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Abstract—In this paper, the concept of a multidimensional

discrete spectral measure is introduced in the context of its

application to the real-valued evolutionary algorithms. The

notion of a discrete spectral measure makes it possible to

uniquely define a class of multivariate heavy-tailed distribu-

tions, that have recently received substantial attention of the

evolutionary optimization community. In particular, an adap-

tation procedure known from the distribution estimation algo-

rithms (EDAs) is considered and the resulting estimated dis-

tribution is compared with the optimally selected referential

distribution.

Keywords— discrete spectral measure, evolutionary algorithms,

heavy-tailed distributions, mutation parameters adaptation.

1. Introduction

Evolutionary Algorithms (EAs) have been successfully ap-

plied to global optimization problems in many areas of

engineering. Their advantage over many other optimiza-

tion techniques consists in the fact that EAs are based only

on function evaluations and comparisons [1]. Thus, EAs

are able to deal successfully with problems that cannot be

easily solved by standard optimization procedures. Unfor-

tunately, the EAs also suffer from many serious drawbacks.

The most severe one is related to the appropriate choice

of their control parameters, which to a large extent deter-

mine their performance. Usually, control parameters such

as a strength of a mutation, a population size, and a selec-

tive pressure are chosen during trial-and-error process or

on the base of the expert knowledge, which, unfortunately,

is usually inaccessible or the cost of its collection exceeds

decidedly the computational cost of the optimization pro-

cess itself. One way out of these difficulties is to apply

algorithms, which make use of some heuristics and dedi-

cated techniques that aim at adjusting some of the control

parameters automatically during the optimization process.

In spite of the fact that the problem of the parameter adapta-

tion has been attacked from various angles by many authors

and a number of relevant results have already been reported

in the literature, there is still a lack of an unified theory that

addresses the problem being undertaken.

In the case of the EAs, most attention has been directed

toward a normal distribution-based mutation. Thus, several

relevant approaches to the adaptation of its parameters have

been already reported in the literature [2], [3]. On the other

hand, it is noticeable that a normal distribution does not

guarantee the highest performance of EAs, so that other

distributions have recently aroused evolutionary algorithms

community interest. In particular, a lot of attention has been

drawn to the heavy-tailed, α-stable distribution [4]–[10].

It turns out that evolutionary algorithms, which make use

of the distribution of this class, gain abilities that allow

them to find a balanced compromise between exploitation

and exploration of the search space [11].

In general, the application of the multidimensional stable

distributions to the global optimization algorithms has been

limited to the simplest cases: the mutation of the base point

obtained by adding a random vector composed of stable,

independent, random variables [6], [7], [9], [10], or an

isotropic random vector [8], [12]. This limitation causes

that many properties of the stable distributions, which can

turn out valuable in the context of the optimization pro-

cesses, are not exploited. In order to obtain the possibility

of modeling complicated dependencies between decision

variables, the Discrete Spectral Measure (DSM) is proposed

to generate a wide class of random vectors [13]. Unfor-

tunately, the mutation distribution generation for a given

parent solution is of a high time complexity. In [14], an

estimation distribution algorithm (EDA) [15] dedicated to

the evolutionary strategy (1,λ )ES is proposed. The aim

of this work is a comparative analysis of the distributions

obtained by the EDAs with optimally selected referential

distributions described in [13].

The paper is organized as follows. Multivariate α-stable

distributions are defined in Section 2. Section 3 contains

a definition and main properties of the stable random vec-

tors based on the discrete spectral measure. In Section 4,

an adaptive scheme that aims at adjusting discrete spectral

measure is briefly introduced. A set of simulation exper-

iments and their solutions are described and concluded in

Section 5. Section 6 concludes the paper.

2. Univariate Stable Distribution

Definition 1: A random variable X is stable or stable in

the broad sense if for X1 and X2 independent copies of X

and any positive constants a and b,

aX1 + bX2
d
= cX + d (1)

for some positive c and some d ∈ R and
d
= means that the

left and right random vectors have the same distribution.
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A random variable is strictly stable or stable in the nar-

row sense if Eq. (1) holds with d = 0 for all choices of a

and b.

