

1

(x) = x

2

x 2 [0; 2℄ onvex

f

2

(x) = (x� 2)

2

FON 3 [�4; 4℄ f

1

(x) = 1� exp

�

�

P

3

i=1

�

x

i

�

1

p

3

�

2

�

x

1

= x

2

= x

3

non-onvex

f

2

(x) = 1� exp

�

�

P

3

i=1

�

x

i

+

1

p

3

�

2

�

2 [�1=

p

3; 1=

p

3℄

POL 2 [��; �℄ f

1

(x) =

�

1 + (A

1

�B

1

)

2

+ (A

2

�B

2

)

2

�

non-onvex,

f

2

(x) =

�

(x

1

+ 3)

2

+ (x

2

+ 1)

2

�

disonneted

A

1

= 0:5 sin1� 2 os 1 + sin 2� 1:5 os 2

A

2

= 1:5 sin1� os 1 + 2 sin 2� 0:5 os 2

B

1

= 0:5 sinx

1

� 2 osx

1

+ sinx

2

� 1:5 osx

2

B

2

= 1:5 sinx

1

� osx

1

+ 2 sinx

2

� 0:5 osx

2

KUR 3 [�5; 5℄ f

1

(x) =

P

n�1

i=1

�

�10 exp

�

�0:2

q

x

2

i

+ x

2

i+1

��

non-onvex

f

2

(x) =

P

n

i=1

�

jx

i

j

0:8

+ 5 sinx

3

i

�

ZDT1 30 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ onvex

f

2

(x) = g(x)

h

1�

p

x

1

=g(x)

i

x

i

= 0;

g(x) = 1 + 9 (

P

n

i=2

x

i

) =(n� 1) i = 2; : : : ; n

ZDT2 30 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ non-onvex

f

2

(x) = g(x)

h

1� (x

1

=g(x))

2

i

x

i

= 0;

g(x) = 1 + 9 (

P

n

i=2

x

i

) =(n� 1) i = 2; : : : ; n

ZDT3 30 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ onvex,

f

2

(x) = g(x)

h

1�

p

x

1

=g(x)�

x

1

g(x)

sin(10�x

1

)

i

x

i

= 0; disonneted

g(x) = 1 + 9 (

P

n

i=2

x

i

) =(n� 1) i = 2; : : : ; n

ZDT4 10 x

1

2 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ non-onvex

x

i

2 [�5; 5℄; f

2

(x) = g(x)

h

1�

p

x

1

=g(x)

i

x

i

= 0;

i = 2; : : : ; n g(x) = 1 + 10(n� 1) +

P

n

i=2

�

x

2

i

� 10 os(4�x

i

)

�

i = 2; : : : ; n

ZDT6 10 [0; 1℄ f

1

(x) = 1� exp(�4x

1

) sin

6

(4�x

1

) x

1

2 [0; 1℄ non-onvex,

f

2

(x) = g(x)

h

1� (f

1

(x)=g(x))

2

i

x

i

= 0; non-uniformly

g(x) = 1 + 9 [(

P

n

i=2

x

i

) =(n� 1)℄

0:25

i = 2; : : : ; n spaed

optimal solutions. Solutions with open irles are H hosen solutions on the Pareto-optimal front for the alulation of

the onvergene metri and solutions marked with dark irles are solutions obtained by an algorithm. It is lear that

the smaller the value of this metri, the better is the onvergene towards the Pareto-optimal front. When all obtained

solutions lie exatly on H hosen solutions, this metri takes a value zero. In all simulations performed here, we present

the average � and variane �

�

of this metri alulated for solution sets obtained in multiple runs.

Even when all solutions onverge to the Pareto-optimal front, the above onvergene metri does not have a value

zero. The metri will be zero only when eah obtained solution lies exatly on eah of the hosen solutions. Although

this metri alone an provide some information about the spread in obtained solutions, we de�ne an di�erent metri

to measure the spread in solutions obtained by an algorithm. The seond metri, �, measures the extent of spread

ahieved among the obtained solutions. Here, we are interested in getting a set of solutions whih span the entire Pareto-

optimal region. We alulate the Eulidean distane d

i

between onseutive solutions in the obtained non-dominated

set of solutions. We alulate the average

�

d of these distanes. Thereafter, from the obtained set of non-dominated

solutions, we �rst alulate the extreme solutions (in the objetive spae), by �tting a urve parallel to that of the true
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Pareto−optimal
front

Obtained
solutions

f

f 2

1

Chosen
points

Euclidean
distance

Fig. 4. Illustration of the distane metri �.

