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Abstra
t

Multi-obje
tive evolutionary algorithms whi
h use non-dominated sorting and sharing have been mainly 
riti
ized for their (i) O(MN

3

)


omputational 
omplexity (where M is the number of obje
tives and N is the population size), (ii) non-elitism approa
h, and (iii) the need

for spe
ifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-obje
tive evolutionary algorithm (we


alled it the Non-dominated Sorting GA-II or NSGA-II) whi
h alleviates all the above three diÆ
ulties. Spe
i�
ally, a fast non-dominated

sorting approa
h with O(MN

2

) 
omputational 
omplexity is presented. Se
ond, a sele
tion operator is presented whi
h 
reates a mating

pool by 
ombining the parent and 
hild populations and sele
ting the best (with respe
t to �tness and spread) N solutions. Simulation

results on a number of diÆ
ult test problems show that the proposed NSGA-II, in most problems, is able to �nd mu
h better spread of

solutions and better 
onvergen
e near the true Pareto-optimal front 
ompared to PAES and SPEA|two other elitist multi-obje
tive EAs

whi
h pay spe
ial attention towards 
reating a diverse Pareto-optimal front. Moreover, we modify the de�nition of dominan
e in order

to solve 
onstrained multi-obje
tive problems eÆ
iently. Simulation results of the 
onstrained NSGA-II on a number of test problems,

in
luding a �ve-obje
tive, seven-
onstraint non-linear problem, are 
ompared with another 
onstrained multi-obje
tive optimizer and mu
h

better performan
e of NSGA-II is observed. Be
ause of NSGA-II's low 
omputational requirements, elitist approa
h, parameter-less ni
hing

approa
h, and simple 
onstraint-handling strategy, NSGA-II should �nd in
reasing appli
ations in the 
oming years.
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I. Introdu
tion

The presen
e of multiple obje
tives in a problem, in prin
iple, gives rise to a set of optimal solutions (largely known as

Pareto-optimal solutions), instead of a single optimal solution. In the absen
e of any further information, one of these

Pareto-optimal solutions 
annot be said to be better than the other. This demands an user to �nd as many Pareto-

optimal solutions as possible. Classi
al optimization methods (in
luding the multi-
riterion de
ision-making (MCDM)

methods) suggest 
onverting the multi-obje
tive optimization problem to a single-obje
tive optimization problem by

emphasizing one parti
ular Pareto-optimal solution at a time. When su
h a method is to be used for �nding multiple

solutions, it has to be applied many times, hopefully �nding a di�erent solution at ea
h simulation run.

Over the past de
ade, a number of multi-obje
tive evolutionary algorithms (MOEAs) have been suggested [18℄, [6℄,

[11℄, [24℄. The primary reason for this is their ability to �nd multiple Pareto-optimal solutions in one single simulation

run. Sin
e EAs work with a population of solutions, a simple EA 
an be extended to maintain a diverse set of solutions.

With an emphasis for moving towards the true Pareto-optimal region, an EA 
an be used to �nd multiple Pareto-optimal

solutions in one single simulation run.

The Non-dominated Sorting Geneti
 Algorithm (NSGA) proposed in Srinivas and Deb [18℄ was one of the �rst su
h

evolutionary algorithms. Over the years, the main 
riti
ism of the NSGA approa
h have been as follows:

High 
omputational 
omplexity of non-dominated sorting: The 
urrently-used non-dominated sorting algorithm has a


omputational 
omplexity of O(MN

3

) (where M is the number of obje
tives and N is the population size). This makes

NSGA a 
omputationally expensive algorithm for large population sizes. This large 
omplexity arises be
ause of the


omplexity involved in the non-dominated sorting pro
edure in every generation.

La
k of elitism: Re
ent results ([23℄, [16℄) show 
learly that elitism 
an speed up the performan
e of the GA signi�
antly,

also 
an help preventing the loss of good solutions on
e they are found.

Need for spe
ifying the sharing parameter �

share

: Traditional me
hanisms of insuring diversity in a population so as to

get a wide variety of equivalent solutions have relied mostly on the 
on
ept of sharing. The main problem with sharing

is that it requires the spe
i�
ation of a sharing parameter (�

share

). Though there has been some work on dynami
 sizing

of the sharing parameter [8℄, a parameter-less diversity preservation me
hanism is desirable.

In this paper, we address all of these issues and propose an improved version of NSGA, whi
h we 
all NSGA-II. From

the simulation results on a number of diÆ
ult test problems, we �nd that NSGA-II outperforms two other 
ontemporary
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multi-obje
tive EAs|Pareto-ar
hived evolution strategy (PAES), [12℄ and strength Pareto EA (SPEA) [22℄|in terms

of �nding a diverse set of solutions and in 
onverging near the true Pareto-optimal set.

Constrained multi-obje
tive optimization is important from the point of view of pra
ti
al problem solving, but not

mu
h attention has been paid so far in this respe
t among the EA resear
hers. In this paper, we suggest a simple


onstraint handling strategy with NSGA-II, that suits well for any evolutionary algorithm. On four problems 
hosen

from the literature, NSGA-II has been 
ompared with another re
ently suggested 
onstrained handling strategy. These

results en
ourage the appli
ation of NSGA-II to more 
omplex and real-world multi-obje
tive optimization problems.

In the remainder of the paper, we brie
y mention a number of existing elitist multi-obje
tive EAs in se
tion II.

Thereafter, in se
tion III we des
ribe the proposed NSGA-II algorithm in details. Se
tion IV presents simulation results

of NSGA-II and 
ompares them with two other elitist multi-obje
tive EAs (PAES and SPEA). In se
tion V, we highlight

the issue of parameter intera
tions, a matter whi
h is important in evolutionary 
omputation resear
h. Next se
tion

extends NSGA-II for handling 
onstraints and 
ompares the results with another re
ently-proposed 
onstraint handling

method. Finally, we outline the 
on
lusions of this paper.

II. Elitist Multi-Obje
tive Evolutionary Algorithms

During 1993-95, a number of di�erent evolutionary algorithms were suggested to solve multi-obje
tive optimization

problems. Of them, Fonse
a and Fleming's [6℄ MOGA, Srinivas and Deb's [18℄ NSGA, and Horn, Nafploitis, and

Goldberg's [11℄ NPGA enjoyed more attention. These algorithms demonstrated the ne
essary additional operators for


onverting a simple EA to a multi-obje
tive EA. Two 
ommon features on all three operators were the following: (i)

assigning �tness to population members based on non-dominated sorting and (ii) preserving diversity among solutions

of the same non-dominated front. Although they have been shown to �nd multiple non-dominated solutions on many

test problems and a number of engineering design problems, resear
hers realized the need of introdu
ing more useful

operators (whi
h have been found useful in single-obje
tive EAs) so as to solve multi-obje
tive optimization problems

better. Parti
ularly, the interest has been to introdu
e elitism to enhan
e the 
onvergen
e properties of a multi-obje
tive

EA. In the study of Zitzler, Deb, and Thiele [23℄, it was 
learly shown that elitism helps in a
hieving better 
onvergen
e

in MOEAs. Among the existing elitist MOEAs, Zitzler and Thiele's [24℄ strength Pareto EA (SPEA), Knowles and

Corne's Pareto-ar
hived evolution strategy (PAES) [12℄, and Rudolph's [16℄ elitist GA are well studied. We des
ribe

these approa
hes in brief. For details, readers are en
ouraged to refer to the original studies.

Zitzler and Thiele [24℄ suggested an elitist multi-
riterion EA with the 
on
ept of non-domination in their strength

Pareto EA (SPEA). They suggested maintaining an external population at every generation storing all non-dominated

solutions dis
overed so far beginning from the initial population. This external population parti
ipates in all geneti


operations. At ea
h generation, a 
ombined population with the external and the 
urrent population is �rst 
onstru
ted.

All non-dominated solutions in the 
ombined population are assigned a �tness based on the number of solutions they

dominate and dominated solutions are assigned �tness worse than the worst �tness of any non-dominated solution.

This assignment of �tness makes sure that the sear
h is dire
ted towards the non-dominated solutions. A deterministi



lustering te
hnique is used to ensure diversity among non-dominated solutions. Although the implementation suggested

in [24℄ is O(MN

3

), with proper book-keeping the 
omplexity of SPEA 
an be redu
ed to O(MN

2

).

