
Paper The “Second Derivative”

of a Non-Differentiable Function and its Use

in Interval Optimization Methods
Bartłomiej Jacek Kubica

Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland

Abstract—The paper presents an idea to use weak derivatives

in interval global optimization. It allows using the Newton

operator to narrow domains of non-differentiable functions.

Preliminary computational experiments are also presented.

Keywords—Dirac delta, distributions, generalized derivative, in-

terval computations, interval Newton method, non-differentiable

optimization.

1. Introduction

Optimization algorithms for differentiable problems are

well established and sophisticated. Also for non-smooth,

but Lipschitz-continuous objective functions there are well-

known methods. Replacing gradients with so-called sub-

gradients allows to create analogs of several gradient-based

methods for non-differentiable problems. For interval al-

gorithms virtually no changes are needed [1].

In this paper it is proposed to extend this approach to using

an analog of the second derivative.

2. Interval methods

Interval methods are a robust approach to global optimiza-

tion.

Here, we shall recall some basic notions of intervals and

their arithmetic. We follow a widely acknowledged stan-

dards (cf., e.g., [2], [3], [1]).

We define the (closed) interval [x,x] as a set {x ∈ R | x ≤
x ≤ x}.

Following [4], we use boldface lowercase letters to denote

interval variables, e.g., x, y, z, and IR denotes the set of

all real intervals.

We design arithmetic operations on intervals so that the

following condition is fulfilled: if we have ⊙∈ {+,−, ·,/},

a ∈ a, b ∈ b, then a⊙ b ∈ a⊙b. The actual formulae for

arithmetic operations (see, e.g., [1], [2]) are as follows:

[a,a]+ [b,b] = [a+ b,a + b] ,

[a,a]− [b,b] = [a−b,a−b] ,

[a,a] · [b,b] = [min(ab,ab,ab,ab),max(ab,ab,ab,ab)] ,

[a,a] / [b,b] = [a,a] ·
[

1/b,1/b
]

, 0 /∈ [b,b] .

The so-called extended interval arithmetic allows division

by an interval containing zero, not covered by the above

formulae. The basic idea is that the result of such a divi-

sion should be the set of all possible results of the division

operation, executed on numbers from the argument inter-

vals. We give here the formulae of Kahan–Novoa–Ratz

arithmetic, following [1]:

a/b =























































a · [1/b,1/b] for 0 /∈ b

[−∞,+∞] for 0 ∈ a and 0 ∈ b

[a/b,+∞] for a < 0 and b < b = 0

[−∞,a/b]∪ [a/b,+∞] for a < 0 and b < 0 < b

[−∞,a/b] for a < 0 and 0 = b < b

[−∞,a/b] for 0 < a and b < b = 0

[−∞,a/b]∪ [a/b,+∞] for 0 < a and b < 0 < b

[a/b,+∞] for a < 0 and 0 = b < b

/0 for 0 /∈ a and 0 = b

.

The definition of interval vector x, a subset of R
n is straight-

forward: R
n ⊃ x = x1×·· ·×xn. Traditionally interval vec-

tors are called boxes.

Links between real and interval functions are set by the

notion of an inclusion function, see, e.g., [3]; also called

an interval extension, e.g., [1].

Definition 1: A function f : IR → IR is an inclusion func-

tion of f : R→ R, if for every interval x within the domain

of f the following condition is satisfied:

{ f (x) | x ∈ x} ⊆ f(x) .

The definition is analogous for functions f : R
n → R

m.

When computing interval operations, we can round the

lower bound downward and the upper bound upward. This

will result in an interval that will be a bit overestimated,

but will be guaranteed to contain the true result of the

real-number operation.