Due to the lack of the closed form formulas for densi-

ties, the stable distribution can be most conveniently de-

scribed by its characteristic function (ch.f.) ϕ(k) – the in-

verse Fourier transform of the probability density function

(pdf). The ch.f. of the stable distribution is parameterized

by a quadruple (α,β ,σ ,µ) [16], where α (0 < α ≤ 2) is

a stability index (tail index, tail exponent or characteris-

tic exponent), β (−1 ≤ β ≤ 1) is a skewness parameter,

σ (σ > 0) is a scale parameter and µ is a location pa-

rameter. There are a variety of formulas of the ch.f. of

the stable distribution in the relevant literature. This fact is

caused by a combination of the historical evolution and nu-

merous problems that have been analyzed using specialized

forms of them. The most popular formula of the ch.f. of

X ∼ Sα(β ,σ ,µ), i.e., a α-stable random variable (called

also Lévy-stable or just stable) with parameters α , β , σ
and µ , is given by [16]:

ϕ(k) = exp
(

−σα |k|α
{

1− iβ sign(k) tan
(

−πα

2

)}

+ iµk

)

,

(2)

when α 6= 1, and

ϕ(k) = exp

(

−σ |k|
{

1 + iβ sign(k)
2

π
log |k|

}

+ iµk

)

, (3)

when α = 1.

In a general case, the complexity of the problem of simu-

lating sequences of α-stable random variables results from

the fact that there is no an analytical form for the inverse

of the cumulative distribution function (cdf) away from

the Gaussian distribution S2(0,σ ,µ), Cauchy distribution

S1(0,σ ,µ), and Lévy distribution S1/2(1, σ , µ). The first

breakthrough was made by Kanter [17], who gave a di-

rect method for simulating Sα(1,1,0) random variables, for

α < 1. In general cases the following result of Chambers,

Mallows and Stuck [18] gives a method for simulating any

α-stable random variable [7], [19].

Theorem 1: Let V and W be independent with V ∼
U(− π

2
, π

2
), W exponentially distributed with mean 1, 0 <

α ≤ 2.

1. The symmetric random variable

Z =

{

sin(αV )

(cos(V ))1/α

[

cos((α−1)V)
W

](1−α)/α
α 6= 1,

tan(V ) α = 1

has an Sα(0,1,0) = SαS distribution.

2. In the nonsymmetric case, for any −1≤ β ≤ 1, define

Bα ,β = arctan(β tan(πα/2))/α when α 6= 1. Then

Z =























sin(α(Bα,β +V ))

(cos(αBα,β )cos(V ))1/α

[

cos(αBα,β +(α−1)V)

W

](1−α)/α

α 6= 1,
2
π

[

(

π
2

+ βV
)

tan(V )−β ln
( π

2 W cos(V )
π
2 +βV

)]

α = 1

has an Sα(β ,1,0) distribution.

It is easy to get V and W from independent uniform ran-

dom variables U1,U2 ∼ U(0,1): set V = π(U1 − 1
2
) and

W = − ln(U2). Given the formulas for the simulation of

standard α-stable random variables (Theorem 1), an α-

stable random variable X ∼ Sα(β ,σ ,µ) for all admissible

values of the parameters α , β , σ and µ has the form

X =

{

σZ + µ α 6= 1,

σZ + 2
π β σ ln(σ)+ µ α = 1,

(4)

where Z ∼ Sα(β ,1,0).

Many interesting properties of α-stable distributions the

reader can find in [7], [11], [20].

3. Multivariate Stable Distribution

There are many alternative and equivalent ways to define

stable multivariate distributions [20]. One of them is based

on the form of their ch.f.

Definition 2: The ch.f. ϕ(k) = E[exp(−ikT
X)] of the ran-

dom stable vector X has the following form:

ϕ(k) = exp

(

−
∫

S(d)
|kT

s|α
(

1−isign(kT
s) tan

(πα

2

))

Γ(ds)

+ikT µ

)

(5)

for α 6= 1, and

ϕ(k) = exp

(

−
∫

S(d)
|kT

s|
(

1−i
2

π
sign(kT

s) ln |kT
s|
)

Γ(ds)

+ikT µ

)

(6)

for α = 1, where Γ(·) is the so-called spectral measure,

µµµ stands for shift vector, and

sign(x)







1 if x > 0,
0 if x = 0,

−1 if x < 0.
(7)

It turns out that a pair {Γ,µµµ} uniquely determine a stable

distribution [20]. It is worth to notice that any linear com-

bination of the components of the stable vector described

by Definition 2 is univariate α-stable variable Sα(β ,σ ,µ).
It must to stressed that the definition of stable vectors is

not straightforward and the presence of spectral measure Γ
causes that the class is not an ordinary parametric family.