Knowles and Corne [12℄ suggested a simple MOEA using a single parent, single 
hild evolutionary algorithm, similar

to (1+1)-evolution strategy. Instead of using real parameters, authors have used binary strings and bit-wise mutations

to 
reate 
hildren. In their Pareto-ar
hived ES (PAES) with one parent and one 
hild, the 
hild is 
ompared with

respe
t to the parent. If the 
hild dominates the parent, the 
hild is a

epted as the next parent and the iteration


ontinues. On the other hand, if the parent dominates the 
hild, the 
hild is dis
arded and a new mutated solution (a

new 
hild) is found. However, if the 
hild and the parent do not dominate ea
h other, the 
hoi
e between the 
hild and

the parent is made by 
omparing them with an ar
hive of best solutions found so far. The 
hild is 
ompared with the

ar
hive to 
he
k if it dominates any member of the ar
hive. If yes, the 
hild is a

epted as the new parent and all the

dominated solutions are eliminated from the ar
hive. If the 
hild does not dominate any member of the ar
hive, both

parent and 
hild are 
he
ked for their nearness with the solutions of the ar
hive. If the 
hild resides in a least 
rowded

region in the parameter spa
e among the members of the ar
hive, it is a

epted as a parent and a 
opy of added to the

ar
hive. Crowding is maintained by deterministi
ally dividing the entire sear
h spa
e in d

n

subspa
es, where d is the

depth parameter and n is the number of de
ision variables and by updating the subspa
es dynami
ally. Authors have


al
ulated the worst 
ase 
omplexity of PAES for N evaluations as O(aMN), where a is the ar
hive length. Sin
e the

ar
hive size is usually 
hosen proportional to the population size N , the overall 
omplexity of the algorithm is O(MN

2

).

Rudolph [16℄ suggested, but did not simulate, a simple elitist multi-obje
tive EA based on a systemati
 
omparison

of individuals from parent and o�spring populations. The non-dominated solutions of the o�spring population are


ompared with that of parent solutions to form an overall non-dominated set of solutions, whi
h be
omes the parent

population of the next iteration. If the size of this set is not greater than the desired population size, other individuals

from the o�spring population are in
luded. With this strategy, he has been able to prove the 
onvergen
e of this

algorithm to the Pareto-optimal front. Although this is an important a
hievement in its own right, the algorithm la
ks
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motivation for the se
ond task of maintaining diversity of Pareto-optimal solutions. An expli
it diversity preserving

me
hanism must be added to make it more usable in pra
ti
e. Sin
e the determinism of the �rst non-dominated front

is O(MN

2

), the overall 
omplexity of Rudolph's algorithm is also O(MN

2

).

In the following, we present the proposed non-dominated sorting GA approa
h whi
h uses a fast non-dominated

sorting pro
edure, an elitist-preserving approa
h, and a parameter-less ni
hing operator.

III. Elitist Non-dominated Sorting Geneti
 Algorithm (NSGA-II)

The non-dominated sorting GA (NSGA) proposed by Srinivas and Deb in 1994 [18℄ has been subje
ted to a number

of 
riti
ism, as mentioned earlier. In this se
tion, we suggest NSGA-II, whi
h alleviate all these diÆ
ulties. We begin

by presenting a number of di�erent modules that form parts of NSGA-II.

A. A Fast Non-dominated Sorting Approa
h

In order to sort a population of size N a

ording to the level of non-domination, ea
h solution must be 
ompared with

every other solution in the population to �nd if it is dominated. This requires O(MN) 
omparisons for ea
h solution,

whereM is the number of obje
tives. When this pro
ess is 
ontinued to �nd the members of the �rst non-dominated 
lass

for all population members, the total 
omplexity is O(MN

2

). At this stage, all individuals in the �rst non-dominated

front are found. In order to �nd individuals of the next front, the solutions of the �rst front are temporarily dis
ounted

and the above pro
edure is performed again. The pro
edure is repeated to �nd subsequent fronts. As 
an be seen, the

worst 
ase (when there exists only one solution in ea
h front) the 
omplexity of this algorithm without any book-keeping

is O(MN

3

). In the following, we des
ribe a fast non-dominated sorting approa
h whi
h will require at most O(MN

2

)


omputations.

This approa
h is similar in prin
iple to the above approa
h, ex
ept that a better book-keeping strategy is performed

to make it a faster algorithm. In this approa
h, every solution from the population is 
he
ked with a partially �lled

population for domination. To start with, the �rst solution from the population is kept in a set P

0

. Thereafter, ea
h

solution p (the se
ond solution onwards) is 
ompared with all members of the set P

0

one by one. If the solution p

dominates any member q of P

0

, then solution q is removed from P

0

. This way non-members of the non-dominated front

get deleted from P

0

. Otherwise, if solution p is dominated by any member of P

0

, the solution p is ignored. If solution p

is not dominated by any member of P

0

, it is entered in P

0

. This is how the set P

0

grows with non-dominated solutions.

When all solutions of the population is 
he
ked, the remaining members of P

0


onstitute the non-dominated set.

P

0

= find-nondominated-front(P)

P

0

= f1g in
lude �rst member in P

0

for ea
h p 2 P ^ p 62 P

0

take one solution at a time

P

0

= P

0

[ fpg in
lude p in P

0

temporarily

for ea
h q 2 P

0

^ q 6= p 
ompare p with other members of P

0

if p � q, then P

0

= P

0

nfqg if p dominates a member of P

0

, delete it

else if q � p, then P

0

= P

0

nfpg if p is dominated by other members of P

0

,

do not in
lude p in P

0

Here, we observe that the se
ond population member is 
ompared with only one solution of P

0

, the third solution with

at most two solutions of P

0

, and so on. This requires a maximum of O(N

2

) domination 
he
ks. Sin
e ea
h domination


he
k requiresM fun
tion value 
omparisons, the maximum 
omplexity of this approa
h to �nd the �rst non-dominated

front is also O(MN

2

).

In order to validate this 
omplexity estimate, we 
reate di�erent random populations of N solutions, ea
h with a an

obje
tive ve
tor of size M . Ea
h member in the obje
tive ve
tor is 
hosen between zero and one at random. Thereafter,

solutions are 
ompared for domination a

ording to the above algorithm and the total number of 
omparisons required

to identify the �rst non-dominated front is 
ounted. This quantity is 
al
ulated for a number of di�erent random

populations and an average is 
al
ulated. Figure 1 shows the variation of this quantity with di�erent population sizes

and for M = 4, 10, and 20. It is 
lear that the number of 
omparisons (or 
omputational 
omplexity) in
reases with

N . By �tting a 
urve through the experimental quantities, we observe that the variation is polynomial and be
omes

quadrati
 with largeM , as shown in Table I. The �gure shows that slope of these �tted straight lines on the log-log plot

in
reases with M . The table shows these slopes as the exponent on N . As the number of obje
tive fun
tions in
rease,

the exponent in
reases to approximately two.

To �nd other fronts, the members of P

0

will be dis
ounted from P and the above pro
edure is repeated, as outlined

below.
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Fig. 1. Variation of 
omputational 
omplexity to �nd the �rst non-dominated front in a random population with population size, N . The

lines are drawn by �tting straight lines with the observed points in the log-log s
ale.

TABLE I

Computational 
omplexity of finding the first non-dominated set for different M .

M Variation

4 25:354N

1:1248

10 8:145N

1:8834

20 9:772N

2:0032

F = fast-non-dominated-sort(P) F is a set of non-dominated fronts

i = 1 i is the front 
ounter and is initialized to one

until P 6= ;

F

i

= find-nondominated-front(P) �nd the non-dominated front

P = PnF

i

remove non-dominated solutions from P

i = i+ 1 in
rement the front 
ounter

At the end of this operation, solutions of the �rst non-dominated front are stored in F

1

, solutions of the se
ond

non-dominated front are stored in F

2

, and so on.

