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Abstract—This article comments on the development of Evo-

lutionary Computation (EC) in the field of global optimization.

A brief overview of EC fundamentals is provided together with

the discussion of issues of parameter settings and adaptation,

advances in the development of theory, new ideas emerging

in the EC field and growing availability of massively parallel

machines.
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1. Evolution of Evolutionary

Computation

Since 1980’ies we have been witnessing a growing popular-

ity of a family of algorithmic techniques which originated

in 1960’ies and have been inspired by findings in fields of

genetics and natural evolution. Although many pioneering

approaches had been introduced (see [1] for an overview),

only several survived and are nowadays called the Evo-

lutionary Computation (EC) [2]. Until mid 1990’ies, the

mainstream EC work was presented at three major con-

ferences: International Conference on Genetic Algorithms

(ICGA), Parallel Problem Solving from Nature (PPSN) and

Workshop on Foundations of Genetic Algorithms (FOGA).

In 1994 the IEEE Congress on Evolutionary Computation

(CEC) was started, in 1995 the Genetic Programming (GP)

conference was launched, and the year 1999 witnessed the

birth of the annual Genetic and Evolutionary Computation

Conference (GECCO) which combines the ICGA and the

GP in one event. Two recognized international journals

publish works on the EC: since 1993, the MIT Press has

been releasing the Evolutionary Computation journal and

the IEEE has been publishing the Transactions on Evolu-

tionary Computation since 1997. The Polish accent is the

annual National Conference on Evolutionary Computation

and Global Optimization which started in 19961.

The idea behind the EC is quite straightforward – take

a population of points from some search space, assign them

numbers that reflect their probability to survive the selec-

tion process, and perform a randomized selection. The

selected points undergo a randomized variation, yielding

a new population of points, and the process is iterated many

times. Despite of the simplicity of the idea, several named

approaches have been defined that usually differ only in

1In year 2011 the conference was organized in Warsaw by the Warsaw

University of Technology and Cardinal Stefan Wyszynski University.

small details. A newcomer to the EC field may be greatly

surprised by recognizing that it includes:

– Differential Evolution,

– Evolution Strategies,

– Evolutionary Programming

– Genetic Algorithms,

– Genetic Programming,

– Memetic Algorithms,

to mention only few important branches in an alphabetical

order.

When studying EC methods one has to get used to the

metaphor of genetics and evolution, which strongly influ-

enced the vocabulary. Instead of points from the search

space we speak of chromosomes (or individuals), instead

of the objective function to be optimized we speak of the

fitness function which defines the selection probability, vari-

ation of points is performed by the genetic operations which

are called crossover and mutation, etc.

A popular opinion about EC is that an important factor

that attracted researches to take a closer look at the EC is

the appealing metaphor. Perhaps this observation motivated

researchers to look for other metaphors from the nature, and

since late 1990’ies we have been observing a tendency to

introduce various population based techniques which share

the idea of selection and variation, but they are named (in

an alphabetical order):

– Artificial Immune Systems [3], [4],

– Estimation of Distribution Algorithms [5],

– Particle Swarm Optimization [6],

to mention a few representatives. A common name of meta-

heuristics has been suggested for the EC and the aforemen-

tioned techniques to avoid a naming burden [7], [8].

In this article it is attempted to comment on the current state

of the EC, which is a very hard task and will be always

more or less subjective. Therefore the bibliography will be

presented that provides more detailed descriptions of ideas

that have been roughly sketched in the text. Much more

detailed general presentation of EC methods can be found

inter alia in [2], [9], [10], [11].

The paper is composed of four sections. The first section

briefly comments on the history of EC development. Sec-

tion 2 overviews the taxonomy of optimization tasks that
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are considered along with the EC and outlines the algo-

rithm of a typical EC method for global optimization. In

Section 3 it is attempted to define main lines of the EC

development for global optimization that can be found in

the literature. Section 4 presents concluding remarks and

outlooks possible future development trends.

