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Abstract

Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(M N3)
computational complexity (where M is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need
for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algorithm (we
called it the Non-dominated Sorting GA-II or NSGA-II) which alleviates all the above three difficulties. Specifically, a fast non-dominated
sorting approach with O(MN2) computational complexity is presented. Second, a selection operator is presented which creates a mating
pool by combining the parent and child populations and selecting the best (with respect to fitness and spread) N solutions. Simulation
results on a number of difficult test problems show that the proposed NSGA-II, in most problems, is able to find much better spread of
solutions and better convergence near the true Pareto-optimal front compared to PAES and SPEA—two other elitist multi-objective EAs
which pay special attention towards creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order
to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-IT on a number of test problems,
including a five-objective, seven-constraint non-linear problem, are compared with another constrained multi-objective optimizer and much
better performance of NSGA-II is observed. Because of NSGA-II’s low computational requirements, elitist approach, parameter-less niching
approach, and simple constraint-handling strategy, NSGA-II should find increasing applications in the coming years.
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I. INTRODUCTION

The presence of multiple objectives in a problem, in principle, gives rise to a set of optimal solutions (largely known as
Pareto-optimal solutions), instead of a single optimal solution. In the absence of any further information, one of these
Pareto-optimal solutions cannot be said to be better than the other. This demands an user to find as many Pareto-
optimal solutions as possible. Classical optimization methods (including the multi-criterion decision-making (MCDM)
methods) suggest converting the multi-objective optimization problem to a single-objective optimization problem by
emphasizing one particular Pareto-optimal solution at a time. When such a method is to be used for finding multiple
solutions, it has to be applied many times, hopefully finding a different solution at each simulation run.

Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs) have been suggested [18], [6],
[11], [24]. The primary reason for this is their ability to find multiple Pareto-optimal solutions in one single simulation
run. Since EAs work with a population of solutions, a simple EA can be extended to maintain a diverse set of solutions.
With an emphasis for moving towards the true Pareto-optimal region, an EA can be used to find multiple Pareto-optimal
solutions in one single simulation run.

The Non-dominated Sorting Genetic Algorithm (NSGA) proposed in Srinivas and Deb [18] was one of the first such
evolutionary algorithms. Over the years, the main criticism of the NSGA approach have been as follows:

High computational complexity of non-dominated sorting: The currently-used non-dominated sorting algorithm has a
computational complexity of O(M N3) (where M is the number of objectives and N is the population size). This makes
NSGA a computationally expensive algorithm for large population sizes. This large complexity arises because of the
complexity involved in the non-dominated sorting procedure in every generation.

Lack of elitism: Recent results ([23], [16]) show clearly that elitism can speed up the performance of the GA significantly,
also can help preventing the loss of good solutions once they are found.

Need for specifying the sharing parameter ospqre: Traditional mechanisms of insuring diversity in a population so as to
get a wide variety of equivalent solutions have relied mostly on the concept of sharing. The main problem with sharing
is that it requires the specification of a sharing parameter (ospqare). Though there has been some work on dynamic sizing
of the sharing parameter [8], a parameter-less diversity preservation mechanism is desirable.

In this paper, we address all of these issues and propose an improved version of NSGA, which we call NSGA-II. From
the simulation results on a number of difficult test problems, we find that NSGA-II outperforms two other contemporary



multi-objective EAs—Pareto-archived evolution strategy (PAES), [12] and strength Pareto EA (SPEA) [22]—in terms
of finding a diverse set of solutions and in converging near the true Pareto-optimal set.

Constrained multi-objective optimization is important from the point of view of practical problem solving, but not
much attention has been paid so far in this respect among the EA researchers. In this paper, we suggest a simple
constraint handling strategy with NSGA-II, that suits well for any evolutionary algorithm. On four problems chosen
from the literature, NSGA-II has been compared with another recently suggested constrained handling strategy. These
results encourage the application of NSGA-II to more complex and real-world multi-objective optimization problems.

In the remainder of the paper, we briefly mention a number of existing elitist multi-objective EAs in section II.
Thereafter, in section ITT we describe the proposed NSGA-IT algorithm in details. Section IV presents simulation results
of NSGA-IT and compares them with two other elitist multi-objective EAs (PAES and SPEA). In section V, we highlight
the issue of parameter interactions, a matter which is important in evolutionary computation research. Next section
extends NSGA-IT for handling constraints and compares the results with another recently-proposed constraint handling
method. Finally, we outline the conclusions of this paper.

II. ELiTIST MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

During 1993-95, a number of different evolutionary algorithms were suggested to solve multi-objective optimization
problems. Of them, Fonseca and Fleming’s [6] MOGA, Srinivas and Deb’s [18] NSGA, and Horn, Nafploitis, and
Goldberg’s [11] NPGA enjoyed more attention. These algorithms demonstrated the necessary additional operators for
converting a simple EA to a multi-objective EA. Two common features on all three operators were the following: (i)
assigning fitness to population members based on non-dominated sorting and (ii) preserving diversity among solutions
of the same non-dominated front. Although they have been shown to find multiple non-dominated solutions on many
test problems and a number of engineering design problems, researchers realized the need of introducing more useful
operators (which have been found useful in single-objective EAs) so as to solve multi-objective optimization problems
better. Particularly, the interest has been to introduce elitism to enhance the convergence properties of a multi-objective
EA. In the study of Zitzler, Deb, and Thiele [23], it was clearly shown that elitism helps in achieving better convergence
in MOEAs. Among the existing elitist MOEAs, Zitzler and Thiele’s [24] strength Pareto EA (SPEA), Knowles and
Corne’s Pareto-archived evolution strategy (PAES) [12], and Rudolph’s [16] elitist GA are well studied. We describe
these approaches in brief. For details, readers are encouraged to refer to the original studies.

Zitzler and Thiele [24] suggested an elitist multi-criterion EA with the concept of non-domination in their strength
Pareto EA (SPEA). They suggested maintaining an external population at every generation storing all non-dominated
solutions discovered so far beginning from the initial population. This external population participates in all genetic
operations. At each generation, a combined population with the external and the current population is first constructed.
All non-dominated solutions in the combined population are assigned a fitness based on the number of solutions they
dominate and dominated solutions are assigned fitness worse than the worst fitness of any non-dominated solution.
This assignment, of fitness makes sure that the search is directed towards the non-dominated solutions. A deterministic
clustering technique is used to ensure diversity among non-dominated solutions. Although the implementation suggested
in [24] is O(M N?3), with proper book-keeping the complexity of SPEA can be reduced to O(MN?).