B. Diversity Preservation

We mentioned earlier that along with 
onvergen
e to the Pareto-optimal set, it is also desired that an EA maintains

a good spread of solutions in the obtained set of solutions. The original NSGA used the well-known sharing fun
tion

approa
h, whi
h has been found to maintain sustainable diversity in a population with appropriate setting of its asso-


iated parameters. The sharing fun
tion method involves a sharing parameter �

share

, whi
h sets the extent of sharing

desired in a problem. This parameter is related to the distan
e metri
 
hosen to 
al
ulate the proximity measure between

two population members. The parameter �

share

denotes the largest value of that distan
e metri
 within whi
h any two

solutions share ea
h other's �tness. This parameter is usually set by the user, although there exist some guidelines [3℄.

There are two diÆ
ulties with this sharing fun
tion approa
h:

1. The performan
e of the sharing fun
tion method in maintaining a spread of solutions largely depends on the 
hosen

�

share

value.

2. Sin
e ea
h solution must be 
ompared with all other solutions in the population, the overall 
omplexity of the sharing

fun
tion approa
h is O(N

2

).

In the proposed NSGA-II, we repla
e the sharing fun
tion approa
h with a 
rowded 
omparison approa
h whi
h

eliminates both the above diÆ
ulties to some extent. It will be 
lear in a while that the new approa
h does not require
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any user-de�ned parameter for maintaining diversity among population members. Also, the suggested approa
h has a

better 
omputational 
omplexity. To des
ribe this approa
h, we �rst de�ne a density estimation metri
 and then present

the 
rowded 
omparison operator.

B.1 Density Estimation

To get an estimate of the density of solutions surrounding a parti
ular solution in the population, we 
al
ulate the

average distan
e of two points on either side of this point along ea
h of the obje
tives. This quantity i

distan
e

serves as

an estimate of the size of the largest 
uboid en
losing the point i without in
luding any other point in the population

(we 
all this the 
rowding distan
e). In Figure 2, the 
rowding distan
e of the i-th solution in its front (marked with

solid 
ir
les) is the average side-length of the 
uboid (shown with a dashed box).

Cuboid

f

f

1

2

i
i-1

i+1

0

l

Fig. 2. The 
rowding distan
e 
al
ulation is shown.

The 
rowding distan
e 
omputation requires sorting of the population a

ording to ea
h obje
tive fun
tion value

in their as
ending order of magnitude. Thereafter, for ea
h obje
tive fun
tion, the boundary solutions (solutions with

smallest and largest fun
tion values) are assigned an in�nite distan
e value. All other intermediate solutions are assigned

a distan
e value equal to the absolute di�eren
e in the fun
tion values of two adja
ent solutions. This 
al
ulation is


ontinued with other obje
tive fun
tions. The overall 
rowding distan
e value is 
al
ulated as the sum of individual

distan
e values 
orresponding to ea
h obje
tive.

The following algorithm 
learly outlines the 
rowding distan
e 
omputation pro
edure of all solutions in an non-

dominated set I:


rowding-distan
e-assignment(I)

l = jIj number of solutions in I

for ea
h i, set I[i℄

distan
e

= 0 initialize distan
e

for ea
h obje
tive m

I = sort(I;m) sort using ea
h obje
tive value

I[1℄

distan
e

= I[l℄

distan
e

= 1 so that boundary points are always sele
ted

for i = 2 to (l � 1) for all other points

I[i℄

distan
e

= I[i℄

distan
e

+ (I[i+ 1℄:m� I[i� 1℄:m)

Here I[i℄:m refers to the m-th obje
tive fun
tion value of the i-th individual in the set I. The 
omplexity of this

pro
edure is governed by the sorting algorithm. Sin
eM independent sorting of at mostN solutions (when all population

members are in one front I) are involved, the above algorithm has O(MN logN) 
omputational 
omplexity.

After all population members in the set I are assigned a distan
e metri
, we 
an 
ompare two solutions for their

extent of proximity with other solutions. A solution with a smaller value of this distan
e measure is, in some sense, more


rowded by other solutions. This is exa
tly what we 
ompare in the proposed 
rowded 
omparison operator, des
ribed

below.

B.2 Crowded Comparison Operator

The 
rowded 
omparison operator (�

n

) guides the sele
tion pro
ess at the various stages of the algorithm towards a

uniformly spread-out Pareto-optimal front. Let us assume that every individual i in the population has two attributes:

1. non-domination rank (i

rank

), and

2. 
rowding distan
e (i

distan
e

).

We now de�ne a partial order �

n

as :
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i �

n

j if (i

rank

< j

rank

) or ((i

rank

= j

rank

) and (i

distan
e

> j

distan
e

) )

That is, between two solutions with di�ering non-domination ranks we prefer the solution with the lower (better)

rank. Otherwise, if both solutions belong to the same front then we prefer the solution whi
h is lo
ated in a lesser


rowded region.

With these three new innovations|a fast non-dominated sorting pro
edure, a fast 
rowded distan
e estimation pro-


edure, and a simple 
rowded 
omparison operator, we are now ready to des
ribe the NSGA-II algorithm.

C. The Main Loop

Initially, a random parent population P

0

is 
reated. The population is sorted based on the non-domination. Ea
h

solution is assigned a �tness (or rank) equal to its non-domination level (1 is the best level, 2 is the next-best level and

so on). Thus, minimization of �tness is assumed. At �rst, the usual binary tournament sele
tion, re
ombination, and

mutation operators are used to 
reate a 
hild population Q

0

of size N . Sin
e elitism is introdu
ed by 
omparing 
urrent

population with previously-found best non-dominated solutions, the pro
edure is di�erent after the initial generation.

We �rst des
ribe a generation of the proposed algorithm:

R

t

= P

t

[Q

t


ombine parent and 
hildren population

F = fast-nondominated-sort(R

t

) F = (F

1

;F

2

; : : :), all non-dominated fronts of R

t

P

t+1

= ; and i = 1

until jP

t+1

j+ jF

i

j � N till the parent population is �lled


rowding-distan
e-assignment(F

i

) 
al
ulate 
rowding distan
e in F

i

P

t+1

= P

t+1

[ F

i

in
lude i-th non-dominated front in the parent pop

i = i+ 1 
he
k the next front for in
lusion

Sort(F

i

;�

n

) sort in des
ending order using �

n

P

t+1

= P

t+1

[ F

i

[1 : (N � jP

t+1

j)℄ 
hoose the �rst (N � jP

t+1

j) elements of 
alF

i

Q

t+1

= make-new-pop(P

t+1

) use sele
tion, 
rossover and mutation to 
reate

a new population Q

t+1

t = t+ 1 in
rement the generation 
ounter

The above step-by-step pro
edure shows that NSGA-II algorithm is simple and straightforward. First, a 
ombined

population R

t

= P

t

[Q

t

is formed. The population R

t

will be of size 2N . Then, the population R

t

is sorted a

ording

to non-domination. Sin
e all previous and 
urrent population members are in
lude in R

t

, the elitism is ensured. Now,

solutions belonging to the best non-dominated set F

1

are of best solutions in the 
ombined population and must be

emphasized more than any other solution in the 
ombined population. If the size of F

1

is smaller then N , we de�nitely


hoose all members of the set F

1

for the new population P

t+1

. The remaining members of the population P

t+1

is 
hosen

from subsequent non-dominated fronts in the order of their ranking. Thus, solutions from the set F

2

are 
hosen next,

followed by solutions from the set F

3

, and so on. This pro
edure is 
ontinued till no more sets 
an be a

ommodated.

Let us say that the set F

l

is the last non-dominated set beyond whi
h no other set 
an be a

ommodated. In general,

the 
ount of solutions in all sets from F

1

to F

l

would be larger than the population size. To 
hoose exa
tly N population

members, we sort the solutions of the last front using the 
rowded 
omparison operator �

n

, in the des
ending order and


hoose the best solutions needed to �ll all population slots. The NSGA-II pro
edure is also shown in Figure 3. The new

sorting
Non−dominated Crowding

distance
sorting

Rejected

P F_2

F_3

F_1

Q

t

t

tR

Pt+1

Fig. 3. A sket
h of NSGA-II.

population P

t+1

of size N is now used for sele
tion, 
rossover and mutation to 
reate a new population Q

t+1

of size N .
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It is important to note that we use a binary tournament sele
tion operator but the sele
tion 
riterion is now based on

the 
rowded 
omparison operator �

n

. Sin
e this operator requires both the rank and 
rowded distan
e of ea
h solution

in the population, we 
al
ulate these quantities while forming the population P

t+1

, as shown in the above algorithm.