Using these notions we can formulate the interval branch-

and-bound (b&b) optimization algorithm, in the following

way:

Branch-and-bound-method (x(0), f);

// x(0) is the initial box

// f(· · ·) is the interval extension of the objective function

// Lsol is the list of solutions

[y(0), y(0)] = f(x(0));
compute fmin = the upper bound on the global minimum

(e.g. objective value in a feasible point);

L = {(x(0),y(0))};

81

Bartłomiej Jacek Kubica

Lsol = /0;

while (L 6= /0) do

x = the element of L with the lowest function

value underestimation;

compute the values of interval extensions of the

constraint functions;

if (x is infeasible) then discard x;

update fmin if possible;

perform other rejection/reduction tests on x;

if (x is verified to contain a unique critical point or

x is small and not infeasible) then

add x to Lsol;

else

bisect x to subboxes x(1) and x(2);

compute lower bounds y(1) and y(2) on the function

value in the obtained boxes;

delete x from L;

for i = 1, 2 do

put (x(i),y(i)) on the list L preserving the

increasing order of the lower bounds;

end for

delete from L boxes with y(i) > fmin;

end if

end while

delete from Lsol the boxes with y(i) > fmin;

return Lsol;

end Branch-and-bound-method

3. Using Weak Derivatives of a Function

What is less obvious is that for non-smooth problems we

can also have an analog of the second derivative. All in-

tegrable functions – even non-differentiable ones – have

so-called Sobolev generalized derivatives (also known as

weak derivatives). These derivatives do not have to be

functions, but may belong to a wider class of distributions

(generalized functions) sometimes (see, e.g. [5], [6], [7]).

Consider the following examples:

Example 1 – the absolute value function.

f (x) = |x| , x ∈ [−3,5] .

Its weak derivative can be expressed as the following mul-

tifunction:

D f

Dx
=







−1 , for x < 0 ,

1 , for x > 0 ,

[−1,1] , for x = 0 .

More precisely, the weak derivative is a selection of the

above multifunction.

And the second derivative is the following distribution:

D2 f

Dx2
= 2δ (x) .

We can approximate it using interval methods. The only

thing we need is an interval extension of the Dirac delta.

And such an extension can be developed quite simply:

δδδ (x) =

{

[0,0], if 0 /∈ x ,

[0,+∞] else.
(1)

The classical Newton operator takes – in the univariate

case – a well known form:

xnew = N(x) = x−
f ′(x)

f ′′(x)
.

When the second derivative is the Dirac delta, the above

operator does not seem very useful. Dirac delta returns

either 0 (mostly) or infinity – making the division operation

undefined. However, using formula (1) and the interval

Newton operator (see, e.g., [1], [2]):

N(x) = midx−
f
′(midx)

f ′′(x)
,

xnew = N(x)∩x ,

we can still obtain useful results. For the interval x=[−3,5]
we get midx=1, f

′(midx)=1 and f
′′(x)=[0,∞], so – using

the Kahan-Novoa-Ratz extended interval arithmetic [1] –

we obtain:

N(x) = 1−
1

[0,∞]
= 1− [0,∞] = [−∞,1] ,

which intersected with the original interval [−3,5] gives

[−3,1]; an interval reduced by half.

Please note that the function is not monotone in the con-

sidered interval, so no monotonicity test (using only sub-

gradients) would allow us to narrow the domain without

branching.

The above result has been obtained for the least promising

case probably. Let us consider a “more friendly” objective.

Example 2.

f (x) = x2 + |x| , x ∈ [−3,5] .

Its weak derivative can be expressed as:

D f

Dx
=







2x−1 , for x < 0 ,

2x + 1 , for x > 0 ,

[−1,1] , for x = 0 .

The second derivative is:

D2 f

Dx2
= 2 + 2δ (x) .

Now for the interval x = [−3,5], we get:

N(x) = 1−
3

[2,∞]
= 1− [0,1.5] = [−0.5,1] .

So, both endpoints of the interval have been improved!

The remainder of the paper considers examples of prob-

lems that can be solved using the proposed methodology.

82

The “Second Derivative” of a Non-Differentiable Function and its Use in Interval Optimization Methods

Apparently, use of the second weak derivative is superior

to using generalized gradients only – at least for some

problems.