Knowles and Corne [12] suggested a simple MOEA using a single parent, single child evolutionary algorithm, similar
to (1+1)-evolution strategy. Instead of using real parameters, authors have used binary strings and bit-wise mutations
to create children. In their Pareto-archived ES (PAES) with one parent and one child, the child is compared with
respect to the parent. If the child dominates the parent, the child is accepted as the next parent and the iteration
continues. On the other hand, if the parent dominates the child, the child is discarded and a new mutated solution (a
new child) is found. However, if the child and the parent do not dominate each other, the choice between the child and
the parent is made by comparing them with an archive of best solutions found so far. The child is compared with the
archive to check if it dominates any member of the archive. If yes, the child is accepted as the new parent and all the
dominated solutions are eliminated from the archive. If the child does not dominate any member of the archive, both
parent and child are checked for their nearness with the solutions of the archive. If the child resides in a least crowded
region in the parameter space among the members of the archive, it is accepted as a parent and a copy of added to the
archive. Crowding is maintained by deterministically dividing the entire search space in d™ subspaces, where d is the
depth parameter and n is the number of decision variables and by updating the subspaces dynamically. Authors have
calculated the worst case complexity of PAES for N evaluations as O(aM N), where a is the archive length. Since the
archive size is usually chosen proportional to the population size N, the overall complexity of the algorithm is O(M N?).

Rudolph [16] suggested, but did not simulate, a simple elitist multi-objective EA based on a systematic comparison
of individuals from parent and offspring populations. The non-dominated solutions of the offspring population are
compared with that of parent solutions to form an overall non-dominated set of solutions, which becomes the parent
population of the next iteration. If the size of this set is not greater than the desired population size, other individuals
from the offspring population are included. With this strategy, he has been able to prove the convergence of this
algorithm to the Pareto-optimal front. Although this is an important achievement in its own right, the algorithm lacks



motivation for the second task of maintaining diversity of Pareto-optimal solutions. An explicit diversity preserving
mechanism must be added to make it more usable in practice. Since the determinism of the first non-dominated front
is O(MN?), the overall complexity of Rudolph’s algorithm is also O(M N?).

In the following, we present the proposed non-dominated sorting GA approach which uses a fast non-dominated
sorting procedure, an elitist-preserving approach, and a parameter-less niching operator.

ITI. ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM (NSGA-II)

The non-dominated sorting GA (NSGA) proposed by Srinivas and Deb in 1994 [18] has been subjected to a number
of criticism, as mentioned earlier. In this section, we suggest NSGA-II, which alleviate all these difficulties. We begin
by presenting a number of different modules that form parts of NSGA-II.

A. A Fast Non-dominated Sorting Approach

In order to sort a population of size IV according to the level of non-domination, each solution must be compared with
every other solution in the population to find if it is dominated. This requires O(M N) comparisons for each solution,
where M is the number of objectives. When this process is continued to find the members of the first non-dominated class
for all population members, the total complexity is O(M N?). At this stage, all individuals in the first non-dominated
front are found. In order to find individuals of the next front, the solutions of the first front are temporarily discounted
and the above procedure is performed again. The procedure is repeated to find subsequent fronts. As can be seen, the
worst case (when there exists only one solution in each front) the complexity of this algorithm without any book-keeping
is O(MN?). In the following, we describe a fast non-dominated sorting approach which will require at most O(M N?)
computations.

This approach is similar in principle to the above approach, except that a better book-keeping strategy is performed
to make it a faster algorithm. In this approach, every solution from the population is checked with a partially filled
population for domination. To start with, the first solution from the population is kept in a set P’. Thereafter, each
solution p (the second solution onwards) is compared with all members of the set P’ one by one. If the solution p
dominates any member ¢ of P’, then solution ¢ is removed from P’. This way non-members of the non-dominated front
get deleted from P’. Otherwise, if solution p is dominated by any member of P’, the solution p is ignored. If solution p
is not dominated by any member of P’, it is entered in P’. This is how the set P’ grows with non-dominated solutions.
When all solutions of the population is checked, the remaining members of P’ constitute the non-dominated set.

P’ = find-nondominated-front (P)
P ={1} include first member in P’
foreach pe PAp & P’ take one solution at a time
P' =P U{p} include p in P’ temporarily
foreachqe PPANq#p compare p with other members of P’
if p < ¢, then P' = P'\{q} if p dominates a member of P’, delete it
else if ¢ < p, then P' = P'\{p} if p is dominated by other members of P’,
do not include p in P’

Here, we observe that the second population member is compared with only one solution of P’, the third solution with
at most two solutions of P’, and so on. This requires a maximum of O(N?) domination checks. Since each domination
check requires M function value comparisons, the maximum complexity of this approach to find the first non-dominated
front is also O(M N?).

In order to validate this complexity estimate, we create different random populations of IV solutions, each with a an
objective vector of size M. Each member in the objective vector is chosen between zero and one at random. Thereafter,
solutions are compared for domination according to the above algorithm and the total number of comparisons required
to identify the first non-dominated front is counted. This quantity is calculated for a number of different random
populations and an average is calculated. Figure 1 shows the variation of this quantity with different population sizes
and for M = 4, 10, and 20. It is clear that the number of comparisons (or computational complexity) increases with
N. By fitting a curve through the experimental quantities, we observe that the variation is polynomial and becomes
quadratic with large M, as shown in Table I. The figure shows that slope of these fitted straight lines on the log-log plot
increases with M. The table shows these slopes as the exponent on N. As the number of objective functions increase,
the exponent increases to approximately two.

To find other fronts, the members of P’ will be discounted from P and the above procedure is repeated, as outlined
below.
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Fig. 1. Variation of computational complexity to find the first non-dominated front in a random population with population size, N. The
lines are drawn by fitting straight lines with the observed points in the log-log scale.

TABLE I
COMPUTATIONAL COMPLEXITY OF FINDING THE FIRST NON-DOMINATED SET FOR DIFFERENT M.

M Variation

4 | 25.354N1-1248
10 | 8.145N1.8834
20 | 9.772/N2.0032

F = fast-non-dominated-sort (P)
i=1
until P #
F; = find-nondominated-front (P)
P =P\F;
1=1+1

F is a set of non-dominated fronts

1 is the front counter and is initialized to one

find the non-dominated front
remove non-dominated solutions from P
increment the front counter

At the end of this operation, solutions of the first non-dominated front are stored in Fi, solutions of the second
non-dominated front are stored in F3, and so on.

B. Diversity Preservation

We mentioned earlier that along with convergence to the Pareto-optimal set, it is also desired that an EA maintains
a good spread of solutions in the obtained set of solutions. The original NSGA used the well-known sharing function
approach, which has been found to maintain sustainable diversity in a population with appropriate setting of its asso-
ciated parameters. The sharing function method involves a sharing parameter oghare, which sets the extent of sharing
desired in a problem. This parameter is related to the distance metric chosen to calculate the proximity measure between
two population members. The parameter oghare denotes the largest value of that distance metric within which any two
solutions share each other’s fitness. This parameter is usually set by the user, although there exist some guidelines [3].
There are two difficulties with this sharing function approach:
1. The performance of the sharing function method in maintaining a spread of solutions largely depends on the chosen
Oshare Value.
2. Since each solution must be compared with all other solutions in the population, the overall complexity of the sharing
function approach is O(N?).