In consequence, a direct definition in practical applications

is used rather occasionally. Indeed, in the subsequent part

of the paper, our attention is restricted only to the class

of stable distributions with discrete spectral measure which

possess decidedly simpler form.

4. Stable Distributions with Discrete

Spectral Measure

A DSM Γ can be defined by means of Delta Dirac distri-

bution in the following way:

Γ(·;ξξξ ,γγγ) =
ns

∑
i=1

γiδsi
(·), (8)
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where ξξξ = {si}ns
i=1,si ∈ ∂S(d) is a set of support points con-

centrated on a surface of a d-dimensional unit sphere, and

γγγ = {γi}ns

i=1,γi ∈ R+ stands for the set of their weights. In

this way, for every set A ⊂ ∂S(d) its measure is given by:

Γ(A) =
ns

∑
i=1

γiIA(si), (9)

where IA(·) is an indictor function of the set A. Character-

istic function (5) and (6) in the case of spectral measure

Eq. (8) has the form [19]:

ϕ(k) = exp

(

−
ns

∑
i=1

γi|kT
si|α

(

1− isign(kT
si) tan

(πα

2

))

+ikT µµµ

)

(10)

for α 6= 1, and

ϕ(k) = exp

(

−
ns

∑
i=1

γi|kT
si|
(

1− i
2

π
sign(kT

si) ln |kT
si|
)

+ikT µ

)

(11)

for α = 1.

The definition of the DSM allows to use multivariate stable

distributions in the simpler way. It is worth to notice that

application of the DSM does not limit any properties of

multivariate stable vectors. The following theorem can be

proved [21].

Theorem 2: Let p(x) be a density function of the sta-

ble distribution described by the characteristic function (5)

and (6), and p∗(x) is a density function of the random vec-

tor described by the characteristic function (10) and (11),

then
∀ε > 0 ∃ns ∈ N ∃ξξξ ,γ ∀x ∈ R

d :

sup
x∈Rd |p(x)− p∗(x)| < ε.

(12)

In other words, each stable distribution can be approximated

by some distribution based on the DSM with any accuracy.

Especially, the existence of a procedure of pseudo-random

vectors generation is very important. It turns out, that

a simulation procedure of stable random vectors X defined

by the characteristic functions (10) and (11) is straightfor-

ward, and can be implemented by the following stochastic

decomposition:

X
d
=



















ns

∑
i=1

γ
1/α
i Zisi for α 6= 1,

ns

∑
i=1

γ
1/α
i

(

Zi −
2

π
ln(γi)

)

si for α = 1,

(13)

where Zi are i.i.d. stable random variables Sα(1,1,0) for

which an effective generator can be found in [20].

Random vectors (X = [X1,X2, . . . ,Xn],Xi ∼ SαS(σ)) com-

posed of independent symmetric elements possess a spe-

cial status in the application to mutation operators of

EAs [5], [6], [7], [14], [9], [10]. It occurs that random

vectors can be enriched by adding µ and β parameters,

i.e., X = [X1,X2, . . . ,Xn],Xi ∼ Sα(σ ,β ,µ) if the DSMs are

applied. It means that each component acquires additional

degrees of freedom. This fact is very important in the con-

text of application of the above random vector to modeling

complicated dependencies between decision variables. It

is easy to show that an exploration of such dependencies

and their inclusion to a mutation operator accelerates the

optimization process. In order to illustrate the possibilities

of the DSM representation of the random vectors, it can

be mention that the vector with independent components

Xi ∼ SαS(σ) have the DSM focused in the points of or-

thogonal axes and surface of the unit sphere intersection

with a different weights. The versatility of the DSM repre-

sentation of the distribution is included in [20].

Theorem 3: The spectral measure of the stable vector X is

described by a finite number of the support vectors si if,

and only if the vector X can be represented by a linear com-

bination of the independent stable random variables, i.e.:

X = AZ, (14)

where A ∈ R
d×N , Z = [Z1, . . . ,ZN ]T ,Zi ∼ Sα(σ ,β ,µ).