4. Computational Experiments

Numerical experiments were performed on a computer with

16 cores, i.e., 8 Dual-Core AMD Opterons 8218 with

2.6 GHz clock. The machine ran under control of a Fedora

15 Linux operating system.The solver was implemented in

C++, using C-XSC 2.5.1 library [8] for interval compu-

tations and automatic differentiation. To deal with non-

smooth functions, e.g., min() and max(), the automatic dif-

ferentiation code had to be modified (files hess_ari.hpp

and hess_ari.cpp). The interval global optimization al-

gorithm, on the other hand, did not have to be modified

significantly (see e.g. [1]); only some maintenance changes

were done.

The following optimization problems were considered.

min
x

f1(x) =
n

∑
i=1

|xi| , (2)

s.t.

xi ∈ [−3,5.5], i = 1, . . . ,n .

min
x

f2(x) =
n

∑
i=1

(

x2

i + |xi|
)

, (3)

s.t.

xi ∈ [−3,5.5], i = 1, . . . ,n .

min
x

f3(x) =
n

∑
i=1

(−1)i+1 · |xi| , (4)

s.t.

xi ∈ [−3,5.5], i = 1, . . . ,n .

min
x1,x2

f4(x1,x2,x3) = |x4

1 −1|+ |x2|− |x3| , (5)

s.t.

x1,x2,x3 ∈ [−3,5.5] .

min
x1,x2

f5(x) = max{−(x−1)2,−(x + 1)2} , (6)

s.t.

x ∈ [−0.5,1.0] .

Tables 1–5 contain the results for these problems. Follow-

ing fields are:

• var – the number of decision variables of the prob-

lem (for functions (2)–(6), where this number may

be arbitrary),

• fun – the number of objectives evaluations required,

• grad – the number of objective’ gradients evaluations

required,

• Hesse – the number of objective’ Hesse matrices

evaluations required,

• bis – the number of boxes’ bisections required,

• box – the number of resulting boxes, approximating

the set of solutions.

Fields “fun”, “grad”, “Hesse” and “bis” are all some kind

of measure of the algorithm performance. It seems the

number of bisections (roughly corresponding to the number

of iterations) is the best measure, but all of them should be

taken into account.

Table 1

Results for problem Eq. (2)

1st order

var fun grad Hesse bis box

1 51 27 25 24 1

2 99 53 49 48 1

4 195 113 97 96 1

8 387 225 193 192 1

16 771 481 385 384 1

32 1539 961 769 768 1

64 3075 2049 1537 1536 1

2nd order

var fun grad Hesse bis box

1 29 26 14 13 1

2 39 35 19 18 1

4 53 46 26 25 1

8 73 59 36 35 1

16 107 79 53 52 1

32 173 114 86 85 1

64 301 179 150 149 1

Table 2

Results for problem Eq. (3)

1st order

var fun grad Hesse bis box

1 51 27 25 24 1

2 99 53 49 48 1

4 195 113 97 96 1

8 387 225 193 192 1

16 771 481 385 384 1

32 1539 961 769 768 1

64 3075 2049 1537 1536 1

2nd order

var fun grad Hesse bis box

1 7 24 23 2 1

2 11 26 25 4 1

4 19 30 29 8 1

8 35 38 37 16 1

16 67 54 53 32 1

32 131 86 85 64 1

64 259 150 149 128 1

83

Bartłomiej Jacek Kubica

Table 3

Results for problem Eq. (4)

1st order

var fun grad Hesse bis box

1 51 27 25 24 1

2 53 28 26 25 1

4 103 55 51 50 1

8 203 117 101 100 1

16 403 233 201 200 1

32 803 497 401 400 1

64 1603 993 801 800 1

2nd order

var fun grad Hesse bis box

1 29 26 14 13 1

2 37 21 15 14 1

4 43 37 21 20 1

8 61 50 30 29 1

16 89 67 44 43 1

32 139 95 69 68 1

64 237 146 118 117 1

Table 4

Results for problem Eq. (5)

fun grad Hesse bis box

1st order 192 107 96 94 2

2nd order 88 83 44 42 2

Table 5

Results for problem Eq. (6)

fun grad Hesse bis box

1st order 45 24 22 21 1

2nd order 25 23 12 11 1

5. Results

In all cases the proposed method performed much better

than the one not using the second-order information (in

terms of number of bisections, Hesse matrices evaluation,

etc.). For two variables, using the 2nd weak derivatives

seems to reduce the number of iterations by the factor

of 2. For higher dimensions, it becomes much larger –

for 64 variables it is even 10 times faster.