In the proposed NSGA-II, we replace the sharing function approach with a crowded comparison approach which
eliminates both the above difficulties to some extent. It will be clear in a while that the new approach does not require



any user-defined parameter for maintaining diversity among population members. Also, the suggested approach has a
better computational complexity. To describe this approach, we first define a density estimation metric and then present
the crowded comparison operator.

B.1 Density Estimation

To get an estimate of the density of solutions surrounding a particular solution in the population, we calculate the
average distance of two points on either side of this point along each of the objectives. This quantity ig;stance Serves as
an estimate of the size of the largest cuboid enclosing the point ¢ without including any other point in the population
(we call this the crowding distance). In Figure 2, the crowding distance of the i-th solution in its front (marked with
solid circles) is the average side-length of the cuboid (shown with a dashed box).
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Fig. 2. The crowding distance calculation is shown.

The crowding distance computation requires sorting of the population according to each objective function value
in their ascending order of magnitude. Thereafter, for each objective function, the boundary solutions (solutions with
smallest and largest function values) are assigned an infinite distance value. All other intermediate solutions are assigned
a distance value equal to the absolute difference in the function values of two adjacent solutions. This calculation is
continued with other objective functions. The overall crowding distance value is calculated as the sum of individual
distance values corresponding to each objective.

The following algorithm clearly outlines the crowding distance computation procedure of all solutions in an non-
dominated set Z:

crowding-distance-assignment (7)
[ =17] number of solutions in 7
for each 4, set Z[i]gistance = 0 initialize distance
for each objective m
T = sort(Z,m) sort using each objective value
I aistance = Z[ldistance = 00 so that boundary points are always selected
fori=2to (I -1) for all other points
I[i]distance = I[i]distance + (I['L + 1]m - I['L - 1]m)

Here Z[i].m refers to the m-th objective function value of the i-th individual in the set Z. The complexity of this
procedure is governed by the sorting algorithm. Since M independent sorting of at most N solutions (when all population
members are in one front Z) are involved, the above algorithm has O(M N log N) computational complexity.

After all population members in the set 7 are assigned a distance metric, we can compare two solutions for their
extent of proximity with other solutions. A solution with a smaller value of this distance measure is, in some sense, more
crowded by other solutions. This is exactly what we compare in the proposed crowded comparison operator, described
below.

B.2 Crowded Comparison Operator

The crowded comparison operator (<) guides the selection process at the various stages of the algorithm towards a
uniformly spread-out Pareto-optimal front. Let us assume that every individual 7 in the population has two attributes:
1. non-domination rank (i,qnk), and
2. crowding distance (igistance)-

We now define a partial order <,, as :



i <nj if (irank < jrank) or ((irank - jrank) and (idistance > jdistance) ) ‘

That is, between two solutions with differing non-domination ranks we prefer the solution with the lower (better)
rank. Otherwise, if both solutions belong to the same front then we prefer the solution which is located in a lesser
crowded region.

With these three new innovations—a fast non-dominated sorting procedure, a fast crowded distance estimation pro-
cedure, and a simple crowded comparison operator, we are now ready to describe the NSGA-IT algorithm.

C. The Main Loop

Initially, a random parent population P, is created. The population is sorted based on the non-domination. Each
solution is assigned a fitness (or rank) equal to its non-domination level (1 is the best level, 2 is the next-best level and
so on). Thus, minimization of fitness is assumed. At first, the usual binary tournament selection, recombination, and
mutation operators are used to create a child population Qg of size N. Since elitism is introduced by comparing current
population with previously-found best non-dominated solutions, the procedure is different after the initial generation.
We first describe a generation of the proposed algorithm:

R, =P UQ; combine parent and children population

F = fast-nondominated-sort (R;) F = (F1,Fz,...), all non-dominated fronts of R;

PtH:(/)andi:l

until [Pygq] 4+ |F| < N till the parent population is filled
crowding-distance-assignment (F;)  calculate crowding distance in F;
Py =P1UF include i-th non-dominated front in the parent pop
it=1+1 check the next front for inclusion

Sort(F;, <n) sort in descending order using <,

Piy1 = Popr UF[1: (N —|Pigal)] choose the first (N — |P.y1|) elements of calF;

Qt+1 = make-new-pop (Ps11) use selection, crossover and mutation to create

a new population Q1
t=t+1 increment the generation counter

The above step-by-step procedure shows that NSGA-IT algorithm is simple and straightforward. First, a combined
population R; = P; U Q)¢ is formed. The population R; will be of size 2IN. Then, the population R; is sorted according
to non-domination. Since all previous and current population members are include in Ry, the elitism is ensured. Now,
solutions belonging to the best non-dominated set F; are of best solutions in the combined population and must be
emphasized more than any other solution in the combined population. If the size of F; is smaller then N, we definitely
choose all members of the set F; for the new population P;;1. The remaining members of the population P;, is chosen
from subsequent non-dominated fronts in the order of their ranking. Thus, solutions from the set F, are chosen next,
followed by solutions from the set F3, and so on. This procedure is continued till no more sets can be accommodated.
Let us say that the set F; is the last non-dominated set beyond which no other set can be accommodated. In general,
the count of solutions in all sets from F; to F; would be larger than the population size. To choose exactly N population
members, we sort the solutions of the last front using the crowded comparison operator <, in the descending order and
choose the best solutions needed to fill all population slots. The NSGA-II procedure is also shown in Figure 3. The new
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Fig. 3. A sketch of NSGA-II.

population Py of size N is now used for selection, crossover and mutation to create a new population Q41 of size V.



It is important to note that we use a binary tournament selection operator but the selection criterion is now based on
the crowded comparison operator <,,. Since this operator requires both the rank and crowded distance of each solution
in the population, we calculate these quantities while forming the population P;y;, as shown in the above algorithm.

Let us now look at the complexity of one iteration of the entire algorithm. The basic operations and their worst case
complexities are as follows:

1. Non-dominated sorting is O(M (2N)?),

2. Crowding distance assignment is O(M (2N)log(2N)), and

3. Sorting on <, is O(2N log(2N)).

As can be seen, the overall complexity of the above algorithm is O(M N?2), which is governed by the non-dominated
sorting part of the algorithm.

The diversity among non-dominated solutions is introduced by using the crowding comparison procedure which is used
in the tournament selection and during the population reduction phase. Since solutions compete with their crowding
distance (a measure of density of solutions in the neighborhood), no extra niching parameter (such as oghare needed in
the NSGA) is required here. Although the crowding distance is calculated in the objective function space, it can also
be implemented in the parameter space, if so desired [2]. However, in all simulations performed in this study, we have
used the objective function space niching.