Based on the Theorem 3, it can be shown that the DSM can

be also applied to represent vectors which are described by

parameters σ ,β ,µ and by stochastic dependencies between

these vectors.

One of the important properties of the stable distribution

based on the DSM and a finite set of support vectors is that

almost all probability mass remote from the base point is

focused around directions described by the support vectors.

So, macromutations take place only in direction parallel to

the DSM support vectors. This effect is illustrated in Fig. 1.

Fig. 1. Distribution of the DSM support vectors and corre-

sponded random realizations: (a), (b) – α =0.75, (c), (d) – α =1.5.

Summarizing, two main benefits obtained by the application

of the DSM representation of a multivariate stable distri-

bution can be distinguished: macromutations which allows

simple cross saddles of the searching environments, and
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possibility of modeling complex stochastic dependencies.

The above mentioned benefits are illustrated in [13].

5. Learning Probability Model with

Discrete Spectral Measure

One of the most important factors influencing an effective-

ness of a global optimization procedure is the possibility

of a configuration parameters adaptation. Especially, this

mechanism can be applied to mutation operators in evolu-

tionary algorithms. There are many instances in literature,

in which such procedures are proposed for mutation pa-

rameters [8], [22]–[24], however, all of them consider the

Gaussian mutation, only. In the case of the whole class

of multidimensional stable distributions, Rudolph shows

that adaptation procedures should be different for different

stable indices α [8]. In this paper an original parameter

adaptation procedure of the mutations based on the multi-

dimensional stable distributions described by the DSM is

proposed.

Let us focus our attention on the evolution strategy

(1,λ )ES. In this strategy, the population of descendants

is generated by λ mutations of a given base point. All

descendant points are evaluated, i.e., the optimized fitness

function is calculated in these points. The descendant with

the best fitness is chosen as a new base point. The above

described operations are iteratively repeated until a given

stop criterion is met.

The necessity of adjusting probability model of the mu-

tation utilized to explore a search space is undisputed. It

can be noticed that a fixed probability distribution usually

causes many serious problems. On one hand, tails of the

distribution might be too narrow to allow an algorithm to

escape from the local solution in a reasonable number of

generations. On the other hand, the probability mass fo-

cused around the center of the mutation might be insuffi-

cient to make a significant progress in improving an esti-

mate of the global solution. An ideal adaptation procedure

should be able to detect each of these situations, and adjust

probabilistic model in such a way to prevent the algorithm

from a stagnation.

The method of the optimal probabilistic model choice is in-

troduced and illustrated in [13]. The goal is the correction

of the current solution by a perturbation using a stable ran-

dom vector X
γγγ
ξξξ
. The aim of this calculation is the selection

of the optimal stable model from the class of multivariate

distributions described by the DSM. If we assume the fixed

set of ns support points ξξξ , the criterion of the best model

selection is chosen in the form:

γγγ∗ = arg min
γγγ∈R

ns
+

C(γγγ), (15)

where

C(γγγ) = E

[

min

{

φ(xk + X
γγγ
ξξξ
(α))

φ(xk)
,1

}]

. (16)

It occurs that the function (16) does not possess an analy-

tical form, thus, the problem Eq. (15) cannot be solved

using standard optimization techniques. One of the possible

solutions is the application of the Monte Carlo method [25].

The law of large numbers [26] allows to approximate the

expectation value (16) using the following estimator:

Ĉ(γγγ) =
1

N

N

∑
i=1

min

{

φ(xk + X
γγγ
i,ξ

(α))

φ(xk)
,1

}

, (17)

where {X
γγγ
i,ξξξ

(α))}N
i=1 stands for a sequence of independent

realizations of the random vector with the α-stable distri-

bution. Using the estimator (17), the problem Eq. (15) can

be rewritten into the form:

γγγ∗ = arg min
γγγ∈Rns

Ĉ(γγγ). (18)

Because the objective function possesses a stochastic prop-

erties and in order to achieve the compromise between

the computation complexity and the estimator quality, the

SPSA algorithm [27] can be chosen for solving Eq. (18).