Pareto-optimal front. Then, we use the following metri to alulate the non-uniformity in the distribution:

� =

d

f

+ d

l

+

P

N�1

i=1

jd

i

�

�

dj

d

f

+ d

l

+ (N � 1)

�

d

: (1)

Here, the parameters d

f

and d

l

are the Eulidean distanes between the extreme solutions and the boundary solutions

of the obtained non-dominated set, as depited in Figure 5. illustrates all distanes mentioned in the above equation.

Obtained
solutions

f

d

d

d

d

f

1

2

n

l

d

2

f 1

Extreme
solution

Extreme
solution

Fig. 5. Illustration of the diversity metri �.

The parameter

�

d is the average of all distanes d

i

, i = 1; 2; : : : ; (N � 1), assuming that there are N solutions on the best

non-dominated front. With N solutions, there are (N � 1) onseutive distanes. The denominator is the value of the

numerator for the ase when all N solutions lie on one solution. It is interesting to note that this is not the worst ase

spread of solutions possible. For a senario with a large variane of the distanes may have a numerator value greater

than the denominator. Thus, the maximum value of the above metri an be greater than one. But, a good distribution

would make all distanes d



onvergenei equal to

�

d and would make d

f

= d

l

= 0 (with existene of extreme solutions

in the non-dominated set). Thus, for the most widely and uniformly spread-out set of non-dominated solutions, the

numerator of � would be zero, making the metri to take a value zero. For any other distribution, the value of the

metri would be greater than zero. For two distributions having idential values of d

f

and d

l

, the metri � takes a

higher value with worse distributions of solutions within the extreme solutions. Note that the above diversity metri

an be used on any non-dominated set of solutions, inluding one whih is not the Pareto-optimal set.
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C. Disussion of the Results

Table III shows the mean and variane of the onvergene metri � obtained using four algorithms NSGA-II (real-

oded), NSGA-II (binary-oded), SPEA, and PAES.

TABLE III

Mean (shaded rows) and variane (unshaded rows) of the onvergene metri �.

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.003391 0.001931 0.015553 0.028964 0.033482 0.072391 0.114500 0.513053 0.296564

Real-oded 0 0 0.000001 0.000018 0.004750 0.031689 0.007940 0.118460 0.013135

NSGA-II 0.002833 0.002571 0.017029 0.028951 0.000894 0.000824 0.043411 3.227636 7.806798

Binary-oded 0.000001 0 0.000003 0.000016 0 0 0.000042 7.30763 0.001667

SPEA

0.003403 0.125692 0.037812 0.045617 0.001799 0.001339 0.047517 7.340299 0.221138

0 0.000038 0.000088 0.00005 0.000001 0 0.000047 6.572516 0.000449

PAES

0.001313 0.151263 0.030864 0.057323 0.082085 0.126276 0.023872 0.854816 0.085469

0.000003 0.000905 0.000431 0.011989 0.008679 0.036877 0.00001 0.527238 0.006664

NSGA-II (real-oded or binary-oded) is able to onverge better in all problems exept in ZDT3 and ZDT6, where

PAES found better onvergene. In all ases with NSGA-II, the variane in 10 runs is also small, exept in ZDT4 with

NSGA-II (binary oded). The �xed arhive strategy of PAES allows better onvergene to be ahieved in two out of

nine problems.

Table IV shows the mean and variane of the diversity metri � obtained using all three algorithms.

TABLE IV

Mean (shaded rows) and variane (unshaded rows) of the diversity metri �.