Let us now look at the 
omplexity of one iteration of the entire algorithm. The basi
 operations and their worst 
ase


omplexities are as follows:

1. Non-dominated sorting is O(M(2N)

2

),

2. Crowding distan
e assignment is O(M(2N) log(2N)), and

3. Sorting on �

n

is O(2N log(2N)).

As 
an be seen, the overall 
omplexity of the above algorithm is O(MN

2

), whi
h is governed by the non-dominated

sorting part of the algorithm.

The diversity among non-dominated solutions is introdu
ed by using the 
rowding 
omparison pro
edure whi
h is used

in the tournament sele
tion and during the population redu
tion phase. Sin
e solutions 
ompete with their 
rowding

distan
e (a measure of density of solutions in the neighborhood), no extra ni
hing parameter (su
h as �

share

needed in

the NSGA) is required here. Although the 
rowding distan
e is 
al
ulated in the obje
tive fun
tion spa
e, it 
an also

be implemented in the parameter spa
e, if so desired [2℄. However, in all simulations performed in this study, we have

used the obje
tive fun
tion spa
e ni
hing.

IV. Simulation Results

In this se
tion, we �rst des
ribe the test problems used to 
ompare the performan
e of NSGA-II with PAES and

SPEA. For PAES and SPEA, we have identi
al parameter settings as suggested in the original studies. For NSGA-II,

we have 
hosen a reasonable set of values and have not made any e�ort in �nding the best parameter setting. We leave

this task for a future study.

A. Test Problems

We �rst des
ribe the test problems used to 
ompare di�erent multi-obje
tive evolutionary algorithms. Test problems

are 
hosen from a number of signi�
ant past studies in this area. Veldhuizen [20℄ 
ited a number of test problems

whi
h many resear
hers have used in the past. Of them, we 
hoose four problems, we 
all them SCH (from S
ha�er's

study [17℄), FON (from Fonse
a and Fleming's study [8℄), POL (from Poloni's study [14℄), and KUR (from Kursawe's

study [13℄). In 1999, the �rst author has suggested a systemati
 way of developing test problems for multi-obje
tive

optimization [2℄. Zitzler, Deb, and Thiele [23℄ followed those guidelines and suggested six test problems. We 
hoose

�ve of those six problems here and 
all them ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All problems have two obje
tive

fun
tions. None of these problems have any 
onstraint. We des
ribe these problems in Table II. The table also shows

the number of variables, their bounds, the Pareto-optimal solutions, and the nature of the Pareto-optimal front for ea
h

problem.

All approa
hes are run for a maximum of 250 generations and with a population size 100. We use a 
rossover

probability of p




= 0:9 and a mutation probability of p

m

= 1=n or 1=` (where n is the number of de
ision variables for

real-
oded GAs and ` is the string length for binary-
oded GAs). For NSGA-II (real-
oded), we use distribution indi
es

[5℄ for 
rossover and mutation operators as �




= 20 and �

m

= 20, respe
tively. The population obtained at the end of

250 generations (the population after elitism me
hanism is applied) is used to 
al
ulate a 
ouple of performan
e metri
s,

whi
h we dis
uss in the next subse
tion. For PAES, we use a depth value d equal to 4 and an ar
hive size a of 100. We

use all population members of the ar
hive obtained at the end of 250 generations to 
al
ulate the performan
e metri
s.

For SPEA, we use a population of size 80 and an external population of size 20, so that overall population size be
omes

100. We use the 
ombination of these two populations at the �nal generation to 
al
ulate the performan
e metri
s used

in this study. For PAES, SPEA, and NSGA-II (binary 
oded) we have used 30 bits to 
ode ea
h de
ision variable.

B. Performan
e Measures

Unlike in single-obje
tive optimization, there are two goals in a multi-obje
tive optimization|(i) 
onvergen
e to the

Pareto-optimal set, and (ii) maintenan
e of diversity in solutions of the Pareto-optimal set. Clearly, these two tasks


annot be measured with one performan
e metri
 adequately. A number of performan
e metri
s have been suggested in

the past [7℄, [22℄. But, here, we de�ne two performan
e metri
s whi
h are more dire
t in evaluating ea
h of the above

two goals in a solution set obtained by a multi-obje
tive optimization algorithm.

The �rst metri
, �, measures the extent of 
onvergen
e to a known set of Pareto-optimal solutions. Sin
e, multi-

obje
tive algorithms would be tested on problems having a known set of Pareto-optimal set, the 
al
ulation of this metri


is possible. But, we realize that su
h a metri
 
annot be used for any arbitrary problem. First, we �nd a set of H = 500

uniformly-spa
ed solutions from the true Pareto-optimal front in the obje
tive spa
e. For ea
h solution obtained with

an algorithm, we 
ompute the minimum Eu
lidean distan
e of it from H 
hosen solutions on the Pareto-optimal front.

The average of these distan
es is used as the �rst metri
 � (the 
onvergen
e metri
). Figure 4 shows the 
al
ulation

pro
edure of this metri
. The shaded region is the feasible sear
h region and the solid 
urved lines spe
ify the Pareto-
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TABLE II

Test problems used in this study. All obje
tive fun
tions are to be minimized.

Problem n Variable Obje
tive Optimal Comments

bounds fun
tions solutions

SCH 1 [�10

3

; 10

3

℄ f

1

(x) = x

2

x 2 [0; 2℄ 
onvex

f

2

(x) = (x� 2)

2

FON 3 [�4; 4℄ f

1

(x) = 1� exp

�

�

P

3

i=1

�

x

i

�

1

p

3

�

2

�

x

1

= x

2

= x

3

non-
onvex

f

2

(x) = 1� exp

�

�

P

3

i=1

�

x

i

+

1

p

3

�

2

�

2 [�1=

p

3; 1=

p

3℄

POL 2 [��; �℄ f

1

(x) =

�

1 + (A

1

�B

1

)

2

+ (A

2

�B

2

)

2

�

non-
onvex,

f

2

(x) =

�

(x

1

+ 3)

2

+ (x

2

+ 1)

2

�

dis
onne
ted

A

1

= 0:5 sin1� 2 
os 1 + sin 2� 1:5 
os 2

A

2

= 1:5 sin1� 
os 1 + 2 sin 2� 0:5 
os 2

B

1

= 0:5 sinx

1

� 2 
osx

1

+ sinx

2

� 1:5 
osx

2

B

2

= 1:5 sinx

1

� 
osx

1

+ 2 sinx

2

� 0:5 
osx

2

KUR 3 [�5; 5℄ f

1

(x) =

P

n�1

i=1

�

�10 exp

�

�0:2

q

x

2

i

+ x

2

i+1

��

non-
onvex

f

2

(x) =

P

n

i=1

�

jx

i

j

0:8

+ 5 sinx

3

i

�

ZDT1 30 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ 
onvex

f

2

(x) = g(x)

h

1�

p

x

1

=g(x)

i

x

i

= 0;

g(x) = 1 + 9 (

P

n

i=2

x

i

) =(n� 1) i = 2; : : : ; n

ZDT2 30 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ non-
onvex

f

2

(x) = g(x)

h

1� (x

1

=g(x))

2

i

x

i

= 0;

g(x) = 1 + 9 (

P

n

i=2

x

i

) =(n� 1) i = 2; : : : ; n

ZDT3 30 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ 
onvex,

f

2

(x) = g(x)

h

1�

p

x

1

=g(x)�

x

1

g(x)

sin(10�x

1

)

i

x

i

= 0; dis
onne
ted

g(x) = 1 + 9 (

P

n

i=2

x

i

) =(n� 1) i = 2; : : : ; n

ZDT4 10 x

1

2 [0; 1℄ f

1

(x) = x

1

x

1

2 [0; 1℄ non-
onvex

x

i

2 [�5; 5℄; f

2

(x) = g(x)

h

1�

p

x

1

=g(x)

i

x

i

= 0;

i = 2; : : : ; n g(x) = 1 + 10(n� 1) +

P

n

i=2

�

x

2

i

� 10 
os(4�x

i

)

�

i = 2; : : : ; n

ZDT6 10 [0; 1℄ f

1

(x) = 1� exp(�4x

1

) sin

6

(4�x

1

) x

1

2 [0; 1℄ non-
onvex,

f

2

(x) = g(x)

h

1� (f

1

(x)=g(x))

2

i

x

i

= 0; non-uniformly

g(x) = 1 + 9 [(

P

n

i=2

x

i

) =(n� 1)℄

0:25

i = 2; : : : ; n spa
ed

optimal solutions. Solutions with open 
ir
les are H 
hosen solutions on the Pareto-optimal front for the 
al
ulation of

the 
onvergen
e metri
 and solutions marked with dark 
ir
les are solutions obtained by an algorithm. It is 
lear that

the smaller the value of this metri
, the better is the 
onvergen
e towards the Pareto-optimal front. When all obtained

solutions lie exa
tly on H 
hosen solutions, this metri
 takes a value zero. In all simulations performed here, we present

the average � and varian
e �

�

of this metri
 
al
ulated for solution sets obtained in multiple runs.