The quality of the estimator (17) strongly depends on the

number N of independent realizations of the random vec-

tors {X
γγγ
i,ξξξ

(α))}N
i=1. Experiments shows that, in order to

obtain a representative estimator Ĉ (17) in the 2D search-

ing space, N should be up to dozens thousands. Because of

such a large complexity of the optimal probabilistic model

choice, an adaptive scheme known from the class of the es-

timation of distribution algorithms (EDAs) [15] is proposed

to adjust a parametric probability model Eq. (8) [14]. The

idea of the proposed algorithm is based on the assumption

that the selection pressure of the evolutionary process des-

ignates the most valuable set of the independent realizations

of the random vectors. This idea utilized to evolutionary

strategy (1,λ )ES with the mutation operator that is based

on the DSM boils down to the algorithm (1,λ/µ)ESα com-

posed of the following simple steps:

Step 0: Set k = 1 and choose an initial guess of a global

solution x0 and initial weights vector γγγ0, i.e.:

xk = x0, Γk = (ξξξ ,γγγ0), (19)

where ξξξ = {si}ns

i=1, si ∈ Sd is a fixed grid of a DSM,

and γγγk = {γi}ns
i=1 stands for a vector of weights asso-

ciated with support points si.

Step 1: Randomly pick a set of candidate solutions using

probabilistic model Γk.

Pk,λ = {xk,1,xk,2, . . . ,xk,λ}, xk,i = xk + Xi, (20)

where Xi ∼ Γk are i.i.d. random vector generated ac-

cording Eq. (13).

Step 2: Select µ the best solutions from the current pop-

ulation Pk,λ :

Pk,µ = {xk,1:λ ,xk,2:λ , . . . ,xk,µ:λ} (21)
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Step 3: Build the probability model of the selected solu-

tions Pk,µ .
γk = Est(Pk,µ) (22)

where Est(·) is an estimation procedure of the

weights described in the subsequent part of this sec-

tion.

Step 4: Set xk = xk,1:λ .

Step 5: If the stopping condition are not met, go to Step 1.

The Step 3 deserves more detailed description. In the

literature [19], [28]–[30] several approaches to the esti-

mation of the DSM from a given data set can be found.

The simplest and the less computational intensive one was

presented in [19]. This method is based on the, so called,

empirical ch.f.:

φ̂(k) =
1

N

N

∑
i=1

exp( jkT
Xi), (23)

where Xi are observed random variables realizations, which

are included in the data set {xi}N
i=1. Assuming that the

DSM Γ is defined by the finite set of support vectors ξξξ =
{si}ns

i=1 and, corresponded to them, weighs γγγ = {γi}ns

i=1 t.j.:

Γ =

{

s1 s2 . . . sns

γ1 γ2 . . . γns

}

, (24)

the estimation problem can be reduced to the optimization

problem

Γ∗ = argmin
ξξξ ,γγγ

‖φ̂(k)−φ(k;ξξξ ,γγγ)‖. (25)

In order to the problem simplification, let us assume that

the considered DSM is based on the fixed set of sup-

port vectors, which are uniformly distributed on the unique

sphere surface. Than the model estimation problem (25) is

reduced to the form:

γγγ∗ = argmin
γγγ

‖φ̂(k)−φ(k;Sns ,γγγ)‖. (26)

Searching for the precise solution of the problem Eq. (26)

is connected with a very large computation effort and the

application of this method seems to be unpractical. We

should introduce another problem simplification. The ex-

pression (26) can be estimated using the set of testing points

K = {ki}nk
i=1:

γγγ∗ = argmin
γγγ

nk

∑
i=1

(

φ̂(ki)−φ(ki;ξξξ ,γγγ)
)2

(27)

Let I = −[ln φ̂ (k1), . . . , ln φ̂ (knk
)]T and

ΨΨΨ(k1, . . . ,knk
;s1, . . . ,sns) =









ψα(kT
1 s1) . . . ψα(kT

1 sns)
...

...
...

ψα(kT
nk

s1) . . . ψα(kT
nk

sns)









(28)

for

ψα(u) =

{ |u|α(1− isgn(u)tan
(

πα
2

)

), for α 6= 1

|u|(1− i 2
π sgn(u)ln

(

|u|)), for α = 1

(29)

than the optimal weight set is the solution of the system of

equations [19]
I = ΨΨΨγγγ∗. (30)

In order to ensure well-conditional problem (30) let us as-

sume ns = nk and si = ki. Finally, the problem is reduced

to solving the following constrained quadratic programming

problem [19]:

γγγ∗ = argmin
γγγ≥0

||c−Aγγγ||2, (31)

where c = [Re{I1:n/2}, Im{In/2+1:n}]T is a vector contain-

ing n real values of the vector I and n its image values,

A = [Re{ψψψT
1 }, . . . , Im{ψψψT

n
}]T , is similarly organized ma-

trix (28), where ψψψ i = [ψ(sT
1 si),ψ(sT

2 si), . . . ,ψ(sT
ns

si)]
T ∈

Cns are its rows.