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA2R 0.477899 0.378065 0.452150 0.411477 0.390307 0.430776 0.738540 0.702612 0.668025

Real-oded 0.003471 0.000639 0.002868 0.000992 0.001876 0.004721 0.019706 0.064648 0.009923

NSGA-II 0.449265 0.395131 0.503721 0.442195 0.463292 0.435112 0.575606 0.479475 0.644477

Binary-oded 0.002062 0.001314 0.004656 0.001498 0.041622 0.024607 0.005078 0.009841 0.035042

SPEA

1.021110 0.792352 0.972783 0.852990 0.784525 0.755148 0.672938 0.798463 0.849389

0.004372 0.005546 0.008475 0.002619 0.004440 0.004521 0.003587 0.014616 0.002713

PAES

1.063288 1.162528 1.020007 1.079838 1.229794 1.165942 0.789920 0.870458 1.153052

0.002868 0.008945 0 0.013772 0.004839 0.007682 0.001653 0.101399 0.003916

NSGA-II (real or binary oded) performs the best in all nine test problems. The worst performane is observed with

PAES. For illustration, we show one of the ten runs of PAES with an arbitrary run of NSGA-II (real-oded) on problem

SCH in Figure 6.

On most problems, real-oded NSGA-II is able to �nd a better spread of solutions than any other algorithm, inluding

binary-oded NSGA-II.

In order to demonstrate the working of these algorithms, we also show typial simulation results of PAES, SPEA,

and NSGA-II on the test problems KUR, ZDT2, ZDT4, and ZDT6. The problem KUR has three disontinuous regions

in the Pareto-optimal front. Figure 7 shows all non-dominated solutions obtained after 250 generations with NSGA-II

(real-oded). The Pareto-optimal region is also shown in the �gure. This �gure demonstrates the abilities of NSGA-II

in onverging to the true front and in �nding diverse set of solutions in the front. Figure 8 shows the obtained non-

dominated solutions with SPEA, whih is the next best algorithm for this problem (refer to Tables III and IV). Although

the onvergene is adequate, the distribution in solutions is not as good as that with NSGA-II.

Next, we show the non-dominated solutions on the problem ZDT2 in Figures 9 and 10. This problem has a non-

onvex Pareto-optimal front. We show the performane of binary oded NSGA-II and SPEA on this funtion. Although

the onvergene is not a diÆulty here with both of these algorithms, both real-oded and binary-oded NSGA-II has

better able to spread solutions in the entire Pareto-optimal region than SPEA (the next-best algorithm observed for

this problem).

The problem ZDT4 has 21

9

or 7:94(10

11

) di�erent loal Pareto-optimal fronts in the searh spae, of whih only one

orresponds to the global Pareto-optimal front. The Eulidean distane in the deision spae between solutions of two
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Fig. 6. NSGA-II �nds better spread of solutions than PAES on SCH.
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Fig. 7. Non-dominated solutions with NSGA-II (real-oded) on

KUR.

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f
_
2

f_1

Pareto-optimal front
SPEA

Fig. 8. Non-dominated solutions with SPEA on KUR.

onseutive loal Pareto-optimal sets is 0:25. Figure 11 shows that both real-oded NSGA-II and PAES get stuk at

di�erent loal Pareto-optimal sets, but the onvergene and ability to �nd a diverse set of solutions are de�nitely better

with NSGA-II. Binary-oded GAs have diÆulties in onverging near the global Pareto-optimal front, a matter whih

is also been observed in previous single-objetive studies [4℄. On a similar 10-variable Rastrigin's funtion (the funtion

g(x) here), that study learly showed that a population of size of about at least 500 is needed for single-objetive

binary-oded GAs (with tournament seletion, single-point rossover and bit-wise mutation) to �nd the global optimum

solution in more than 50% of the simulation runs. Sine we have used a population of size 100, it is not expeted that

a multi-objetive GA would �nd the the global Pareto-optimal solution. Sine SPEA performs poorly on this problem

(Tables III and IV), we do not show SPEA results on this �gure.

Finally, Figure 12 shows that PAES �nds a better onverged set of non-dominated solutions in ZDT6 ompared to

any other algorithm. However, the distribution in solutions is better with real-oded NSGA-II.
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Fig. 10. Non-dominated solutions with SPEA on ZDT2.
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Fig. 11. NSGA-II �nds better onvergene and spread of solutions than PAES on ZDT4.