IV. SIMULATION RESULTS

In this section, we first describe the test problems used to compare the performance of NSGA-II with PAES and
SPEA. For PAES and SPEA, we have identical parameter settings as suggested in the original studies. For NSGA-II,
we have chosen a reasonable set of values and have not made any effort in finding the best parameter setting. We leave
this task for a future study.

A. Test Problems

We first describe the test problems used to compare different multi-objective evolutionary algorithms. Test problems
are chosen from a number of significant past studies in this area. Veldhuizen [20] cited a number of test problems
which many researchers have used in the past. Of them, we choose four problems, we call them SCH (from Schaffer’s
study [17]), FON (from Fonseca and Fleming’s study [8]), POL (from Poloni’s study [14]), and KUR (from Kursawe’s
study [13]). In 1999, the first author has suggested a systematic way of developing test problems for multi-objective
optimization [2]. Zitzler, Deb, and Thiele [23] followed those guidelines and suggested six test problems. We choose
five of those six problems here and call them ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All problems have two objective
functions. None of these problems have any constraint. We describe these problems in Table II. The table also shows
the number of variables, their bounds, the Pareto-optimal solutions, and the nature of the Pareto-optimal front for each
problem.

All approaches are run for a maximum of 250 generations and with a population size 100. We use a crossover
probability of p. = 0.9 and a mutation probability of p,,, = 1/n or 1/¢ (where n is the number of decision variables for
real-coded GAs and / is the string length for binary-coded GAs). For NSGA-II (real-coded), we use distribution indices
[5] for crossover and mutation operators as 1. = 20 and 7, = 20, respectively. The population obtained at the end of
250 generations (the population after elitism mechanism is applied) is used to calculate a couple of performance metrics,
which we discuss in the next subsection. For PAES, we use a depth value d equal to 4 and an archive size a of 100. We
use all population members of the archive obtained at the end of 250 generations to calculate the performance metrics.
For SPEA, we use a population of size 80 and an external population of size 20, so that overall population size becomes
100. We use the combination of these two populations at the final generation to calculate the performance metrics used
in this study. For PAES, SPEA, and NSGA-II (binary coded) we have used 30 bits to code each decision variable.

B. Performance Measures

Unlike in single-objective optimization, there are two goals in a multi-objective optimization—(i) convergence to the
Pareto-optimal set, and (ii) maintenance of diversity in solutions of the Pareto-optimal set. Clearly, these two tasks
cannot, be measured with one performance metric adequately. A number of performance metrics have been suggested in
the past [7], [22]. But, here, we define two performance metrics which are more direct in evaluating each of the above
two goals in a solution set obtained by a multi-objective optimization algorithm.

The first metric, T, measures the extent of convergence to a known set of Pareto-optimal solutions. Since, multi-
objective algorithms would be tested on problems having a known set of Pareto-optimal set, the calculation of this metric
is possible. But, we realize that such a metric cannot be used for any arbitrary problem. First, we find a set of H = 500
uniformly-spaced solutions from the true Pareto-optimal front in the objective space. For each solution obtained with
an algorithm, we compute the minimum Euclidean distance of it from H chosen solutions on the Pareto-optimal front.
The average of these distances is used as the first metric Y (the convergence metric). Figure 4 shows the calculation
procedure of this metric. The shaded region is the feasible search region and the solid curved lines specify the Pareto-



TABLE II
TEST PROBLEMS USED IN THIS STUDY. ALL OBJECTIVE FUNCTIONS ARE TO BE MINIMIZED.

Problem | n Variable Objective Optimal Comments
bounds functions solutions
SCH 1| [-10%,10%] | fi(z) = 22 z €]0,2] convex
fo(a) = (x - 2)°
FON 3 4,4 (x)=1 2 Y =g, =
[—4,4] filk)=1—exp| -7, (mz — %) Tl =Ty = I3 non-convex
2
fox) =1—exp ( > (x + %) ) € [-1/v3,1/V3]
POL 2 [, 7] fi(x) = [14 (A1 — B1)* + (4> — B»)?] non-convex,
f2(x) = [(z1 + 3)2 + (22 + 1)?] disconnected

A; =0.58inl —2cos1+sin2—1.5co0s2
Ay =1.5¢8in1l —cos1+ 2sin2 — 0.5 cos 2
B; =0.58inx — 2cosxy +sinxs — 1.5 cosxo
By =1.58inx; —cosxzy + 2sinzy — 0.5 cosxs

KUR 3 [-5, 5] [x) =30 ( 10exp (—0 2,/z? + $z+1)) non-convex
f2(x) =30, (|i|® + 5sinz?)
ZDT1 30 [0,1] fi(x) =24 z1 € [0,1] convex
f200) =g [1 -V fg)] 7 =0,
g(x) =149, 7)) /(n—1) i=2,...,n
ZDT2 30 [0,1] fi(x) =4 z1 € [0,1] non-convex
f) = 9(x) [1 = (@1/9(x))’] 7 =0,
gx) =149, z) /(n—1) i=2,...,n
ZDT3 30 [0,1] fi(x) =4 z1 € [0,1] convex,
f2(x) = g(x) [1 —Vz1/9(x) — g’&) sin(l()mvl)] x; =0, disconnected
9(x) =149 i, =) /(n—1) i=2,...,n
7DT4 10| = €[0,1] | filx)=m1 71 € [0,1] non-convex
[=5,3], | f200) = 9(%) [1 = /21 /9x) 7 =0,
i=2,...,n | g(x)=1+10(n—1) + X1, [z7 — 10cos(4rz;)] i=2,...,n
ZDT6 10 [0,1] fi(x) =1 — exp(—4x;) sin® (47z,) z € [0,1] NON-CONVex,
f2(x) = g(x) [1 —(fi(x )/g(x))z] z; =0, non-uniformly
g(x) =1+9[(X",z)/(n— 1)]0'25 i=2,...,n spaced

optimal solutions. Solutions with open circles are H chosen solutions on the Pareto-optimal front for the calculation of
the convergence metric and solutions marked with dark circles are solutions obtained by an algorithm. It is clear that
the smaller the value of this metric, the better is the convergence towards the Pareto-optimal front. When all obtained
solutions lie exactly on H chosen solutions, this metric takes a value zero. In all simulations performed here, we present
the average Y and variance oy of this metric calculated for solution sets obtained in multiple runs.

Even when all solutions converge to the Pareto-optimal front, the above convergence metric does not have a value
zero. The metric will be zero only when each obtained solution lies exactly on each of the chosen solutions. Although
this metric alone can provide some information about the spread in obtained solutions, we define an different metric
to measure the spread in solutions obtained by an algorithm. The second metric, A, measures the extent of spread
achieved among the obtained solutions. Here, we are interested in getting a set of solutions which span the entire Pareto-
optimal region. We calculate the Euclidean distance d; between consecutive solutions in the obtained non-dominated
set of solutions. We calculate the average d of these distances. Thereafter, from the obtained set of non-dominated
solutions, we first calculate the extreme solutions (in the objective space), by fitting a curve parallel to that of the true
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Fig. 4. Tllustration of the distance metric Y.