An interesting result was obtained for problem Eq. (3), in

Table 2. The function is convex and the proposed version

of the Newton operator allows – as shown in Example 2 –

narrowing the interval on both sides. Thus, the number

of bisections required is equal to the problem dimension

multiplied by 2; it is sufficient to cut off the bounds and

the interior can be narrowed instantly.

Yet more interesting results can be found in Table 4. Func-

tion is nonconvex, yet the performance of the b&b algo-

rithm seems even better than for convex functions. Also,

speedups gained by the use of 2nd weak derivatives seem

as good as for convex problems. This – very desired –

phenomenon should be investigated in subsequent papers,

deeper.

6. Conclusions and future work

Results presented in this paper are only preliminary, yet

very promising. For several simple functions the algo-

rithm using generalized second order derivatives required

far fewer iterations than the one using 1st order subderiva-

tives only.

Some theoretical investigation of the convergence is re-

quired. It does not seem that using the Newton operator

used with weak derivatives for non-differentiable functions

results in quadratic order of convergence; yet it is more ef-

ficient than not using this tool, the monotonicity test only.

The specific order of convergence is to be determined, yet.

Finally, the presented approach is an interesting example of

the difference of features of interval and non-interval algo-

rithms – the non-interval version of the Newton operator

based on pseudo-functions seems completely inapplicable,

as discussed in Section 3.

Acknowledgments

The paper has been done as a part of realization of the

grant for statutory activity, financed by the Dean of Faculty

of Electronics and Information Technology (WUT), titled

“Interval methods for solving nonlinear problems”.

References

[1] R. B. Kearfott, Rigorous Global Search: Continuous Problems. Dor-

drecht: Kluwer, 1996.

[2] E. Hansen and W. Walster, Global Optimization Using Interval Anal-

ysis. New York: Marcel Dekker, 2004.

[3] L. Jaulin, M. Kieffer, O. Didrit and E. Walter, Applied Interval Anal-

ysis. London: Springer, 2001.

[4] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary

and P. van Hentenryck, “Standardized notation in interval analysis”

[Online]. Available: http://www.mat.univie.ac.at/∼neum/software/

int/notation.ps.gz

[5] M. J. Lighthill, Introduction to Fourier Analysis and Generalised

Functions. Cambridge University Press, 1959.

[6] H. Marcinkowska, Dystrybucje i Przestrzenie Sobolewa. Wrocław:

Wydawnictwo Uniwersytetu Wrocławskiego, 1990 (in Polish).

[7] V. S. Vladimirov, Methods of the Theory of Generalized Functions.

Taylor & Francis, 2002.

[8] C-XSC library [Online]. Available: http://www.xsc.de

84

The “Second Derivative” of a Non-Differentiable Function and its Use in Interval Optimization Methods

Bartłomiej J. Kubica received

his Ph.D. in Computer Science

in 2006 from the Warsaw

University of Technology.

Since 2005 with WUT. Cur-

rently an assistant professor in

Complex Systems Group. He

co-organizes interval sessions

at PPAM conferences and orga-

nizes at PARA. He co-authored

a book on parallel programming and wrote several papers

and presentations. His research interests focus on inter-

val methods, optimization algorithms, multicriteria deci-

sion making, game theory and – on the other hand – mul-

tithreaded programming and parallel computations.

E-mail: bkubica@elka.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska 15/19

00-665 Warsaw, Poland

85