D. Di�erent Parameter Settings

In this study, we do not make any serious attempt to �nd the best parameter setting for NSGA-II. But in this setion,

we perform additional experiments to show the e�et of a ouple of di�erent parameter settings on the performane of

NSGA-II.

First, we keep the all other parameters same as before, but inrease the number of maximum generations to 500

(instead of 250 used before). Table V shows the onvergene and diversity metris for problems POL, KUR, ZDT3,

ZDT4, and ZDT6. Now, we ahieve a onvergene very lose to the true Pareto-optimal front and with a muh better

distribution. The table shows that in all these diÆult problems, the real-oded NSGA-II has onverged very lose to the

true optimal front, exept in ZDT6, whih probably requires a di�erent parameter setting with NSGA-II. Partiularly,

the results on ZDT3 and ZDT4 improve with generation number.

The problem ZDT4 has a number of loal Pareto-optimal fronts, eah orresponding to partiular value of g(x).

To jump from one loal optimum to the next best loal optimum, a large hange in the deision vetor is needed.

Unless, mutation or rossover operators are apable of reating solutions in the basin of another better attrator, the

improvement in the onvergene towards the true Pareto-optimal front is not possible. We use NSGA-II (real-oded)
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Fig. 12. Real-oded NSGA-II �nds better spread of solutions than PAES on ZDT6, but PAES has a better onvergene.

TABLE V

Mean and variane of the onvergene and diversity metris up to 500 generations.

Convergene metri, �

POL KUR ZDT3 ZDT4 ZDT6

Mean 0.015882 0.026544 0.018510 0.090692 0.276609

Variane 0.000001 0.000017 0.000227 0.053460 0.015843

Diversity metri, �

POL KUR ZDT3 ZDT4 ZDT6

Mean 0.467022 0.418889 0.688218 0.440022 0.655896

Variane 0.002186 0.000530 0.000610 0.026729 0.003302

with a smaller distribution index �

m

= 10 for mutation, whih has an e�et of reating solutions wuth more spread than

before. Rest of the parameter settings are idential as before. The onvergene metri � and diversity measure � on

problem ZDT4 at the end of 250 generations are as follows:

� = 0:029544 �

2

�

= 0:002145

� = 0:498409 �

2

�

= 0:003852

These results are muh better than PAES and SPEA (as shown in Table III). To demonstrate the onvergene and

spread of solutions, we plot the non-dominated solutions of one of the runs after 250 generations in Figure 13. The

�gure shows that NSGA-II is able to �nd solutions on the true Pareto-optimal front with g(x) = 1:0.

V. Rotated Problems

It has been disussed in an earlier study [2℄ that interations among deision variables an introdue another level

of diÆulty to any multi-objetive optimization algorithm inluding evolutionary algorithms. In this setion, we reate

one suh problem and investigate the working of previously three multi-objetive evolutionary algorithms on suh an

epistati problems.

Minimize f

1

(y) = y

1

;

Minimize f

2

(y) = g(y) exp(�y

1

=g(y));

where g(y) = 1 + 10(n� 1) +

P

n

i=2

�

y

2

i

� 10 os(4�y

i

)

�

;

and y = Rx;

�0:3 � x

i

� 0:3; for i = 1; 2; : : : ; n:

(2)

An EA works with the deision variable vetor x, but the above objetive funtions are de�ned in terms of the variable

vetor y, whih is alulated by transforming the deision variable vetor x by a �xed rotation matrix R. This way,
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Fig. 13. Obtained non-dominated solutions with NSGA-II on problem ZDT4.

the objetive funtions are funtions of a linear ombination of deision variables. In order to maintain a spread of

solutions over the Pareto-optimal region or even onverge to any partiular solution requires an EA to update all

deision variables in a partiular way. With a generi searh operator, this beomes a diÆult task to an EA. However,

here, we are interested in evaluating the overall behavior of three elitist multi-objetive EAs.