Pareto-optimal front. Then, we use the following metric to calculate the non-uniformity in the distribution:

_ df +d; +Z£i;1 |di —_dq (1)
df+dl+(N—1)d

Here, the parameters dy and d; are the Euclidean distances between the extreme solutions and the boundary solutions
of the obtained non-dominated set, as depicted in Figure 5. illustrates all distances mentioned in the above equation.

Extreme
f isolutlon
2
Obtained d
: | Extreme
solutions [solution
fy
Fig. 5. Tllustration of the diversity metric A.
The parameter d is the average of all distances d;, i = 1,2, ..., (N — 1), assuming that there are N solutions on the best

non-dominated front. With N solutions, there are (N — 1) consecutive distances. The denominator is the value of the
numerator for the case when all N solutions lie on one solution. It is interesting to note that this is not the worst case
spread of solutions possible. For a scenario with a large variance of the distances may have a numerator value greater
than the denominator. Thus, the maximum value of the above metric can be greater than one. But, a good distribution
would make all distances d.onvergencei equal to d and would make dy = d; = 0 (with existence of extreme solutions
in the non-dominated set). Thus, for the most widely and uniformly spread-out set of non-dominated solutions, the
numerator of A would be zero, making the metric to take a value zero. For any other distribution, the value of the
metric would be greater than zero. For two distributions having identical values of d¢ and d;, the metric A takes a
higher value with worse distributions of solutions within the extreme solutions. Note that the above diversity metric
can be used on any non-dominated set of solutions, including one which is not the Pareto-optimal set.
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C. Discussion of the Results

Table IIT shows the mean and variance of the convergence metric Y obtained using four algorithms NSGA-II (real-
coded), NSGA-II (binary-coded), SPEA, and PAES.

TABLE III
MEAN (SHADED ROWS) AND VARIANCE (UNSHADED ROWS) OF THE CONVERGENCE METRIC T.

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA-II 0.003391 | 0.001931 | 0.015553 | 0.028964 | 0.033482 | 0.072391 | 0.114500 | 0.513053 | 0.296564
Real-coded 0 0| 0.000001| 0.000018| 0.004750| 0.031689| 0.007940| 0.118460| 0.013135
NSGA-II 0.002833 | 0.002571 | 0.017029 [ 0.028951 [ 0.000894 | 0.000824 | 0.043411 [ 3.227636 | 7.806798
Binary-coded | 0.000001 0] 0.000003| 0.000016] 0 0] 0.000042] 7.30763] 0.001667
SPEA 0.003403 | 0.125692 | 0.037812 ‘ 0.045617 ‘ 0.001799 | 0.001339 | 0.047517 ‘ 7.340299 | 0.221138
0| 0.000038| 0.000088] 0.00005] 0.000001 0] 0.000047| 6.572516] 0.000449

PAES 0.001313 | 0.151263 | 0.030864 ‘ 0.057323 ‘ 0.082085 | 0.126276 | 0.023872 ‘ 0.854816 ‘ 0.085469
0.000003] 0.000905| 0.000431] 0.011989] 0.008679] 0.036877| 0.00001] 0.527233] 0.006664

NSGA-II (real-coded or binary-coded) is able to converge better in all problems except in ZDT3 and ZDT6, where
PAES found better convergence. In all cases with NSGA-II, the variance in 10 runs is also small, except in ZDT4 with
NSGA-IT (binary coded). The fixed archive strategy of PAES allows better convergence to be achieved in two out of
nine problems.

Table IV shows the mean and variance of the diversity metric A obtained using all three algorithms.

TABLE IV
MEAN (SHADED ROWS) AND VARIANCE (UNSHADED ROWS) OF THE DIVERSITY METRIC A.

Algorithm SCH FON POL KUR[ ZDT1] ZDT2[ ZDT3] ZDT4] ZDT6
NSGA2R 0.477899 | 0.378065 | 0.452150 | 0.411477 | 0.390307 | 0.430776 | 0.738540 | 0.702612 | 0.668025
Real-coded | 0.003471] 0.000639] 0.002868] 0.000992| 0.001876] 0.004721] 0.019706] 0.064648] 0.009923
NSGA-II 0.449265 | 0.395131 | 0.503721 | 0.442195 | 0.463292 | 0.435112 | 0.575606 | 0.479475 | 0.644477
Binary-coded | 0.002062] 0.001314] 0.004656 | 0.001498] 0.041622] 0.024607| 0.005078] 0.009841] 0.035042
SPEA 1.021110 | 0.792352 | 0.972783 | 0.852990 | 0.784525 | 0.755148 | 0.672938 | 0.798463 | 0.849389

0.004372 0.005546] 0.008475] 0.002619] 0.004440] 0.004521] 0.003587| 0.014616] 0.002713
PAES 1.063288 | 1.162528 | 1.020007 | 1.079838 | 1.229794 | 1.165942 | 0.789920 | 0.870458 | 1.153052

0.002868] 0.008945 0] 0.013772[ 0.004839] 0.007682] 0.001653] 0.101399] 0.003916

NSGA-II (real or binary coded) performs the best in all nine test problems. The worst performance is observed with
PAES. For illustration, we show one of the ten runs of PAES with an arbitrary run of NSGA-II (real-coded) on problem
SCH in Figure 6.

On most problems, real-coded NSGA-II is able to find a better spread of solutions than any other algorithm, including
binary-coded NSGA-II.

In order to demonstrate the working of these algorithms, we also show typical simulation results of PAES, SPEA,
and NSGA-II on the test problems KUR, ZDT2, ZDT4, and ZDT6. The problem KUR has three discontinuous regions
in the Pareto-optimal front. Figure 7 shows all non-dominated solutions obtained after 250 generations with NSGA-IT
(real-coded). The Pareto-optimal region is also shown in the figure. This figure demonstrates the abilities of NSGA-II
in converging to the true front and in finding diverse set of solutions in the front. Figure 8 shows the obtained non-
dominated solutions with SPEA, which is the next best algorithm for this problem (refer to Tables IIT and IV). Although
the convergence is adequate, the distribution in solutions is not as good as that with NSGA-II.

Next, we show the non-dominated solutions on the problem ZDT2 in Figures 9 and 10. This problem has a non-
convex Pareto-optimal front. We show the performance of binary coded NSGA-IT and SPEA on this function. Although
the convergence is not a difficulty here with both of these algorithms, both real-coded and binary-coded NSGA-II has
better able to spread solutions in the entire Pareto-optimal region than SPEA (the next-best algorithm observed for
this problem).