2. Evolutionary Computation and

Optimization

2.1. Taxonomy of Optimization Tasks

Current applications of the EC are usually related to opti-

mization of various kind. With D let us denote the domain

of a problem to be solved (i.e., the set of all possible repre-

sentations of the solution). The domain contains points that

are feasible, i.e., any infeasible point is definitely not a so-

lution. They can be evaluated using the objective function

q : F → R, where F ⊆ D is the set of feasible solutions.

Then the optimization task is defined as the task to find

either the global minimum or any local minimum of the

objective function. Depending on the domain type we can

distinguish:

– combinatorial optimization when the domain is

countable or finite, e.g., D is the set of binary vectors,

the set of permutations or the set of graphs,

– continuous optimization when the domain is Rn.

If F 6= D then the optimization task is a constrained one.

Some researchers consider the multimodal optimization

where in addition to the global optimum, the solver is

expected to find as many local optima as possible. For

an overview of optimization problems and methods with

a particular stress on the global optimization the reader is

referred to [12]–[14].

Another generalization of the optimization task which has

gained a growing attention for past 10 years in the EC com-

munity is the multiobjective optimization where, instead

the objective function, a mapping is considered q : F→Rm.

Then the task is to find nondominated points, where a point

x ∈ F is called nondominated when there exists no other

point y∈ F such that for all i = 1, ...,m qi(y)≤ qi(x) and

for some j it holds q j(y) < q j(x).
From the historical perspective, early EC methods have not

been designed as optimization tools (cf. a famous state-

ment “Genetic algorithms are not function optimizers” by

Kenneth de Jong [15]). They have been viewed in terms

of adaptation which is less strict and formalized than op-

timization. Moreover it is even not necessary to explicitly

define any objective function, e.g., in the tournament se-

lection, it is only needed to compare two points to choose

the better one. Still it has become a common practice to

use EC methods as optimization tools. This practice has

been criticized by Wolpert and Macready in their famous

No Free Lunch Theorem (NFL) for optimization [16]. They

claimed that no search method would perform consistently

better than any other if one considers all objective functions

which can be defined in the search space. Publication of

NFL was initially somewhat shocking for researchers work-

ing on the EC development since its naive interpretation led

to the conclusion that no real development is possible. This

interpretation of NFL was then criticized by authors who

showed that although NFL is correct, it does not necessary

mean that all algorithms are equally good for subsets of

problems defined in the search space [17].

EC has a strong relationship to artificial intelligence (AI).

Maybe the most popular application of EC methods in

AI is the Neural Network (NN) training process. The link

between the EC and NNs is so strong that it gave an inspi-

ration to establish in 1993 the International Conference on

Genetic Algorithms and Neural Networks (ICANNGA). If

we take a perspective that the optimization task consists in

learning the global optimum using the experience gathered

from previously generated points, then we can agree that

EC can be classified as an AI method [18].

Stress on optimization properties of the EC has been in-

creasing during their development. It seems that this is

a natural consequence of the tendency to apply EC meth-

ods in practice. It is also possible to theoretically analyze

behavior of an EC method using the same terms as in-

troduced for well-established optimization tools. Thus the

theoretical analysis of EC methods often concentrates on

the convergence in a weak sense [19], [20].

Development of EC methods as optimization tools has been

facilitated by benchmark functions; some of them have been

introduced even in mid-1970’ies [21]. Until very recently

there was however no clear agreement about the testing

procedure, which made the published results hardly com-

parable. Few years ago there have been two benchmark

sets introduced which define a standardized testing proce-

dure and criteria for evaluating optimization methods based

on statistics of results from multiple independent runs of

each method [22], [23]. It should be however noted that,

although the benchmarking process is usually limited to

search spaces containing either binary or real vectors, there

are many EC applications where specific nonstandard rep-

resentations are processed [11]. It seems that the ability to

process such nonstandard representations is one of major

advantages of EC.

