
An Application of Hierarchical Genetic Strategy in
sequential scheduling of permutated independent jobs

Joanna Kołodziej and Marcin Rybarski

University of Bielsko-Biała, Department of Mathematics and Computer Science,
ul. Willowa 2, 43-309 Bielsko-Biała, Poland

email: jkolodziej@ath.bielsko.pl; email: mrybarski@ath.bielsko.pl

Abstract. The aim of this paper is to present an implementation of Hierarchic Genetic
Strategy (HGS) in solving the Permutation Flowshop Scheduling Problem (PFSP). We
defined a hierarchic scheduler based on HGS structure for the exploration of the wide
and complicated optimization landscape studied by Reeves [6]. The objective of our work
is to examine several variations of HGS operators in order to identify a configuration of
operators and parameters that works best for the problem. From the experimental study we
observed that HGS implementation outperforms existing schedulers in many of considered
instances of a static benchmark for the problem.

1 Introduction
The Permutation Flowshop Scheduling Problem (PFSP) can be defined as a problem of pro-
cessing of a sequence {Js}1≥s≥n of n jobs on a set of m machines {Mr}1≥r≥m. It is not
only NP-hard , but it is one of the worst members in the class. An indication of this is given
by the fact that problem for 10 jobs and 10 machines remained unsolved for over 20 years.

Besides exhaustive search algorithms based on branch and bound methods (see [9] for ex-
ample), several heuristic algorithms have been developed. The performance of these heuristics
has been measured on a set of 120 benchmark instances of the PFSP proposed in [10] by
Taillard. The steady-state genetic algorithms hybridized with some specialized local search
procedures (see [11], [7]) has been recently shown to be very successful in solving PFSP. High
efficiency of such methods comes from the abilities of the accurate exploration of the opti-
mization landscape by the neighborhood operators. Reeves showed in [6] that the landscape
for Taillard’s benchmarks has a ”big valley” structure, where the local optima occur relatively
close to each other, which can be the main reason of problems in the detection of accurate
solutions of PFSP.

The objective of this work is to design and implement batch schedulers based on a family
of dependent genetic processes enabling a concurrent local search in the optimization domain,
which can reduce significantly the complexity of the local procedures implemented in Reeves’s
and Yamada’s work [7]. We defined a Hierarchic Genetic Scheduler (HGS-Sched) which is
based on the Hierarchical Genetic Strategy (HGS) defined by [4]. HGS has been successfully
applied in solving many ill-posed optimization problems in the continuous domain.

The rest of the paper is organized as follows. We define PFS Problem in Section 2.
Definitions of HGS-Sched procedures and a short description of applied genetic operators are

given in Section 3. Section 4 contains an experimental analysis of the performance of HGS-
Sched and specialized local search genetic algorithm for the benchmark of static scheduling
defined by Taillard [10]. The paper ends with some final remarks.

2 Statement of the problem
The processing of job Js on machine Mr in PFSP is called the operation Osr, 1 ≥ s ≥ n,
1 ≥ r ≥ m. It requires the exclusive use of the machine for an uninterrupted duration called
the processing time. A schedule is the solution of the problem and it can be represented by
the set of permutations of jobs on each machine.

An example of the definition of 3× 3 PFSP is given in Table 1 (see also [7]).

Table 1. An example of 3× 3 PFSP.

Job Operations routing (processing time)
1 1(3) 2(3) 3(3)
2 1(2) 3(3) 2(4)
3 2(3) 1(2) 3(1)

The data includes the routing of each job through each machine and the processing time
for each operation (in parentheses). An example schedule for that problem is defined as a job
sequence matrix presented in Figure 1.

Figure 1. An example schedule for 3× 3 problem

Let us denote the processing times p(s; r) for job Js on machine Mr, and a job permutation
{π1, π2, . . . πn}. We can calculate the completion times C(πs; r) of jobs on machines as
follows:

C(π1; 1) = p(π1; 1)
C(πs; 1) = C(πs−1; 1) + p(πs; 1); s = 2 . . . n
C(π1; r) = C(π1; r − 1) + p(π1; r); r = 2 . . .m
C(πs; r) = max{C(πs−1; j);C(πs; r − 1)}+ p(πs; r); s = 2 . . . n; r = 2 . . .m

(1)

The time required to complete all the jobs is called the makespan L, which can be defined
in the following way:

L = Cmax(π) = C(πn;m). (2)

The objective when solving or optimizing this problem is to determine the schedule which
minimizes L. Formally, we have to find a permutation π∗ in the set of all permutations of jobs
Π, such that Cmax(π∗) ≤ Cmax(π);∀π ∈ Π.