The problem ZDT4 has 21° or 7.94(10'!) different local Pareto-optimal fronts in the search space, of which only one
corresponds to the global Pareto-optimal front. The Euclidean distance in the decision space between solutions of two
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Fig. 6. NSGA-II finds better spread of solutions than PAES on SCH.
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Fig. 7. Non-dominated solutions with NSGA-II (real-coded) on Fig. 8. Non-dominated solutions with SPEA on KUR.
KUR.

consecutive local Pareto-optimal sets is 0.25. Figure 11 shows that both real-coded NSGA-II and PAES get stuck at
different local Pareto-optimal sets, but the convergence and ability to find a diverse set of solutions are definitely better
with NSGA-II. Binary-coded GAs have difficulties in converging near the global Pareto-optimal front, a matter which
is also been observed in previous single-objective studies [4]. On a similar 10-variable Rastrigin’s function (the function
g(x) here), that study clearly showed that a population of size of about at least 500 is needed for single-objective
binary-coded GAs (with tournament selection, single-point crossover and bit-wise mutation) to find the global optimum
solution in more than 50% of the simulation runs. Since we have used a population of size 100, it is not expected that
a multi-objective GA would find the the global Pareto-optimal solution. Since SPEA performs poorly on this problem
(Tables IIT and IV), we do not show SPEA results on this figure.

Finally, Figure 12 shows that PAES finds a better converged set of non-dominated solutions in ZDT6 compared to
any other algorithm. However, the distribution in solutions is better with real-coded NSGA-II.
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Fig. 11. NSGA-II finds better convergence and spread of solutions than PAES on ZDT4.

D. Different Parameter Settings

In this study, we do not make any serious attempt to find the best parameter setting for NSGA-II. But in this section,
we perform additional experiments to show the effect of a couple of different parameter settings on the performance of
NSGA-II.

First, we keep the all other parameters same as before, but increase the number of maximum generations to 500
(instead of 250 used before). Table V shows the convergence and diversity metrics for problems POL, KUR, ZDTS3,
7ZDT4, and ZDT6. Now, we achieve a convergence very close to the true Pareto-optimal front and with a much better
distribution. The table shows that in all these difficult problems, the real-coded NSGA-II has converged very close to the
true optimal front, except in ZDT6, which probably requires a different parameter setting with NSGA-II. Particularly,
the results on ZDT3 and ZDT4 improve with generation number.

The problem ZDT4 has a number of local Pareto-optimal fronts, each corresponding to particular value of g(x).
To jump from one local optimum to the next best local optimum, a large change in the decision vector is needed.
Unless, mutation or crossover operators are capable of creating solutions in the basin of another better attractor, the
improvement in the convergence towards the true Pareto-optimal front is not possible. We use NSGA-II (real-coded)
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Fig. 12. Real-coded NSGA-II finds better spread of solutions than PAES on ZDT6, but PAES has a better convergence.

TABLE V
MEAN AND VARIANCE OF THE CONVERGENCE AND DIVERSITY METRICS UP TO 500 GENERATIONS.

Convergence metric, T
POL KUR ZDT3 ZDT4 ZDT6
Mean 0.015882 | 0.026544 | 0.018510 | 0.090692 | 0.276609
Variance | 0.000001 | 0.000017 | 0.000227 | 0.053460 | 0.015843
Diversity metric, A
POL KUR ZDT3 ZDT4 ZDT6
Mean 0.467022 | 0.418889 | 0.688218 | 0.440022 | 0.655896
Variance | 0.002186 | 0.000530 | 0.000610 | 0.026729 | 0.003302

with a smaller distribution index n,, = 10 for mutation, which has an effect of creating solutions wuth more spread than
before. Rest of the parameter settings are identical as before. The convergence metric T and diversity measure A on
problem ZDT4 at the end of 250 generations are as follows:

T =0.029544 o2 = 0.002145
A =0.498409 &% = 0.003852

These results are much better than PAES and SPEA (as shown in Table IIT). To demonstrate the convergence and
spread of solutions, we plot the non-dominated solutions of one of the runs after 250 generations in Figure 13. The
figure shows that NSGA-II is able to find solutions on the true Pareto-optimal front with g(x) = 1.0.

V. ROTATED PROBLEMS

It has been discussed in an earlier study [2] that interactions among decision variables can introduce another level
of difficulty to any multi-objective optimization algorithm including evolutionary algorithms. In this section, we create
one such problem and investigate the working of previously three multi-objective evolutionary algorithms on such an
epistatic problems.

Minimize fi(y) = y1,
Minimize f2(y) = g(y) exp(—y1/9(y)),
where gly) =14+10(n —1)+ Y7, [y? — 10cos(47y;)] , (2)
and y = Rx,
—03<2;<0.3, fori=1,2,...,n.

An EA works with the decision variable vector x, but the above objective functions are defined in terms of the variable
vector y, which is calculated by transforming the decision variable vector x by a fixed rotation matrix R. This way,
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Fig. 13. Obtained non-dominated solutions with NSGA-II on problem ZDT4.

the objective functions are functions of a linear combination of decision variables. In order to maintain a spread of
solutions over the Pareto-optimal region or even converge to any particular solution requires an EA to update all
decision variables in a particular way. With a generic search operator, this becomes a difficult task to an EA. However,
here, we are interested in evaluating the overall behavior of three elitist multi-objective EAs.

We use a population size of 100 and run each algorithm till 500 generations. For simulated binary crossover we use
7. = 10 and mutation we use 7, = 50. After rotation of x, the values of y may lie in a wide range. To restrict the
Pareto-optimal solutions to lie within bounds, we discourage solutions with |f;| > 0.3 by adding a fixed large penalty
to both objectives. Figure 14 shows the obtained solutions at the end of 500 generations using NSGA-II, PAES, and
SPEA. It is observed that NSGA-II converged to the true front, but PAES and SPEA could not come close to the
true front. The correlated parameter updates needed to progress towards the Pareto-optimal front makes this kind of
problem difficult to solve. The elitism procedure along with the real-coded crossover and mutation operators used in

100 M Par et o- opt i mal Front

NSGA- | | +
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SPEA  x

10 | b
3

f1
Fig. 14. Obtained non-dominated solutions with NSGA-II, PAES, and SPEA on the rotated problem.
NSGA-II are able to converge to the Pareto-optimal front (with g(y) = 1 resulting fo = exp(—f1)). This example

problem demonstrates that one of the known difficulties (the linkage problem [9], [10]). of single-objective optimization
algorithm can also cause difficulties in a multi-objective problem. However, more systematic studies are needed to amply
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address the linkage issue in multi-objective optimization.

VI. CONSTRAINT HANDLING

Last year, the first author and his students implemented a penalty-parameter-less constraint handling approach for
single-objective optimization. Those studies [1], [5] have shown how a tournament selection based algorithm can be
used to handle constraints in a population approach much better than a number of other existing constraint handling
approaches. A similar approach can be introduced with the above NSGA-II for solving constrained multi-objective
optimization problems as well.