2.2. Evolutionary Algorithm for Global Optimization

A typical Evolutionary Algorithm (EA) is depicted in

Fig. 1. State of the algorithm in the iteration number t

is defined by the population Pt which contains µ points;

the i-th point is labeled with Pt
i . In each iteration a pop-

ulation Ot is created by mutation and crossover of points

selected from Pt . Population Pt+1 is defined by a replace-

ment procedure that either accepts points from Ot only or

allows to pass some points from Pt . Selection of points

is a random process which favors better ones, i.e., points

with a lower objective function value (in the minimization

case) will be selected with a higher probability than others.

In the replacement phase the new population is defined by
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selecting points from Ot and Pt . In generational EAs, the

replacement is defined simply as Pt+1 ← Ot and in elitist

EAs a number of best points from Pt can be preserved.

When the EA is to solve the global optimization problem,

typical mutation is performed as Ot
i ← Pt

k + z where z is

a random variate which is normally distributed with zero

mean vector and a covariance matrix C. Typical crossover

consists in averaging points which results in the following

formula for the “mutation and crossover” operation

Ot
j←

(

w ·Pt
k +(1−w) ·Pt

l

)

+ z ,

where w is a vector of weights such that 0 ≤ w j ≤ 1 for

all j, and the symbol ‘·’ stands for the component-wise

product such that a ·b yields a vector c and c j = a jb j. When

w j = 1/2 we speak of the arithmetic crossover. When w j is

a random variate with the Bernoulli distribution we speak

of the binomial crossover, and when the probabilities of

getting 0 and 1 are equal we speak of the uniform crossover.

There are no good indications about the stop criterion since

there are no theoretical findings about the EA convergence

speed that can be applied for sufficiently general classes of

problems (but there exists the convergence speed analysis

for the parabola function provided e.g. in [24], [25]). For

this reason the stop criterion is usually based on the time

budget.

t← 0

P0← initialization()

repeat

for all i = 1, . . . ,µ do

if U(0,1) < pc then

k, l← select from (1, . . . ,µ)

Ot
i ← mutation and crossover(Pt

k,P
t
l )

else

k← select from (1, . . . ,µ)

Ot
i ← mutation(Pt

k)
end if

end for

Pt+1← replacement(Pt,Ot)
t ← t + 1

until stop condition satisfied

Fig. 1. Outline of an example evolutionary algorithm for global

optimization.

The EA is a random procedure, therefore its action can

be described in terms of the probability theory and statis-

tics. For binary encoded EAs there is a well developed

and widely accepted theory which analyzes populations Pt

as a Markov chain [26]. It is possible to analyze statistics

of populations, e.g., to check if the probability of hitting

the global optimum at least once increases with the gener-

ation index or to test if the most frequent population con-

tents will contain the global optimum. Another approach

to analyze binary encoded EAs is presented by the schema

analysis which analyzes schemata – sets of solutions de-

fined by similarity patterns. It is argued that schemata with

over-average fitness are expected to increase their number

of representatives in subsequent populations.

In real coded EAs which are used to perform global opti-

mization it has been proved that weak convergence will be

observed if it is possible with a nonzero probability that

the EA will generate a finite series of points starting from

any feasible point and terminating in a neighborhood of

any other feasible point, provided that the neighborhood

is a nonzero measure set [19]. This result, although im-

portant, does not give any information about the dynamics

of the population contents. This can be achieved by ap-

plying an analysis of the population distribution dynamics

that assumes an infinite population model introduced by

Qi and Palmieri [27]. This model has been revisited by

Karcz-Duleba [28], [29] and Arabas [30] who derived for-

mulas for the limiting values of the population variance in

the search space for typical selection methods, Gaussian

mutation, arithmetic crossover and elite factor.

3. Selected Topics in Development

of EC Methods for Global Optimization

Various mutation types. Gaussian mutation is a very pop-

ular choice when using the EA for global optimization.

The normal distribution is however “thin tailed” and com-

puter realizations of the normal random variable usually

cannot generate points located further than, say, 5 times

the standard deviation from its mean. This fact motivated

researchers to look for other mutation schemes and in the

results several alternative definitions have been introduced,

including α-stable mutations and Differential Evolution.