We use a population size of 100 and run eah algorithm till 500 generations. For simulated binary rossover we use

�



= 10 and mutation we use �

m

= 50. After rotation of x, the values of y may lie in a wide range. To restrit the

Pareto-optimal solutions to lie within bounds, we disourage solutions with jf

1

j > 0:3 by adding a �xed large penalty

to both objetives. Figure 14 shows the obtained solutions at the end of 500 generations using NSGA-II, PAES, and

SPEA. It is observed that NSGA-II onverged to the true front, but PAES and SPEA ould not ome lose to the

true front. The orrelated parameter updates needed to progress towards the Pareto-optimal front makes this kind of

problem diÆult to solve. The elitism proedure along with the real-oded rossover and mutation operators used in

1

10

100

-0.3 -0.25 -0.2 -0.15 -0.1

f
_
2

f_1

Pareto-optimal Front
NSGA-II

PAES
SPEA

Fig. 14. Obtained non-dominated solutions with NSGA-II, PAES, and SPEA on the rotated problem.

NSGA-II are able to onverge to the Pareto-optimal front (with g(y) = 1 resulting f

2

= exp(�f

1

)). This example

problem demonstrates that one of the known diÆulties (the linkage problem [9℄, [10℄). of single-objetive optimization

algorithm an also ause diÆulties in a multi-objetive problem. However, more systemati studies are needed to amply
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address the linkage issue in multi-objetive optimization.

VI. Constraint Handling

Last year, the �rst author and his students implemented a penalty-parameter-less onstraint handling approah for

single-objetive optimization. Those studies [1℄, [5℄ have shown how a tournament seletion based algorithm an be

used to handle onstraints in a population approah muh better than a number of other existing onstraint handling

approahes. A similar approah an be introdued with the above NSGA-II for solving onstrained multi-objetive

optimization problems as well.

A. Proposed Constraint Handling Approah (Constrained NSGA-II)

This onstraint handling method uses the binary tournament seletion, where two solutions are piked from the

population and the better solution is hosen. In the presene of onstraints, eah solution an be either feasible or

infeasible. Thus, there may be at most three situations: (i) both solutions are feasible, (ii) one is feasible and other is

not, and (iii) both are infeasible. For single objetive optimization, we used a simple rule for eah ase:

Case (i) Choose the solution with better objetive funtion value.

Case (ii) Choose the feasible solution.

Case (iii) Choose the solution with smaller overall onstraint violation.

Sine in no ase onstraints and objetive funtion values are ompared with eah other, there is no need of having any

penalty parameter, a matter whih makes the proposed onstrained handling approah useful and attrative.

In the ontext of multi-objetive optimization, the latter two ases an be used as they are, and the �rst ase an be

resolved by using the rowded omparison operator as before. To maintain the modularity in the proedures of NSGA-II,

we simply modify the de�nition of domination between two solutions i and j:

De�nition 1 A solution i is said to onstrained-dominate a solution j, if any of the following onditions is true:

1. Solution i is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller overall onstraint violation.

3. Solutions i and j are feasible and solution i dominates solution j.

The e�et of using this onstrained-domination priniple is that any feasible solution has a better non-domination

rank than any infeasible solution. All feasible solutions are ranked aording to their non-domination level based on the

objetive funtion values. But, among two infeasible solutions, the solution with a smaller onstraint violation has a

better rank. Moreover, this modi�ation in the non-domination priniple does not hange the omputational omplexity

of NSGA-II. The rest of the NSGA-II proedure as desribed an be used as usual.

B. Ray-Kang-Chye's Constraint Handling Approah

T. Ray, T. Kang, and S. K. Chye [15℄ suggested a more elaborate onstraint handling tehnique, where onstraint

violations of all onstraints are not simply summed together, instead a non-domination hek of onstraint violations is

also made. We give an outline of this proedure here.

Three di�erent non-dominated rankings of the population is �rst performed. The �rst ranking is performed using