A. Proposed Constraint Handling Approach (Constrained NSGA-II)

This constraint handling method uses the binary tournament selection, where two solutions are picked from the
population and the better solution is chosen. In the presence of constraints, each solution can be either feasible or
infeasible. Thus, there may be at most three situations: (i) both solutions are feasible, (ii) one is feasible and other is
not, and (iii) both are infeasible. For single objective optimization, we used a simple rule for each case:

Case (i) Choose the solution with better objective function value.

Case (i) Choose the feasible solution.

Case (iii) Choose the solution with smaller overall constraint violation.

Since in no case constraints and objective function values are compared with each other, there is no need of having any
penalty parameter, a matter which makes the proposed constrained handling approach useful and attractive.

In the context of multi-objective optimization, the latter two cases can be used as they are, and the first case can be
resolved by using the crowded comparison operator as before. To maintain the modularity in the procedures of NSGA-II,
we simply modify the definition of domination between two solutions i and j:

Definition 1 A solution i is said to constrained-dominate a solution j, if any of the following conditions is true:
1. Solution © is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation.

3. Solutions i and j are feasible and solution i dominates solution j.

The effect of using this constrained-domination principle is that any feasible solution has a better non-domination
rank than any infeasible solution. All feasible solutions are ranked according to their non-domination level based on the
objective function values. But, among two infeasible solutions, the solution with a smaller constraint violation has a
better rank. Moreover, this modification in the non-domination principle does not change the computational complexity
of NSGA-II. The rest of the NSGA-II procedure as described can be used as usual.

B. Ray-Kang-Chye’s Constraint Handling Approach

T. Ray, T. Kang, and S. K. Chye [15] suggested a more elaborate constraint handling technique, where constraint
violations of all constraints are not simply summed together, instead a non-domination check of constraint violations is
also made. We give an outline of this procedure here.

Three different non-dominated rankings of the population is first performed. The first ranking is performed using
M objective function values and the resulting ranking is stored in a N-dimensional vector Ro;. The second ranking
R.,n is performed using only the constraint violation values of all (J of them) constraints and no objective function
information is used. Thus, constraint violation of each constraint is used a criterion and a non-domination classification
of the population is performed with the constraint violation values. Notice that for a feasible solution all constraint
violations are zero. Thus, all feasible solutions have a rank 1 in R.,,. The third ranking is performed using a combined
objective function and constraint violation values (a total of (M +.J) values). This produces the ranking R..p,. Although
objective function values and constraint violations are used together, one nice aspect of this algorithm is that there is
no need of any penalty parameter. In the domination check, criteria are individually compared, thereby eliminating the
need of any penalty parameter. Once these rankings are over, all feasible solutions having the best rank in R.,,, are
chosen for the new population. If more population slots are available, they are created from the remaining solutions in
a systematic manner. By giving importance to the ranking in R,; in the selection operator and by giving importance
to the ranking in R.,, in the crossover operator, authors have laid out a systematic multi-objective GA, which also
includes a niche preserving operator. For details, readers may refer to the original study [15]. Although authors did
not compare their algorithm with any other method, they showed the working of this constraint handling method on
a number of engineering design problems. However, since non-dominated sorting of three different sets of criteria are
required and the algorithm introduces many different operators, it remains to be investigated how it performs on more
complex problems, particularly from the point of view of computational burden associated with the method.

In the following section, we choose a set of four problems and compare the simple constrained NSGA-IT with Ray-
Kang-Chye’s method.
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C. Simulation Results

For unconstrained multi-objective optimization, the first author suggested a systematic procedure of developing test
problems [2]. The procedure allows a simple way to introduce each aspect of difficulties that a multi-objective optimizer
can expect in a real-world problem. So far, no such systematic study exists to suggest test problem development for
constrained multi-objective optimization. However, we choose problems (Table VI) which have been used in earlier
studies. We only apply real-coded NSGA-II here.

TABLE VI
CONSTRAINED TEST PROBLEMS USED IN THIS STUDY. ALL OBJECTIVE FUNCTIONS ARE TO BE MINIMIZED.

Problem | n Variable Objective Constraints
bounds functions
DEB 2 xz1 € [0.1:1.0] fi(x) =z g1(x) =22 +921 > 6
Ty € [05] f2(X):(1+1'2)/$1 gg(x):_l'2+91'1 >1
SRN 2| 2, €[-20:20] | fi(x)=(z1—2)%+ (z2 — 1)2 +2 g1(x) = 23 + 23 <225
i=1,2 fo(x) = 9z1 — (22 — 1)2 g2(x) = x1 — 3x2 < —10
TNK 2 z; € [0,7] fH(x) =2 g1(x) = -2 — 23 4+ 1 +
0.1cos(16 arctanz/y) <0
i=1,2 f2(x) = 29 g2(x) = (. — 0.5)% + (22 — 0.5)> < 0.5
WATER | 3 | 0.01 < 21 < 0.45 | fi(x) = 106780.37(z2 +z3) + 61704.67 | g1(x) = 0.00139/(z122) + 4.94z5 —
0.08<1
0.01 < 25 < 0.10 | fo(x) = 3000, g2(x) = 0.000306/(z122) + 1.082z5 —
0.0986 < 1
001 <23 <010 | fa(x) = (305700)228022/(0.06 x | gs(x) = 12.307/(z122) + 49408 2475 +
2289)0-65 4051.02 < 50000
fa(x) = (250)2289exp(—39.7522 + | ga(x) = 2.098/(z122) + 8046.3323 —
9.9x3 + 2.74) 696.71 < 16000
f5(x) = 25(1.39/(z122) + 494023 — 80)| ¢5(x) = 2.138/(z122) + 7883.3923 —
705.04 < 10000
gG(X) = 0417(:171:152) + 172126353 —
136.54 < 2000
gr(x) = 0.164/(z1z2) + 631.13z3 —
54.48 < 550

In the first problem, a part of the unconstrained Pareto-optimal region is not feasible. Thus, the resulting constrained
Pareto-optimal region is a concatenation of the first constraint boundary and some part of the unconstrained Pareto-
optimal region. The second problem SRN was used in the original study of NSGA [18]. Here, the constrained Pareto-
optimal set is a subset of the unconstrained Pareto-optimal set. The third problem TNK was suggested by Tanaka et
al. [19] and has a discontinuous Pareto-optimal region, entirely falling on the first constraint boundary. In the next
subsection, we show the constrained Pareto-optimal region for each of the above problems. The fourth problem WATER
is a five-objective and seven-constraint problem, attempted to solve in [15]. With five objectives, it is difficult to discuss
the effect of the constraints on the unconstrained Pareto-optimal region. In the next subsection, we show all (g) or 10
pair-wise plots of obtained non-dominated solutions.

D. Simulation Results

In all problems, we use a population size of 100, distribution indices for real-coded crossover and mutation operators
of 20 and 100, respectively, and run NSGA-II (real-coded) and Ray, Kang, and Chye’s constrained handling algorithm
[15] for a maximum of 500 generations. We choose this rather large number of generations to investigate if spread in
solutions can be maintained for a large number of generations. However, in each case, we obtain a reasonably good
spread of solutions at early as at 200 generations. Crossover and mutation probabilities are the same as before.