The α-stable distribution has a property that its probability

density function in the tail can be approximated by a func-

tion proportional to exp(−xα). It is stable in a sense that

the sum of α-stable distributed variates is also α-stable

distributed. Value of α = 2 corresponds to the normal dis-

tribution. When α < 2 the distribution becomes “fat tailed”

which means that when α decreases it will be more and

more probable to generate a variate from the tail, which

may significantly increase the population diversity. A de-

tailed discussion of α-stable mutation is provided in [31].

Differential Evolution (DE) is sometimes classified as a sep-

arate metaheuristic type but the type of variation allows to

consider it as an approach to the mutation adaptation. The

most innovative idea introduced in DE is to perform muta-

tion according to the formula

Ot
i = Pt

j + F (Pt
k−Pt

l ) ,

where Pt
j is the mutated point, F is a parameter called the

scaling factor and k and l are indices of points from Pt

that have been selected with the uniform distribution in

{1, ...,µ}. Thus the distribution of mutants depends on the

distribution of population Pt , which allows for its adaptation

to the fitness function shape. DE differs also in the way of

organizing relations between crossover and mutation. More

details on DE can be found in [32].
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Compact EAs and Estimation of Distribution Algo-

rithms. In a classical EA the algorithm state is defined by

the population contents, and the EA action can be described

by the sampling distribution – the probability distribution

that describes the process of generating one point from the

population Ot . In compact EAs, as well as in Estimation of

Distribution Algorithms (EDAs), the sampling distribution

takes the role of the state definition and defines in the same

time the process of generating points. In the compact EA

in each iteration a small number of points (usually one or

two) are generated and the sampling distribution is updated.

In the EDA a number of points is generated and the new

sampling distribution is estimated from them.

The most successful representative of the EDA line of al-

gorithms is the Covariance Matrix Adaptation Evolution

Strategy (CMAES) [33]. According to results of bench-

marking on BBOB’09 and CEC’05 [22], [34], CMAES

seems to be one of the most successful methods in EC.

In CMAES the sampling distribution is normal and it is

represented by the mean vector m and the covariance ma-

trix C. In the iteration t the sampling distribution is used to

generate the population Pt . Then a population e(Pt) being

a fraction of best points from Pt is selected which is used

to compute the mean vector m′ = E(e(Pt)) and the matrix

C′= E((Pt−m′)2). Values of m′ and C′ are used to update

the parameters m and C for the next iteration.

Tuning parameter values. Practitioners which are poten-

tial users of optimization methods usually dream of a single

magic button to press and get the problem solved. There-

fore the chance that an optimization method will become an

acceptable tool for practitioners increases when the method

assumes smaller number of parameters. Unfortunately, ba-

sic EAs are characterized by many parameters with no clear

intuition about their relation with efficiency. For example

in the standard EA presented in Fig. 1 the user has to set

the values of the population size, the covariance matrix of

the Gaussian mutation, the crossover probability and the

elite fraction. To reduce the set of user-defined parameters,

diversity of adaptation techniques have been developed –

see e.g. [35], [36] for an overview. Note that the DE and

CMAES fit into the line of adaptive methods to tune the

mutation distribution.

Among currently popular approaches to parameter tuning

one can distinguish two dominating types. The first one is

self-adaptation, where each point is coupled with the algo-

rithm’s parameter values. During mutation, the parameter

values are also mutated. Is is believed that appropriate

parameter values will be more frequently accompanying

points that are better than average and therefore they will

be reinforced by the selection process. Another popular

approach is based on an ensemble of a finite number of

parameter settings. Every settings is evaluated by looking

at the average increase of quality of points before and after

applying transformations defined by the parameter settings.

Choice of the parameter settings is randomized and is influ-

enced by their cumulated evaluation – values of parameters

that are on the average better than others are more likely to

be chosen to perform the transformation.

Hierarchy of metaheuristics. As mentioned in the intro-

ductory section there is a variety of approaches in domains

of the EC and metaheuristics. Therefore a tendency has ap-

peared to consider hybrid techniques of various kind. Gen-

erally speaking, the hybridization may be either generic or

hierarchical. In the first case, elements from one meta-

heuristic may change the algorithm of the other. A good

example is to introduce to the standard DE a self-adaptation

process, which was originally introduced for Evolution

Strategies. In the second case, one metaheuristic method

is used to control the other, e.g., by tuning its parameters

(metaoptimization [37]).