Even when all solutions 
onverge to the Pareto-optimal front, the above 
onvergen
e metri
 does not have a value

zero. The metri
 will be zero only when ea
h obtained solution lies exa
tly on ea
h of the 
hosen solutions. Although

this metri
 alone 
an provide some information about the spread in obtained solutions, we de�ne an di�erent metri


to measure the spread in solutions obtained by an algorithm. The se
ond metri
, �, measures the extent of spread

a
hieved among the obtained solutions. Here, we are interested in getting a set of solutions whi
h span the entire Pareto-

optimal region. We 
al
ulate the Eu
lidean distan
e d

i

between 
onse
utive solutions in the obtained non-dominated

set of solutions. We 
al
ulate the average

�

d of these distan
es. Thereafter, from the obtained set of non-dominated

solutions, we �rst 
al
ulate the extreme solutions (in the obje
tive spa
e), by �tting a 
urve parallel to that of the true
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Pareto−optimal
front

Obtained
solutions

f

f 2

1

Chosen
points

Euclidean
distance

Fig. 4. Illustration of the distan
e metri
 �.

Pareto-optimal front. Then, we use the following metri
 to 
al
ulate the non-uniformity in the distribution:

� =

d

f

+ d

l

+

P

N�1

i=1

jd

i

�

�

dj

d

f

+ d

l

+ (N � 1)

�

d

: (1)

Here, the parameters d

f

and d

l

are the Eu
lidean distan
es between the extreme solutions and the boundary solutions

of the obtained non-dominated set, as depi
ted in Figure 5. illustrates all distan
es mentioned in the above equation.

Obtained
solutions

f

d

d

d

d

f

1

2

n

l

d

2

f 1

Extreme
solution

Extreme
solution

Fig. 5. Illustration of the diversity metri
 �.

The parameter

�

d is the average of all distan
es d

i

, i = 1; 2; : : : ; (N � 1), assuming that there are N solutions on the best

non-dominated front. With N solutions, there are (N � 1) 
onse
utive distan
es. The denominator is the value of the

numerator for the 
ase when all N solutions lie on one solution. It is interesting to note that this is not the worst 
ase

spread of solutions possible. For a s
enario with a large varian
e of the distan
es may have a numerator value greater

than the denominator. Thus, the maximum value of the above metri
 
an be greater than one. But, a good distribution

would make all distan
es d




onvergen
ei equal to

�

d and would make d

f

= d

l

= 0 (with existen
e of extreme solutions

in the non-dominated set). Thus, for the most widely and uniformly spread-out set of non-dominated solutions, the

numerator of � would be zero, making the metri
 to take a value zero. For any other distribution, the value of the

metri
 would be greater than zero. For two distributions having identi
al values of d

f

and d

l

, the metri
 � takes a

higher value with worse distributions of solutions within the extreme solutions. Note that the above diversity metri



an be used on any non-dominated set of solutions, in
luding one whi
h is not the Pareto-optimal set.
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C. Dis
ussion of the Results

Table III shows the mean and varian
e of the 
onvergen
e metri
 � obtained using four algorithms NSGA-II (real-


oded), NSGA-II (binary-
oded), SPEA, and PAES.

TABLE III

Mean (shaded rows) and varian
e (unshaded rows) of the 
onvergen
e metri
 �.

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.003391 0.001931 0.015553 0.028964 0.033482 0.072391 0.114500 0.513053 0.296564

Real-
oded 0 0 0.000001 0.000018 0.004750 0.031689 0.007940 0.118460 0.013135

NSGA-II 0.002833 0.002571 0.017029 0.028951 0.000894 0.000824 0.043411 3.227636 7.806798

Binary-
oded 0.000001 0 0.000003 0.000016 0 0 0.000042 7.30763 0.001667

SPEA

0.003403 0.125692 0.037812 0.045617 0.001799 0.001339 0.047517 7.340299 0.221138

0 0.000038 0.000088 0.00005 0.000001 0 0.000047 6.572516 0.000449

PAES

0.001313 0.151263 0.030864 0.057323 0.082085 0.126276 0.023872 0.854816 0.085469

0.000003 0.000905 0.000431 0.011989 0.008679 0.036877 0.00001 0.527238 0.006664

NSGA-II (real-
oded or binary-
oded) is able to 
onverge better in all problems ex
ept in ZDT3 and ZDT6, where

PAES found better 
onvergen
e. In all 
ases with NSGA-II, the varian
e in 10 runs is also small, ex
ept in ZDT4 with

NSGA-II (binary 
oded). The �xed ar
hive strategy of PAES allows better 
onvergen
e to be a
hieved in two out of

nine problems.

Table IV shows the mean and varian
e of the diversity metri
 � obtained using all three algorithms.

TABLE IV

Mean (shaded rows) and varian
e (unshaded rows) of the diversity metri
 �.

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA2R 0.477899 0.378065 0.452150 0.411477 0.390307 0.430776 0.738540 0.702612 0.668025

Real-
oded 0.003471 0.000639 0.002868 0.000992 0.001876 0.004721 0.019706 0.064648 0.009923

NSGA-II 0.449265 0.395131 0.503721 0.442195 0.463292 0.435112 0.575606 0.479475 0.644477

Binary-
oded 0.002062 0.001314 0.004656 0.001498 0.041622 0.024607 0.005078 0.009841 0.035042

SPEA

1.021110 0.792352 0.972783 0.852990 0.784525 0.755148 0.672938 0.798463 0.849389

0.004372 0.005546 0.008475 0.002619 0.004440 0.004521 0.003587 0.014616 0.002713

PAES

1.063288 1.162528 1.020007 1.079838 1.229794 1.165942 0.789920 0.870458 1.153052

0.002868 0.008945 0 0.013772 0.004839 0.007682 0.001653 0.101399 0.003916

NSGA-II (real or binary 
oded) performs the best in all nine test problems. The worst performan
e is observed with

PAES. For illustration, we show one of the ten runs of PAES with an arbitrary run of NSGA-II (real-
oded) on problem

SCH in Figure 6.

On most problems, real-
oded NSGA-II is able to �nd a better spread of solutions than any other algorithm, in
luding

binary-
oded NSGA-II.

In order to demonstrate the working of these algorithms, we also show typi
al simulation results of PAES, SPEA,

and NSGA-II on the test problems KUR, ZDT2, ZDT4, and ZDT6. The problem KUR has three dis
ontinuous regions

in the Pareto-optimal front. Figure 7 shows all non-dominated solutions obtained after 250 generations with NSGA-II

(real-
oded). The Pareto-optimal region is also shown in the �gure. This �gure demonstrates the abilities of NSGA-II

in 
onverging to the true front and in �nding diverse set of solutions in the front. Figure 8 shows the obtained non-

dominated solutions with SPEA, whi
h is the next best algorithm for this problem (refer to Tables III and IV). Although

the 
onvergen
e is adequate, the distribution in solutions is not as good as that with NSGA-II.

Next, we show the non-dominated solutions on the problem ZDT2 in Figures 9 and 10. This problem has a non-


onvex Pareto-optimal front. We show the performan
e of binary 
oded NSGA-II and SPEA on this fun
tion. Although

the 
onvergen
e is not a diÆ
ulty here with both of these algorithms, both real-
oded and binary-
oded NSGA-II has

better able to spread solutions in the entire Pareto-optimal region than SPEA (the next-best algorithm observed for

this problem).