M objetive funtion values and the resulting ranking is stored in a N -dimensional vetor R

obj

. The seond ranking

R

on

is performed using only the onstraint violation values of all (J of them) onstraints and no objetive funtion

information is used. Thus, onstraint violation of eah onstraint is used a riterion and a non-domination lassi�ation

of the population is performed with the onstraint violation values. Notie that for a feasible solution all onstraint

violations are zero. Thus, all feasible solutions have a rank 1 in R

on

. The third ranking is performed using a ombined

objetive funtion and onstraint violation values (a total of (M+J) values). This produes the ranking R

om

. Although

objetive funtion values and onstraint violations are used together, one nie aspet of this algorithm is that there is

no need of any penalty parameter. In the domination hek, riteria are individually ompared, thereby eliminating the

need of any penalty parameter. One these rankings are over, all feasible solutions having the best rank in R

om

are

hosen for the new population. If more population slots are available, they are reated from the remaining solutions in

a systemati manner. By giving importane to the ranking in R

obj

in the seletion operator and by giving importane

to the ranking in R

on

in the rossover operator, authors have laid out a systemati multi-objetive GA, whih also

inludes a nihe preserving operator. For details, readers may refer to the original study [15℄. Although authors did

not ompare their algorithm with any other method, they showed the working of this onstraint handling method on

a number of engineering design problems. However, sine non-dominated sorting of three di�erent sets of riteria are

required and the algorithm introdues many di�erent operators, it remains to be investigated how it performs on more

omplex problems, partiularly from the point of view of omputational burden assoiated with the method.

In the following setion, we hoose a set of four problems and ompare the simple onstrained NSGA-II with Ray-

Kang-Chye's method.
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C. Simulation Results

For unonstrained multi-objetive optimization, the �rst author suggested a systemati proedure of developing test

problems [2℄. The proedure allows a simple way to introdue eah aspet of diÆulties that a multi-objetive optimizer

an expet in a real-world problem. So far, no suh systemati study exists to suggest test problem development for

onstrained multi-objetive optimization. However, we hoose problems (Table VI) whih have been used in earlier

studies. We only apply real-oded NSGA-II here.

TABLE VI

Constrained test problems used in this study. All objetive funtions are to be minimized.

Problem n Variable Objetive Constraints

bounds funtions

DEB 2 x

1

2 [0:1 : 1:0℄ f

1

(x) = x

1

g

1

(x) = x

2

+ 9x

1

� 6

x

2

2 [0 : 5℄ f

2

(x) = (1 + x

2

)=x

1

g

2

(x) = �x

2

+ 9x

1

� 1

SRN 2 x

i

2 [�20 : 20℄ f

1

(x) = (x

1

� 2)

2

+ (x

2

� 1)

2

+ 2 g

1

(x) = x

2

1

+ x

2

2

� 225

i = 1; 2 f

2

(x) = 9x

1

� (x

2

� 1)

2

g

2

(x) = x

1

� 3x

2

� �10

TNK 2 x

i

2 [0; �℄ f

1

(x) = x

1

g

1

(x) = �x

2

1

� x

2

2

+ 1 +

0:1 os(16 artanx=y) � 0

i = 1; 2 f

2

(x) = x

2

g

2

(x) = (x � 0:5)

2

+ (x

2

� 0:5)

2

� 0:5

WATER 3 0:01 � x

1

� 0:45 f

1

(x) = 106780:37(x

2

+x

3

)+61704:67 g

1

(x) = 0:00139=(x

1

x

2

) + 4:94x

3

�

0:08 � 1

0:01 � x

2

� 0:10 f

2

(x) = 3000x

1

g

2

(x) = 0:000306=(x

1

x

2

) + 1:082x

3

�

0:0986 < 1

0:01 � x

3

� 0:10 f

3

(x) = (305700)2289x

2

=(0:06 �

2289)

0:65

g

3

(x) = 12:307=(x

1

x

2

) + 49408:24x

3

+

4051:02 � 50000

f

4

(x) = (250)2289 exp(�39:75x

2

+

9:9x

3

+ 2:74)

g

4

(x) = 2:098=(x

1

x

2

) + 8046:33x

3

�

696:71 � 16000

f

5

(x) = 25(1:39=(x

1

x

2

) + 4940x

3

� 80) g

5

(x) = 2:138=(x

1

x

2

) + 7883:39x

3

�

705:04 � 10000

g

6

(x) = 0:417(x

1

x

2

) + 1721:26x

3

�

136:54 � 2000

g

7

(x) = 0:164=(x

1

x

2

) + 631:13x

3

�

54:48 � 550

In the �rst problem, a part of the unonstrained Pareto-optimal region is not feasible. Thus, the resulting onstrained