Parallelization. In every iteration the EA processes many

points from the population Pt to define the population Pt+1.

Observe that the process of selection, crossover and muta-

tion can be done separately for each point from the popu-

lation Ot . Therefore there is a long tradition of EA paral-

lelization. Until very recently the parallelization was lim-

ited by the hardware, since massively parallel computers

were expensive and relatively hard to access. Now we are

witnessing a big change thanks to the introduction of Gen-

eral Purpose Graphic Processing Units (GPUs). GPUs are

multicore processors with typical number of cores of the

order of hundreds. It is possible to program them under

a number of higher-level programming languages, and the

most popular toolkits that allow for this are CUDA and

openCL (see e.g. a comparison of performance in [38]).

A serious limitation of GPUs is that the cores must be run in

a Single Instruction Multiple Data regime. If the problem

definition allows to work in this mode then the user can

count on very interesting speedup values of several tens

up to several hundreds when comparing the total execution

time of a program working with and without the GPU card.

A convenient software platform to start from is called

EASEA and has been maintained by the team from the

Strasbourg University [39]. The platform uses CUDA and

it allows the user to concentrate on programming the prob-

lem definition since many standard EA version have been

preprogrammed as EASEA templates. The programming

language is a dialect of C++. An alternative attempt to the

use of openCL to implement an EA on GPU can be found

e.g. in [40].

4. Concluding Remarks

Analysis of the dynamics of the EA population reveals two

interleaving phases: the quasi-stability of the sampling dis-

tribution, when the population oscillates in an area of the

domain for many iterations, and the population drift when

the population changes its location in a more systematic

way, which takes only few generations. When looking at

the dynamics of the EA development, a similar pattern can

be recognized. For this reason it is quite easily predictable

that the current trends of development will remain current
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for several years, but it seems also quite possible that it will

be not much to win by continuing them.

In the author’s personal opinion, what really lacks in EA is

a tighter link between theory and practice. It seems that the

bottleneck is definitely on the side of theory. Theoreticians

are used to consider optimization problems where the stress

is on the convergence. This kind of analysis may imply that

the EA should possess some element of a “pure chance” that

will allow to reach any nonempty neighborhood of every

point by transformation of any point from the domain. In

the light of this criterion the EA is a method which is worse

than the random walk or the uniform sampling since for

these methods the probability of such an event is highest!

Similarly, when looking at the rate of progress obtained for

the parabola function, EAs cannot compete against pseudo-

Newton methods.

It seems that the focus of the analysis should be changed.

One hopeful direction seems to consider the ability of the

population to escape from the neighborhood of a local op-

timum [41]. This ability relates to the maintenance of the

diversity level. Only few works on this issue can be found

in the literature (see [30] for an overview). The other pos-

sible direction is to observe that EA adapts the populations’

location such that better points are more likely to appear.

This does not necessary imply that the most interesting area

for an EA is the neighborhood of the global optimum, since

it may too “narrow” in comparison to the populations’ di-

versity. This effect is sometimes called the “survival of the

flattest”.

It should be also stressed that if an EA is used as a tool to

solve e.g., some engineering problem, it uses an objective

function which is the problem model. For this reason, even

if the global optimization has succeeded, this means that the

problem model, rather the problem itself, has been really

solved. There is a need for systematic treatment of such

situations.

It seems that the hot topic for the next few years will be-

come the use of massively parallel computing offered by

programmable GPUs. The ability to evaluate in parallel

a huge number of points may shift the interest from so-

phisticated methods, which use a small number of points

but need a large number of iterations (a typical situation for

adaptive EAs), towards simpler methods that can effectively

use massive parallelism. Perhaps this will change the crite-

ria of benchmarking various EA methods, since the number

of generations will influence the execution time rather than

the number of the objective function evaluations.
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