3 Hierarchic Genetic Scheduler
Differently from classical GA algorithms, which maintain only an unstructured population of
individuals, Hierarchical Genetic Strategy (HGS) enables a concurrent search in the optimi-

zation domain by many small populations. The creation of these populations is governed by
the dependent genetic processes with low complexity. The processes of low order represent
chaotic search. They detect the promising region on the optimization landscape in which more
accurate processes are activated.

The dependency relation among processes in HGS has a tree structure. For each branch in
this tree we define a degree parameter, denoted by j ∈ N, the value of which corresponds to
the accuracy of the search. There is a unique branch of the lowest degree 0 called root. A new
branch could be created after running a metaepoch in the parental one.

An example structure of HGS-Sched, which is similar to the basic structure of HGS [8] is
shown in Figure 2, where P e

i,j denotes populations evolving in branches of the different degrees
with e ∈ N as the global metaepoch counter and i as the unambiguous branch identifier, which
describes the “history of creation” of the given branch [4].

Figure 2. An example structure of HGS-Sched after execution of 3 metaepochs

A k –periodic metaepoch Mk, (k ∈ N) is a discrete evolution process executed in the branch
of a given degree, which is terminated after k generations by the selection of the best adapted
individual x̂. A procedure of activation of a new process of higher degree is called a Sprouting
Operation and it is defined in the rest of this section.

3.1 Genetic Engine in HGS-Sched Branches
We used in our implementation a genetic algorithm template, presented in Figure 3 as

a genetic engine in HGS-Sched. This template is similar to classical (µ + λ) Evolutionary
Strategy framework [2].

The individuals (schedules) in populations are encoded into sequences of jobs permutations
{π1, π2, . . . πn}. Each permutation πs is defined as a n-length sequence of integers of the range
{1, . . . , n}. A chromosome for the schedule presented in Figure 1 is defined by the following
sequence: ((1, 2, 3); (3, 1, 2); (2, 1, 3)).

An initial population for the root of the HGS-Sched structure is selected randomly in this
approach. The processes of higher degrees start from the populations obtained as the outcomes

Figure 3. Genetic engine template

of the Sprouting Operator defined in the next section.
The crossover and mutation procedures used in a main loop of algorithm in Figure 3 are

the simple extensions of similar procedures defined for problems in permutation spaces.
The main idea of Subsequence crossover is to perform a crossover operation indepen-

dently on corresponding permutation sequences in both parental chromosomes. Let us de-
note by π1(p) = {π1

1(p), . . . , π1
n(p)} and π2(p) = {π2

1(p), . . . , π2
n(p)} a pair of paren-

tal individuals. The outcome of the subsequence crossover is a pair of offsprings de-
noted by π1(ch) = {π1

1(ch), . . . , π1
n(ch)} and π2(ch) = {π2

1(ch), . . . , π2
n(ch)}, where

{π1
s(ch), π2

s(ch)} = Cross(π1
s(p), π2

s(p)). We proposed Cycle Crossover (CX) as the ba-
sic crossover procedure executed on the pairs of job permutations. Each job sequence in the
given chromosome is equivalent to the path representation in the TSP.

The Sequential mutation is defined in the similar way: a simple mutation operation is
performed for each job permutation in a given chromosome. Two definitions are considered
for the basic mutation operator in our implementation: Move mutation, where a job from the
randomly selected position is moved to the end of the jobs sequence, and Swap mutation,
where two randomly selected positions are chosen and their corresponding jobs are swapped.
We also used Linear Ranking as the selection mechanism and Elitist Replacement procedure
in our HGS implementation.

3.2 HGS-Sched Procedures
The tree structure of HGS-Sched is created by a HGS-Sched Sprouting Operator (SO). It

defines the new branches of higher degree ”sprouted” from the current (parental) branch. The
SO operator is given by the following formula:

SO
(
P e

i,j

)
=
(
P e

i,j , P
0
i′,j+1

)
, (3)

where x̂ is the best adapted individual found in the parental branch P e
i,j after execution of

e-th metaepoch, P 0
i′,j+1 is an initial population for a new branch of degree j + 1 and i′ =(

i1, . . . , ij−1, 1, 0, . . . , 0
)
.