The problem ZDT4 has 21

9

or 7:94(10

11

) di�erent lo
al Pareto-optimal fronts in the sear
h spa
e, of whi
h only one


orresponds to the global Pareto-optimal front. The Eu
lidean distan
e in the de
ision spa
e between solutions of two
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Fig. 6. NSGA-II �nds better spread of solutions than PAES on SCH.
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Fig. 7. Non-dominated solutions with NSGA-II (real-
oded) on

KUR.

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f
_
2

f_1

Pareto-optimal front
SPEA

Fig. 8. Non-dominated solutions with SPEA on KUR.


onse
utive lo
al Pareto-optimal sets is 0:25. Figure 11 shows that both real-
oded NSGA-II and PAES get stu
k at

di�erent lo
al Pareto-optimal sets, but the 
onvergen
e and ability to �nd a diverse set of solutions are de�nitely better

with NSGA-II. Binary-
oded GAs have diÆ
ulties in 
onverging near the global Pareto-optimal front, a matter whi
h

is also been observed in previous single-obje
tive studies [4℄. On a similar 10-variable Rastrigin's fun
tion (the fun
tion

g(x) here), that study 
learly showed that a population of size of about at least 500 is needed for single-obje
tive

binary-
oded GAs (with tournament sele
tion, single-point 
rossover and bit-wise mutation) to �nd the global optimum

solution in more than 50% of the simulation runs. Sin
e we have used a population of size 100, it is not expe
ted that

a multi-obje
tive GA would �nd the the global Pareto-optimal solution. Sin
e SPEA performs poorly on this problem

(Tables III and IV), we do not show SPEA results on this �gure.

Finally, Figure 12 shows that PAES �nds a better 
onverged set of non-dominated solutions in ZDT6 
ompared to

any other algorithm. However, the distribution in solutions is better with real-
oded NSGA-II.
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Fig. 10. Non-dominated solutions with SPEA on ZDT2.
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Fig. 11. NSGA-II �nds better 
onvergen
e and spread of solutions than PAES on ZDT4.

D. Di�erent Parameter Settings

In this study, we do not make any serious attempt to �nd the best parameter setting for NSGA-II. But in this se
tion,

we perform additional experiments to show the e�e
t of a 
ouple of di�erent parameter settings on the performan
e of

NSGA-II.

First, we keep the all other parameters same as before, but in
rease the number of maximum generations to 500

(instead of 250 used before). Table V shows the 
onvergen
e and diversity metri
s for problems POL, KUR, ZDT3,

ZDT4, and ZDT6. Now, we a
hieve a 
onvergen
e very 
lose to the true Pareto-optimal front and with a mu
h better

distribution. The table shows that in all these diÆ
ult problems, the real-
oded NSGA-II has 
onverged very 
lose to the

true optimal front, ex
ept in ZDT6, whi
h probably requires a di�erent parameter setting with NSGA-II. Parti
ularly,

the results on ZDT3 and ZDT4 improve with generation number.

The problem ZDT4 has a number of lo
al Pareto-optimal fronts, ea
h 
orresponding to parti
ular value of g(x).

To jump from one lo
al optimum to the next best lo
al optimum, a large 
hange in the de
ision ve
tor is needed.

Unless, mutation or 
rossover operators are 
apable of 
reating solutions in the basin of another better attra
tor, the

improvement in the 
onvergen
e towards the true Pareto-optimal front is not possible. We use NSGA-II (real-
oded)



13

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f
_
2

f_1

Pareto-optimal front
PAES

NSGA-II

Fig. 12. Real-
oded NSGA-II �nds better spread of solutions than PAES on ZDT6, but PAES has a better 
onvergen
e.

TABLE V

Mean and varian
e of the 
onvergen
e and diversity metri
s up to 500 generations.

Convergen
e metri
, �

POL KUR ZDT3 ZDT4 ZDT6

Mean 0.015882 0.026544 0.018510 0.090692 0.276609

Varian
e 0.000001 0.000017 0.000227 0.053460 0.015843

Diversity metri
, �

POL KUR ZDT3 ZDT4 ZDT6

Mean 0.467022 0.418889 0.688218 0.440022 0.655896

Varian
e 0.002186 0.000530 0.000610 0.026729 0.003302

with a smaller distribution index �

m

= 10 for mutation, whi
h has an e�e
t of 
reating solutions wuth more spread than

before. Rest of the parameter settings are identi
al as before. The 
onvergen
e metri
 � and diversity measure � on

problem ZDT4 at the end of 250 generations are as follows:

� = 0:029544 �

2

�

= 0:002145

� = 0:498409 �

2

�

= 0:003852

These results are mu
h better than PAES and SPEA (as shown in Table III). To demonstrate the 
onvergen
e and

spread of solutions, we plot the non-dominated solutions of one of the runs after 250 generations in Figure 13. The

�gure shows that NSGA-II is able to �nd solutions on the true Pareto-optimal front with g(x) = 1:0.

V. Rotated Problems

It has been dis
ussed in an earlier study [2℄ that intera
tions among de
ision variables 
an introdu
e another level

of diÆ
ulty to any multi-obje
tive optimization algorithm in
luding evolutionary algorithms. In this se
tion, we 
reate

one su
h problem and investigate the working of previously three multi-obje
tive evolutionary algorithms on su
h an

epistati
 problems.

Minimize f

1

(y) = y

1

;

Minimize f

2

(y) = g(y) exp(�y

1

=g(y));

where g(y) = 1 + 10(n� 1) +

P

n

i=2

�

y

2

i

� 10 
os(4�y

i

)

�

;

and y = Rx;

�0:3 � x

i

� 0:3; for i = 1; 2; : : : ; n:

(2)

An EA works with the de
ision variable ve
tor x, but the above obje
tive fun
tions are de�ned in terms of the variable

ve
tor y, whi
h is 
al
ulated by transforming the de
ision variable ve
tor x by a �xed rotation matrix R. This way,
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Fig. 13. Obtained non-dominated solutions with NSGA-II on problem ZDT4.

the obje
tive fun
tions are fun
tions of a linear 
ombination of de
ision variables. In order to maintain a spread of

solutions over the Pareto-optimal region or even 
onverge to any parti
ular solution requires an EA to update all

de
ision variables in a parti
ular way. With a generi
 sear
h operator, this be
omes a diÆ
ult task to an EA. However,

here, we are interested in evaluating the overall behavior of three elitist multi-obje
tive EAs.

We use a population size of 100 and run ea
h algorithm till 500 generations. For simulated binary 
rossover we use

�




= 10 and mutation we use �

m

= 50. After rotation of x, the values of y may lie in a wide range. To restri
t the

Pareto-optimal solutions to lie within bounds, we dis
ourage solutions with jf

1

j > 0:3 by adding a �xed large penalty

to both obje
tives. Figure 14 shows the obtained solutions at the end of 500 generations using NSGA-II, PAES, and

SPEA. It is observed that NSGA-II 
onverged to the true front, but PAES and SPEA 
ould not 
ome 
lose to the

true front. The 
orrelated parameter updates needed to progress towards the Pareto-optimal front makes this kind of

problem diÆ
ult to solve. The elitism pro
edure along with the real-
oded 
rossover and mutation operators used in

1

10

100

-0.3 -0.25 -0.2 -0.15 -0.1

f
_
2

f_1

Pareto-optimal Front
NSGA-II

PAES
SPEA

Fig. 14. Obtained non-dominated solutions with NSGA-II, PAES, and SPEA on the rotated problem.

NSGA-II are able to 
onverge to the Pareto-optimal front (with g(y) = 1 resulting f

2

= exp(�f

1

)). This example

problem demonstrates that one of the known diÆ
ulties (the linkage problem [9℄, [10℄). of single-obje
tive optimization

algorithm 
an also 
ause diÆ
ulties in a multi-obje
tive problem. However, more systemati
 studies are needed to amply
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address the linkage issue in multi-obje
tive optimization.

VI. Constraint Handling

Last year, the �rst author and his students implemented a penalty-parameter-less 
onstraint handling approa
h for

single-obje
tive optimization. Those studies [1℄, [5℄ have shown how a tournament sele
tion based algorithm 
an be

used to handle 
onstraints in a population approa
h mu
h better than a number of other existing 
onstraint handling

approa
hes. A similar approa
h 
an be introdu
ed with the above NSGA-II for solving 
onstrained multi-obje
tive

optimization problems as well.