The problem Eq. (31) can be solved analytically or using

one of the dedicated gradient-based optimization method.

6. Experimental Simulation

In this section we experimentally try to prove, that the self-

adapted DSM can improve the optimization efficiency of

the evolution strategy being considered.

6.1. Experiment 1

Three versions of the evolution strategy will be analyzed:

• A1 – (1,λ )ESα for which mutation is based on the

DSM with following support vectors:

ξξξ =

{[

1

0

]

,

[

0

1

]

,

[−1

0

]

,

[

0

−1

]}

The weight vector γγγ = [σ/4,σ/4,σ/4,σ/4]T is fixed

during the evolutionary process.

• A2 – (1,λ/ν)ESα for which mutation is based on

the DSM with following support vectors:

ξξξ =

{[

1

0

]

,

[

0

1

]

,

[−1

0

]

,

[

0

−1

]}

The initial weight vector γγγ = [σ/4,σ/4,σ/4,σ/4]T

is adapted during the evolutionary process in order

to the algorithm proposed in this paper.

• A3 – (1,λ/ν)ESα for which mutation is based on

the DSM with following support vectors:

ξξξ =







[

1

0

]

,





√
2

2√
2

2



 ,

[

0

1

]

,





−
√

2
2√
2

2



 ,

[−1

0

]

,





−
√

2
2

−
√

2
2



 ,

[

0

−1

]

,





−
√

2
2

−
√

2
2










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Fig. 2. Fitness of the base point versus iterations. Average results (taken over 50 algorithms independent runs) for quadratic function

Eq. (32) obtained for algorithms with different DMSes: four support points without weights adaptation A1, four support points with

weights adaptation A2, and eight support points with weights adaptation A3. Objective function parameters (e1,e2): (a) = (1,1), (b) =

(10,0.1), (c) = (100,0.01), (d) = (1000,0.001).

The initial weight vector γγγ = [σ/8, . . . ,σ/8]T is

adapted during the evolutionary process in order to

the algorithm proposed in this paper.

Four two-dimensional unimodal objective functions are se-

lected to experiments:

f (x) = x
T
UDU

T
x, (32)

where

U =

(

−
√

2
2

√
2

2√
2

2

√
2

2

)

and

D =

(

e1 0

0 e2

)

,

for different conditional factors: (e1,e2)=(1,1), (10,0.1),
(100,0.01), (1000,0.001). The initial conditions are the

same for each strategy: λ = 20, ν = 10, x0 = [1000,1000]T ,

σ = 1. Moreover, we assume that ∑
ns
i=1 γi = σ .

The results for the algorithms with the stability index

α = 0.5 are presented in Fig. 2.

By analyzing average results presented in Fig. 2 for evo-

lutionary strategies A1 and A2 the advantage of the ap-

plied adaptation mechanism cannot be declared explicitly.

The choice of the stable index α = 0.5, for which macro-

mutations in directions parallel to the axis of the refer-

ence frame take place an important role in the optimum

finding processs. Only after a condensation of the sup-

port vectors strategy A3 there is possibility to fit the ex-

ploration distribution to any distribution of the searching

space. In cases presented on Fig. 2(b)–2(d) it is easy to

observe that the weight γ6 ≈ σ (it is connected to the vec-

tor s6 = [−
√

2/2,
√

2/2]), and the macromutations in this

direction are preferred.

6.2. Experiment 2

The goal of the experiments is to recognize how “far-off”

is the probabilistic model Eq. (31) applied in (1,λ/µ)ESα

from the optimal one Eq. (18). As a measure of this “dis-

tance” in the parent point xk obtained in the k-th iteration

of evolutionary process the following expression is chosen

J(xk) =
EΓ

µ
k

EΓk

, (33)

where

EΓ
µ
k

=
∫

D
min( f (x), f (xk))dΓ

µ
k , (34)

EΓk
=

∫

D
min( f (x), f (xk))dΓk, (35)

and f (x) (x ∈ D) is an optimized fitness function, Γ
µ
k and

Γk are cumulative distribution functions (cdf) of probability

models Eqs. (31) and (18), respectively. The expression
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min( f (x), f (xk)) in Eq. (34) is introduced instead of the

pure fitness function f (x) in order to avoid the possibility

to obtain infinite expectation value of f (x).