Pareto-optimal region is a onatenation of the �rst onstraint boundary and some part of the unonstrained Pareto-

optimal region. The seond problem SRN was used in the original study of NSGA [18℄. Here, the onstrained Pareto-

optimal set is a subset of the unonstrained Pareto-optimal set. The third problem TNK was suggested by Tanaka et

al. [19℄ and has a disontinuous Pareto-optimal region, entirely falling on the �rst onstraint boundary. In the next

subsetion, we show the onstrained Pareto-optimal region for eah of the above problems. The fourth problem WATER

is a �ve-objetive and seven-onstraint problem, attempted to solve in [15℄. With �ve objetives, it is diÆult to disuss

the e�et of the onstraints on the unonstrained Pareto-optimal region. In the next subsetion, we show all

�

5

2

�

or 10

pair-wise plots of obtained non-dominated solutions.

D. Simulation Results

In all problems, we use a population size of 100, distribution indies for real-oded rossover and mutation operators

of 20 and 100, respetively, and run NSGA-II (real-oded) and Ray, Kang, and Chye's onstrained handling algorithm

[15℄ for a maximum of 500 generations. We hoose this rather large number of generations to investigate if spread in

solutions an be maintained for a large number of generations. However, in eah ase, we obtain a reasonably good

spread of solutions at early as at 200 generations. Crossover and mutation probabilities are the same as before.

Figure 15 shows the obtained set of 100 non-dominated solutions after 500 generations using NSGA-II. The �gure

shows that NSGA-II is able to uniformly maintain solutions in both Pareto-optimal region. It is important to note

that in order to maintain a spread of solutions on the onstraint boundary, the solutions must have to be modi�ed in a

partiular manner ditated by the onstraint funtion. This beomes a diÆult task of any searh operator. Figure 16

shows the obtained solutions using Ray-Kang-Chye's algorithm after 500 generations. It is lear that NSGA-II performs
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better than Ray-Kang-Chye's algorithm in terms of onverging to the true Pareto-optimal front and also in terms of

maintaining a diverse population of non-dominated solutions.
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Fig. 15. Obtained non-dominated solutions with NSGA-II on the

onstrained problem DEB.
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Fig. 16. Obtained non-dominated solutions with Ray-Kang-Chye's

algorithm on the onstrained problem DEB.

Next, we onsider the test problem SRN. Figure 17 shows the non-dominated solutions after 500 generations using

NSGA-II. The �gure shows how NSGA-II an bring a random population on the Pareto-optimal front. For illustrating

the feasible searh spae, we have reated a number of random feasible solutions and plotted with `dots' on the same

�gure. Ray-Kang-Chye's algorithm is also able to ome lose to the front on this test problem (Figure 18).

-300

-250

-200

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300

f
_
2

f_1

Fig. 17. Obtained non-dominated solutions with NSGA-II on the

onstrained problem SRN.
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Fig. 18. Obtained non-dominated solutions with Ray-Kang-Chye's

algorithm on the onstrained problem SRN.

Figures 19 and 20 show the feasible objetive spae and the obtained non-dominated solutions with NSGA-II and Ray-

Kang-Chye's algorithm. Here, the Pareto-optimal region is disontinuous and NSGA-II does not have any diÆulty in

�nding a wide spread of solutions over the true Pareto-optimal region. Although Ray-Kang-Chye's algorithm has found

a number of solutions on the Pareto-optimal front, there exists many infeasible solutions even after 500 generations.

Ray, Kang, and Chye [15℄ have used the problem WATER in their study. They normalized the objetive funtions in

the following manner:

f

1

=8(10

4

); f

2

=1500; f

3

=3(10

6

); f

4

=6(10

6

); f

5

=8000:
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Fig. 19. Obtained non-dominated solutions with NSGA-II on the

onstrained problem TNK.
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Fig. 20. Obtained non-dominated solutions with Ray-Kang-Chye's

algorithm on the onstrained problem TNK.

Sine there are �ve objetive funtions in the problemWATER, we observe the range of the normalized objetive funtion

values of the obtained non-dominated solutions. Table VII shows the omparison with Ray-Kang-Chye's algorithm. In

TABLE VII

Lower and upper bounds of the objetive funtion values observed in the obtained non-dominated solutions.