A. Proposed Constraint Handling Approa
h (Constrained NSGA-II)

This 
onstraint handling method uses the binary tournament sele
tion, where two solutions are pi
ked from the

population and the better solution is 
hosen. In the presen
e of 
onstraints, ea
h solution 
an be either feasible or

infeasible. Thus, there may be at most three situations: (i) both solutions are feasible, (ii) one is feasible and other is

not, and (iii) both are infeasible. For single obje
tive optimization, we used a simple rule for ea
h 
ase:

Case (i) Choose the solution with better obje
tive fun
tion value.

Case (ii) Choose the feasible solution.

Case (iii) Choose the solution with smaller overall 
onstraint violation.

Sin
e in no 
ase 
onstraints and obje
tive fun
tion values are 
ompared with ea
h other, there is no need of having any

penalty parameter, a matter whi
h makes the proposed 
onstrained handling approa
h useful and attra
tive.

In the 
ontext of multi-obje
tive optimization, the latter two 
ases 
an be used as they are, and the �rst 
ase 
an be

resolved by using the 
rowded 
omparison operator as before. To maintain the modularity in the pro
edures of NSGA-II,

we simply modify the de�nition of domination between two solutions i and j:

De�nition 1 A solution i is said to 
onstrained-dominate a solution j, if any of the following 
onditions is true:

1. Solution i is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller overall 
onstraint violation.

3. Solutions i and j are feasible and solution i dominates solution j.

The e�e
t of using this 
onstrained-domination prin
iple is that any feasible solution has a better non-domination

rank than any infeasible solution. All feasible solutions are ranked a

ording to their non-domination level based on the

obje
tive fun
tion values. But, among two infeasible solutions, the solution with a smaller 
onstraint violation has a

better rank. Moreover, this modi�
ation in the non-domination prin
iple does not 
hange the 
omputational 
omplexity

of NSGA-II. The rest of the NSGA-II pro
edure as des
ribed 
an be used as usual.

B. Ray-Kang-Chye's Constraint Handling Approa
h

T. Ray, T. Kang, and S. K. Chye [15℄ suggested a more elaborate 
onstraint handling te
hnique, where 
onstraint

violations of all 
onstraints are not simply summed together, instead a non-domination 
he
k of 
onstraint violations is

also made. We give an outline of this pro
edure here.

Three di�erent non-dominated rankings of the population is �rst performed. The �rst ranking is performed using

M obje
tive fun
tion values and the resulting ranking is stored in a N -dimensional ve
tor R

obj

. The se
ond ranking

R


on

is performed using only the 
onstraint violation values of all (J of them) 
onstraints and no obje
tive fun
tion

information is used. Thus, 
onstraint violation of ea
h 
onstraint is used a 
riterion and a non-domination 
lassi�
ation

of the population is performed with the 
onstraint violation values. Noti
e that for a feasible solution all 
onstraint

violations are zero. Thus, all feasible solutions have a rank 1 in R


on

. The third ranking is performed using a 
ombined

obje
tive fun
tion and 
onstraint violation values (a total of (M+J) values). This produ
es the ranking R


om

. Although

obje
tive fun
tion values and 
onstraint violations are used together, one ni
e aspe
t of this algorithm is that there is

no need of any penalty parameter. In the domination 
he
k, 
riteria are individually 
ompared, thereby eliminating the

need of any penalty parameter. On
e these rankings are over, all feasible solutions having the best rank in R


om

are


hosen for the new population. If more population slots are available, they are 
reated from the remaining solutions in

a systemati
 manner. By giving importan
e to the ranking in R

obj

in the sele
tion operator and by giving importan
e

to the ranking in R


on

in the 
rossover operator, authors have laid out a systemati
 multi-obje
tive GA, whi
h also

in
ludes a ni
he preserving operator. For details, readers may refer to the original study [15℄. Although authors did

not 
ompare their algorithm with any other method, they showed the working of this 
onstraint handling method on

a number of engineering design problems. However, sin
e non-dominated sorting of three di�erent sets of 
riteria are

required and the algorithm introdu
es many di�erent operators, it remains to be investigated how it performs on more


omplex problems, parti
ularly from the point of view of 
omputational burden asso
iated with the method.

In the following se
tion, we 
hoose a set of four problems and 
ompare the simple 
onstrained NSGA-II with Ray-

Kang-Chye's method.
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C. Simulation Results

For un
onstrained multi-obje
tive optimization, the �rst author suggested a systemati
 pro
edure of developing test

problems [2℄. The pro
edure allows a simple way to introdu
e ea
h aspe
t of diÆ
ulties that a multi-obje
tive optimizer


an expe
t in a real-world problem. So far, no su
h systemati
 study exists to suggest test problem development for


onstrained multi-obje
tive optimization. However, we 
hoose problems (Table VI) whi
h have been used in earlier

studies. We only apply real-
oded NSGA-II here.

TABLE VI

Constrained test problems used in this study. All obje
tive fun
tions are to be minimized.

Problem n Variable Obje
tive Constraints

bounds fun
tions

DEB 2 x

1

2 [0:1 : 1:0℄ f

1

(x) = x

1

g

1

(x) = x

2

+ 9x

1

� 6

x

2

2 [0 : 5℄ f

2

(x) = (1 + x

2

)=x

1

g

2

(x) = �x

2

+ 9x

1

� 1

SRN 2 x

i

2 [�20 : 20℄ f

1

(x) = (x

1

� 2)

2

+ (x

2

� 1)

2

+ 2 g

1

(x) = x

2

1

+ x

2

2

� 225

i = 1; 2 f

2

(x) = 9x

1

� (x

2

� 1)

2

g

2

(x) = x

1

� 3x

2

� �10

TNK 2 x

i

2 [0; �℄ f

1

(x) = x

1

g

1

(x) = �x

2

1

� x

2

2

+ 1 +

0:1 
os(16 ar
tanx=y) � 0

i = 1; 2 f

2

(x) = x

2

g

2

(x) = (x � 0:5)

2

+ (x

2

� 0:5)

2

� 0:5

WATER 3 0:01 � x

1

� 0:45 f

1

(x) = 106780:37(x

2

+x

3

)+61704:67 g

1

(x) = 0:00139=(x

1

x

2

) + 4:94x

3

�

0:08 � 1

0:01 � x

2

� 0:10 f

2

(x) = 3000x

1

g

2

(x) = 0:000306=(x

1

x

2

) + 1:082x

3

�

0:0986 < 1

0:01 � x

3

� 0:10 f

3

(x) = (305700)2289x

2

=(0:06 �

2289)

0:65

g

3

(x) = 12:307=(x

1

x

2

) + 49408:24x

3

+

4051:02 � 50000

f

4

(x) = (250)2289 exp(�39:75x

2

+

9:9x

3

+ 2:74)

g

4

(x) = 2:098=(x

1

x

2

) + 8046:33x

3

�

696:71 � 16000

f

5

(x) = 25(1:39=(x

1

x

2

) + 4940x

3

� 80) g

5

(x) = 2:138=(x

1

x

2

) + 7883:39x

3

�

705:04 � 10000

g

6

(x) = 0:417(x

1

x

2

) + 1721:26x

3

�

136:54 � 2000

g

7

(x) = 0:164=(x

1

x

2

) + 631:13x

3

�

54:48 � 550

In the �rst problem, a part of the un
onstrained Pareto-optimal region is not feasible. Thus, the resulting 
onstrained

Pareto-optimal region is a 
on
atenation of the �rst 
onstraint boundary and some part of the un
onstrained Pareto-

optimal region. The se
ond problem SRN was used in the original study of NSGA [18℄. Here, the 
onstrained Pareto-

optimal set is a subset of the un
onstrained Pareto-optimal set. The third problem TNK was suggested by Tanaka et

al. [19℄ and has a dis
ontinuous Pareto-optimal region, entirely falling on the �rst 
onstraint boundary. In the next

subse
tion, we show the 
onstrained Pareto-optimal region for ea
h of the above problems. The fourth problem WATER

is a �ve-obje
tive and seven-
onstraint problem, attempted to solve in [15℄. With �ve obje
tives, it is diÆ
ult to dis
uss

the e�e
t of the 
onstraints on the un
onstrained Pareto-optimal region. In the next subse
tion, we show all

�

5

2

�

or 10

pair-wise plots of obtained non-dominated solutions.