As it can be seen, the measure J(xk) Eq. (33) is equal to

the unity in the case of the perfect match of both distribu-

tions, and increases when the disproportion between both

distributions increases. The value of J(xk) also constitutes

the measure of deterioration (in the probabilistic sense) of

the next population quality when we use the probabilistic

model Γ
µ
k Eq. (31) instead of the optimal one Γk Eq. (18).

Fig. 3. Rosenbrock’s function – (a) and its contour chart – (b).

Let the 2-dimensional Rosenbrock’s function (Fig. 3)

f (x) = (1− x1)
2 + 100(x2− x2

1)
2 (36)

be chosen as a objective function for considered com-

putation example. Moreover, we assume that the point

x0 = [10,10]T ( f (xk) = 810081) is the initial approxima-

tion of the optimum. Let us reduce the set of rival prob-

abilistic models to a set of four stable distributions Ω =
{X

γγγ
ξξξ
(α)|α = 0.5,1.0,1.5,2.0}. Each random vector X

γγγ
ξξξ
(α)

is described by the DSM spread on 5 uniformly distributed

support points:

ξξξ =

{[

1.0000

0.0000

]

,

[

0.3090

0.9511

]

,

[−0.8090

0.5878

]

,

[−0.8090

−0.5878

]

,

[

0.3090

−0.9511

]}

.

In the case of the (1,λ/µ)ESα algorithm the parameter

λ = 100 and three values of µ are selected (10,40,70).

There are 128 algorithm runs for each pair (α,µ). In order

to estimate the optimal probability model N = 100000 in-

dependent realizations of the random vectors {X
γγγ
i,ξξξ

(α))}N
i=1

is generated.

The obtained results are presented in the form of histograms

of J(xk) Eq. (33) for each pair (α,µ) taken over 2560

sample points (Fig. 4). It can be observed that there are

distinct peaks near J(xk) = 1 for all cases. It suggests that

proposed probability model of mutation Eq. (31) is a good

estimator of the optimal probability model. The relation

between the quality of this estimator and the stability index

α is very interesting. The peaks of J(xk) histograms are

higher for extreme values of stability index α = 0.5 and

α = 2 than for the medium values α = 1 and α = 1.5.

The explanation of this fact is not quit clear and needs

more precise research. Taking into account obtained results

of our experiment, the relation between the quality of the

estimator and the parameter µ is not clear. Two reasons

can influence this fact. The first one, highly probable in

our opinion, is that: too low number of points is considered

and a statistical error is too high. The second reason can

be connected with the fact that the quality of the estimator

at a given point x depends not only on the pair (α,µ) but

also on the features of the fitness landscape in the close

neighborhood of x.

7. Conclusions

The application of the discrete spectral measure to the sta-

ble mutation for evolutionary algorithms based on the real-

valued representation of the individual is considered. The

evolution strategy (1+λ )ESα is chosen as a base evolution-

ary algorithm. Emphasis is focused on the self adaptation

of the mutation probability model to the winner individual

in each population. This self adaptation can be parted into

two steps: the optimal selection of the set of support points

(vectors) and the optimal selection of the weights related

to this points. Both tasks are connected with the calcula-

tions of a high time and space complexity cost [13], [14].

This fact limits applicability of the proposed method to low

dimensional problems. In order to avoid this cost the es-

timation methods for both tasks should be proposed. In

this paper we focus on the second task, i.e., we assume

a fixed set of support points. This work contains prelim-

inary results of simulation experiments. Results suggest

that probability model of the mutation is a good estimator

of the optimal one. The analysis of the relation between

the estimator quality and control parameters (α,µ) needs

further thorough investigations. Our further research will

also be focused on the support points selection method of

the lower complexity cost.
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[14] P. Prȩtki, “Learning stable mutation in (1,λ)ES evolutionary strat-

egy”, in Proc. 10th Conf. Evol. Algorithms Global Optimiz.,
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