Algorithm f

1

f

2

f

3

f

4

f

5

NSGA-II 0.798 { 0.920 0.027 { 0.900 0.095 { 0.951 0.031 { 1.110 0.001 { 3.124

Ray-Kang-Chye 0.810 { 0.956 0.046 { 0.834 0.967 { 0.934 0.036 { 1.561 0.211 { 3.116

most objetive funtions, NSGA-II has found a better spread of solutions than Ray-Kang-Chye's approah. In order

to show the pair-wise interations among these �ve normalized objetive funtions, we plot all

�

5

2

�

or 10 interations

in Figure 21 for both algorithms. NSGA-II results are shown in the upper diagonal portion of the �gure and the Ray-

Kang-Chye results are shown in the lower diagonal portion. The axes of any plot an be obtained by looking at the

orresponding diagonal boxes and their ranges. For example, the plot at the �rst row and third olumn has its vertial

axis as f

1

and horizontal axis as f

3

. Sine this plot belongs in the upper side of the diagonal, this plot is obtained using

NSGA-II. In order to ompare this plot with a similar plot using Ray-Kang-Chye's approah, we look for the plot in

the third row and �rst olumn. For this �gure, the vertial axis is plotted as f

3

and the horizontal axis is plotted as

f

1

. To get a better omparison between these two plots, we observe Ray-Kang-Chye's plot as it is, but turn the page

90 degrees in the lokwise diretion for NSGA-II results. This would make the labelling and ranges of the axes same

in both ases.

We observe that NSGA-II plots have better-formed patterns than in Ray-Kang-Chye's plots.

For example, �gures f

1

-f

3

, f

1

-f

4

, and f

3

-f

4

interations are very lear from NSGA-II results. Although similar patterns

exist in the results obtained using Ray-Kang-Chye's algorithm, the onvergene to the true fronts is not adequate.

VII. Conlusions

In this paper, we have proposed a omputationally fast and elitist multi-objetive evolutionary algorithm based on

non-dominated sorting approah. On nine di�erent diÆult test problems borrowed from the literature, it has been found

that the proposed NSGA-II has been able to maintain a better spread of solutions and onvergene in the obtained non-

dominated front ompared to two other elitist multi-objetive EAs|PAES and SPEA. However, on one problem PAES

has been able to somewhat better onverge lose to the true Pareto-optimal front. PAES maintains diversity among

solutions by ontrolling rowding of solutions in a deterministi and pre-spei�ed number of equal-sized ells in the searh

spae. In that problem, it is suspeted that suh a deterministi rowding oupled with the e�et of mutation-based

approah has been bene�ial in onverging near the true front ompared to the dynami and parameter-less rowding
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Fig. 21. Upper diagonal plots are for NSGA-II and lower diagonal plots are for Ray-Kang-Chye's algorithm. Compare (i; j) plot (Ray-

Kang-Chye's algorithm with i < j) with (j; i) plot (NSGA-II). The label and ranges used for eah axis are shown in the diagonal

boxes.

approah used in NSGA-II and SPEA. But, the diversity preserving mehanism used in NSGA-II is undoubtedly the

best among all three approahes.

On a problem having strong parameter interations, NSGA-II has been able to ome loser to the true front than other

two approahes. But the important matter is that all three approahes faed diÆulties in solving this so-alled highly

epistati problem. Although this has been a matter of on-going researh in single-objetive EA studies, this paper shows

that highly epistati problems may also ause diÆulties to multi-objetive EAs. More importantly, researhers in the

�eld must keep in mind of solving suh problems while developing a new algorithm for multi-objetive optimization.

We have also proposed a simple extension to the de�nition of dominane for onstrained multi-objetive optimization.

Although this new de�nition an be used with any other multi-objetive EAs, the real-oded NSGA-II with this de�-

nition has been shown to solve four di�erent problems muh better than another reently-proposed onstraint handling

approah.

With the properties of a fast non-dominated sorting proedure, an elitist strategy, a parameter-less approah, and a

simple yet eÆient onstrained handling method, NSGA-II should �nd inreasing attention and appliations in the near
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future.
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