D. Simulation Results

In all problems, we use a population size of 100, distribution indi
es for real-
oded 
rossover and mutation operators

of 20 and 100, respe
tively, and run NSGA-II (real-
oded) and Ray, Kang, and Chye's 
onstrained handling algorithm

[15℄ for a maximum of 500 generations. We 
hoose this rather large number of generations to investigate if spread in

solutions 
an be maintained for a large number of generations. However, in ea
h 
ase, we obtain a reasonably good

spread of solutions at early as at 200 generations. Crossover and mutation probabilities are the same as before.

Figure 15 shows the obtained set of 100 non-dominated solutions after 500 generations using NSGA-II. The �gure

shows that NSGA-II is able to uniformly maintain solutions in both Pareto-optimal region. It is important to note

that in order to maintain a spread of solutions on the 
onstraint boundary, the solutions must have to be modi�ed in a

parti
ular manner di
tated by the 
onstraint fun
tion. This be
omes a diÆ
ult task of any sear
h operator. Figure 16

shows the obtained solutions using Ray-Kang-Chye's algorithm after 500 generations. It is 
lear that NSGA-II performs
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better than Ray-Kang-Chye's algorithm in terms of 
onverging to the true Pareto-optimal front and also in terms of

maintaining a diverse population of non-dominated solutions.
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Fig. 15. Obtained non-dominated solutions with NSGA-II on the


onstrained problem DEB.
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Fig. 16. Obtained non-dominated solutions with Ray-Kang-Chye's

algorithm on the 
onstrained problem DEB.

Next, we 
onsider the test problem SRN. Figure 17 shows the non-dominated solutions after 500 generations using

NSGA-II. The �gure shows how NSGA-II 
an bring a random population on the Pareto-optimal front. For illustrating

the feasible sear
h spa
e, we have 
reated a number of random feasible solutions and plotted with `dots' on the same

�gure. Ray-Kang-Chye's algorithm is also able to 
ome 
lose to the front on this test problem (Figure 18).
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Fig. 17. Obtained non-dominated solutions with NSGA-II on the


onstrained problem SRN.
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Fig. 18. Obtained non-dominated solutions with Ray-Kang-Chye's

algorithm on the 
onstrained problem SRN.

Figures 19 and 20 show the feasible obje
tive spa
e and the obtained non-dominated solutions with NSGA-II and Ray-

Kang-Chye's algorithm. Here, the Pareto-optimal region is dis
ontinuous and NSGA-II does not have any diÆ
ulty in

�nding a wide spread of solutions over the true Pareto-optimal region. Although Ray-Kang-Chye's algorithm has found

a number of solutions on the Pareto-optimal front, there exists many infeasible solutions even after 500 generations.

Ray, Kang, and Chye [15℄ have used the problem WATER in their study. They normalized the obje
tive fun
tions in

the following manner:

f

1

=8(10

4

); f

2

=1500; f

3

=3(10

6

); f

4

=6(10

6

); f

5

=8000:
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Fig. 19. Obtained non-dominated solutions with NSGA-II on the


onstrained problem TNK.
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Fig. 20. Obtained non-dominated solutions with Ray-Kang-Chye's

algorithm on the 
onstrained problem TNK.

Sin
e there are �ve obje
tive fun
tions in the problemWATER, we observe the range of the normalized obje
tive fun
tion

values of the obtained non-dominated solutions. Table VII shows the 
omparison with Ray-Kang-Chye's algorithm. In

TABLE VII

Lower and upper bounds of the obje
tive fun
tion values observed in the obtained non-dominated solutions.

Algorithm f

1

f

2

f

3

f

4

f

5

NSGA-II 0.798 { 0.920 0.027 { 0.900 0.095 { 0.951 0.031 { 1.110 0.001 { 3.124

Ray-Kang-Chye 0.810 { 0.956 0.046 { 0.834 0.967 { 0.934 0.036 { 1.561 0.211 { 3.116

most obje
tive fun
tions, NSGA-II has found a better spread of solutions than Ray-Kang-Chye's approa
h. In order

to show the pair-wise intera
tions among these �ve normalized obje
tive fun
tions, we plot all

�

5

2

�

or 10 intera
tions

in Figure 21 for both algorithms. NSGA-II results are shown in the upper diagonal portion of the �gure and the Ray-

Kang-Chye results are shown in the lower diagonal portion. The axes of any plot 
an be obtained by looking at the


orresponding diagonal boxes and their ranges. For example, the plot at the �rst row and third 
olumn has its verti
al

axis as f

1

and horizontal axis as f

3

. Sin
e this plot belongs in the upper side of the diagonal, this plot is obtained using

NSGA-II. In order to 
ompare this plot with a similar plot using Ray-Kang-Chye's approa
h, we look for the plot in

the third row and �rst 
olumn. For this �gure, the verti
al axis is plotted as f

3

and the horizontal axis is plotted as

f

1

. To get a better 
omparison between these two plots, we observe Ray-Kang-Chye's plot as it is, but turn the page

90 degrees in the 
lo
kwise dire
tion for NSGA-II results. This would make the labelling and ranges of the axes same

in both 
ases.

We observe that NSGA-II plots have better-formed patterns than in Ray-Kang-Chye's plots.

For example, �gures f

1

-f

3

, f

1

-f

4

, and f

3

-f

4

intera
tions are very 
lear from NSGA-II results. Although similar patterns

exist in the results obtained using Ray-Kang-Chye's algorithm, the 
onvergen
e to the true fronts is not adequate.

VII. Con
lusions

In this paper, we have proposed a 
omputationally fast and elitist multi-obje
tive evolutionary algorithm based on

non-dominated sorting approa
h. On nine di�erent diÆ
ult test problems borrowed from the literature, it has been found

that the proposed NSGA-II has been able to maintain a better spread of solutions and 
onvergen
e in the obtained non-

dominated front 
ompared to two other elitist multi-obje
tive EAs|PAES and SPEA. However, on one problem PAES

has been able to somewhat better 
onverge 
lose to the true Pareto-optimal front. PAES maintains diversity among

solutions by 
ontrolling 
rowding of solutions in a deterministi
 and pre-spe
i�ed number of equal-sized 
ells in the sear
h

spa
e. In that problem, it is suspe
ted that su
h a deterministi
 
rowding 
oupled with the e�e
t of mutation-based

approa
h has been bene�
ial in 
onverging near the true front 
ompared to the dynami
 and parameter-less 
rowding
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Fig. 21. Upper diagonal plots are for NSGA-II and lower diagonal plots are for Ray-Kang-Chye's algorithm. Compare (i; j) plot (Ray-

Kang-Chye's algorithm with i < j) with (j; i) plot (NSGA-II). The label and ranges used for ea
h axis are shown in the diagonal

boxes.

approa
h used in NSGA-II and SPEA. But, the diversity preserving me
hanism used in NSGA-II is undoubtedly the

best among all three approa
hes.

On a problem having strong parameter intera
tions, NSGA-II has been able to 
ome 
loser to the true front than other

two approa
hes. But the important matter is that all three approa
hes fa
ed diÆ
ulties in solving this so-
alled highly

epistati
 problem. Although this has been a matter of on-going resear
h in single-obje
tive EA studies, this paper shows

that highly epistati
 problems may also 
ause diÆ
ulties to multi-obje
tive EAs. More importantly, resear
hers in the

�eld must keep in mind of solving su
h problems while developing a new algorithm for multi-obje
tive optimization.

We have also proposed a simple extension to the de�nition of dominan
e for 
onstrained multi-obje
tive optimization.

Although this new de�nition 
an be used with any other multi-obje
tive EAs, the real-
oded NSGA-II with this de�-

nition has been shown to solve four di�erent problems mu
h better than another re
ently-proposed 
onstraint handling

approa
h.

With the properties of a fast non-dominated sorting pro
edure, an elitist strategy, a parameter-less approa
h, and a

simple yet eÆ
ient 
onstrained handling method, NSGA-II should �nd in
reasing attention and appli
ations in the near
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future.
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