Figure 15 shows the obtained set of 100 non-dominated solutions after 500 generations using NSGA-II. The figure
shows that NSGA-II is able to uniformly maintain solutions in both Pareto-optimal region. It is important to note
that in order to maintain a spread of solutions on the constraint boundary, the solutions must have to be modified in a
particular manner dictated by the constraint function. This becomes a difficult task of any search operator. Figure 16
shows the obtained solutions using Ray-Kang-Chye’s algorithm after 500 generations. It is clear that NSGA-II performs
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better than Ray-Kang-Chye’s algorithm in terms of converging to the true Pareto-optimal front and also in terms of
maintaining a diverse population of non-dominated solutions.
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Fig. 15. Obtained non-dominated solutions with NSGA-II on the Fig. 16. Obtained non-dominated solutions with Ray-Kang-Chye’s
constrained problem DEB. algorithm on the constrained problem DEB.

Next, we consider the test problem SRN. Figure 17 shows the non-dominated solutions after 500 generations using
NSGA-II. The figure shows how NSGA-II can bring a random population on the Pareto-optimal front. For illustrating
the feasible search space, we have created a number of random feasible solutions and plotted with ‘dots’ on the same
figure. Ray-Kang-Chye’s algorithm is also able to come close to the front on this test problem (Figure 18).
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Fig. 17. Obtained non-dominated solutions with NSGA-II on the Fig. 18. Obtained non-dominated solutions with Ray-Kang-Chye’s
constrained problem SRN. algorithm on the constrained problem SRN.

Figures 19 and 20 show the feasible objective space and the obtained non-dominated solutions with NSGA-II and Ray-
Kang-Chye’s algorithm. Here, the Pareto-optimal region is discontinuous and NSGA-II does not have any difficulty in
finding a wide spread of solutions over the true Pareto-optimal region. Although Ray-Kang-Chye’s algorithm has found
a number of solutions on the Pareto-optimal front, there exists many infeasible solutions even after 500 generations.

Ray, Kang, and Chye [15] have used the problem WATER in their study. They normalized the objective functions in
the following manner:

Fi/8(10%),  f2/1500,  f3/3(10°),  £4/6(10%),  f5/8000.
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Fig. 19. Obtained non-dominated solutions with NSGA-II on the Fig. 20. Obtained non-dominated solutions with Ray-Kang-Chye’s
constrained problem TNK. algorithm on the constrained problem TNK.

Since there are five objective functions in the problem WATER, we observe the range of the normalized objective function
values of the obtained non-dominated solutions. Table VII shows the comparison with Ray-Kang-Chye’s algorithm. In

TABLE VII
LOWER AND UPPER BOUNDS OF THE OBJECTIVE FUNCTION VALUES OBSERVED IN THE OBTAINED NON-DOMINATED SOLUTIONS.

Algorithm fi fo f3 fa fs
NSGA-IT | 0.798 — 0.920 | 0.027 — 0.900 | 0.095 — 0.951 | 0.031 — 1.110 | 0.001 — 3.124
Ray-Kang-Chye | 0.810 — 0.956 | 0.046 — 0.834 | 0.967 — 0.934 | 0.036 — 1.561 | 0.211 — 3.116

most objective functions, NSGA-II has found a better spread of solutions than Ray-Kang-Chye’s approach. In order
to show the pair-wise interactions among these five normalized objective functions, we plot all (g) or 10 interactions
in Figure 21 for both algorithms. NSGA-II results are shown in the upper diagonal portion of the figure and the Ray-
Kang-Chye results are shown in the lower diagonal portion. The axes of any plot can be obtained by looking at the
corresponding diagonal boxes and their ranges. For example, the plot at the first row and third column has its vertical
axis as f; and horizontal axis as f3. Since this plot belongs in the upper side of the diagonal, this plot is obtained using
NSGA-II. In order to compare this plot with a similar plot using Ray-Kang-Chye’s approach, we look for the plot in
the third row and first column. For this figure, the vertical axis is plotted as f3 and the horizontal axis is plotted as
f1- To get a better comparison between these two plots, we observe Ray-Kang-Chye’s plot as it is, but turn the page
90 degrees in the clockwise direction for NSGA-IT results. This would make the labelling and ranges of the axes same
in both cases.

We observe that NSGA-II plots have better-formed patterns than in Ray-Kang-Chye’s plots.

For example, figures fi-fs, fi-f1, and f3-f4 interactions are very clear from NSGA-II results. Although similar patterns
exist in the results obtained using Ray-Kang-Chye’s algorithm, the convergence to the true fronts is not adequate.

VII. CONCLUSIONS

In this paper, we have proposed a computationally fast and elitist multi-objective evolutionary algorithm based on
non-dominated sorting approach. On nine different difficult test problems borrowed from the literature, it has been found
that the proposed NSGA-II has been able to maintain a better spread of solutions and convergence in the obtained non-
dominated front compared to two other elitist multi-objective EAs—PAES and SPEA. However, on one problem PAES
has been able to somewhat better converge close to the true Pareto-optimal front. PAES maintains diversity among
solutions by controlling crowding of solutions in a deterministic and pre-specified number of equal-sized cells in the search
space. In that problem, it is suspected that such a deterministic crowding coupled with the effect of mutation-based
approach has been beneficial in converging near the true front compared to the dynamic and parameter-less crowding
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Fig. 21. Upper diagonal plots are for NSGA-II and lower diagonal plots are for Ray-Kang-Chye’s algorithm. Compare (i,5) plot (Ray-
Kang-Chye’s algorithm with ¢ < j) with (j,4) plot (NSGA-II). The label and ranges used for each axis are shown in the diagonal
boxes.

approach used in NSGA-IT and SPEA. But, the diversity preserving mechanism used in NSGA-IT is undoubtedly the
best among all three approaches.

On a problem having strong parameter interactions, NSGA-IT has been able to come closer to the true front than other
two approaches. But the important matter is that all three approaches faced difficulties in solving this so-called highly
epistatic problem. Although this has been a matter of on-going research in single-objective EA studies, this paper shows
that highly epistatic problems may also cause difficulties to multi-objective EAs. More importantly, researchers in the
field must keep in mind of solving such problems while developing a new algorithm for multi-objective optimization.

We have also proposed a simple extension to the definition of dominance for constrained multi-objective optimization.
Although this new definition can be used with any other multi-objective EAs, the real-coded NSGA-IT with this defi-
nition has been shown to solve four different problems much better than another recently-proposed constraint handling
approach.

With the properties of a fast non-dominated sorting procedure, an elitist strategy, a parameter-less approach, and a
simple yet efficient constrained handling method, NSGA-IT should find increasing attention and applications in the near
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future.
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