Let Asj
be the operator which “cuts out” a sj-length prefix from each sequence of jobs

πs; s = 1, . . . , n (permutation of jobs) in a given chromosome x. It is defined as follows:

Asj (x) = (π̃1, . . . , π̃n); |π̃s| = sj , |x| ≥ m · sj , (4)

where |x| = n ·m denotes the length of x.

The sj-neighborhood of solution x contains all individuals, in which the sequences of jobs
can differ from the corresponding components of x by the

(
n− sj

)
-length suffixes. It can be

achieved by the permutation of jobs in the suffix. The individuals in population P 0
i′,j+1 are

selected from the sj-neighborhood (1 ≤ sj ≤ n) of the solution x̂.
The values of sj are calculated in the following way:

sj = Sj · n, (5)

where S ∈ [0, 1] is a global strategy parameter called neighborhood parameter, j- the branch
degree, n- the number of jobs.

The code of HGS-Sched SO procedure is similar to the code of SO procedure for HGS,
which can be found in [4].

4 Experimental study

We have performed a simple experimental evaluation of the HGS implementation for Taillard’s
benchmark of static instances for PFSP [10]. They are labeled by n×m, where n is the number
of jobs and m - the number of machines. We wanted to verify the effectiveness of HGS-Sched
in the exploration of the optimization landscape with a ”big valley” structure and compare it
with the performance of GA-based scheduler with a special local search procedure defined by
Yamada and Reeves [12].

Table 2. HGS-Sched global parameters values

Parameter Value
degrees of branches (j) 0 and 1
period_of_metaepoch - (k) 100
nb_of_metaepochs 10
neighborhood parameter - (s) 0.5
mut_prob(0) 0.4
mut_prob(1) 0.2
cross_prob 0.8

The values of HGS-Sched parameters for all tests are given in Table 2. The parameter
nb_of_metaepochs denotes the maximal number of metaepochs executed in the root. It defines
a global stop criterion for the strategy. The parameter mut_prob(j) denotes the probability
of mutation in the branch of degree j and cross_prob is the probability of crossover, which
is identical in the branches of all degrees. The initial population of the root was created by a
uniform random generator and linear ranking method was used as selection procedure.

In the first step of our simple experimental study we tried to find an appropriate mutation
operator for HGS-Sched, which is crucial for the variation of the search accuracy in the branches
of the strategy. In the second step we made a short comparison analysis of the performances
of our algorithm and GA-based scheduler defined in [12].

4.1 Experimental calibration of mutation operator for HGS-Sched
A simple tuning process of mutation operator for HGS-Sched was performed for one of the

Taillard’s problems formulated for 50 jobs and 20 machines. The sizes of populations in root
and sprouted branches of degree 1 were 50 and 18, respectively. The intermediated populations

consisted of 48 and 16 individuals. Each experiment was repeated 30 times under the same
configuration of operators and parameters and the average makespan was computed.

Table 3. Comparison of mutation operators for makespan and flowtime values.

Mut. Operator Average Mut. Operator Average
Makespan Makespan

Move

3870

Swap

3876
3715 3722
3660 3678
3745 3750
3608 3640
3708 3749
3710 3729
3715 3746
3762 3780
3777 3797

The results of the comparison analysis of the performance of two mutation operators are
reported in Table 3. We combined them with CX procedure. Move mutation outperforms
significantly Swap method.

4.2 Comparison Analysis of Genetic-Based Schedulers
We applied HGS-Sched with the operators and parameters selected as optimal combination

in the previous section for a comparison analysis of our strategy with the method defined by
Yamada and Reeves in [12].

The main idea of Yamada’s and Reeve’s method, known as the MSXF-GA scheduler, is
based on a generalization of Genetic Local Search algorithm (GLS), where an offspring obtained
by a recombination operator is not included in the next generation directly but it is used as an
initial solution for the subsequent local search. Yamada and Nakano [11] have defined first the
Multi-Step Crossover Fusion operator (MSXF), where one of the parents itself is a new starting
point for a local search procedure, then Yamada and Reeves [12] applied this procedure as the
recombination operator in the steady-state GA framework.

We select three of large scale instances of Taillard’s benchmark to our experimental study:
”50 × 20”, ”100 × 20” and ”200 × 20”. Each algorithm was stopped after 700 iterations
(calculated for root in the case of HGS implementation). It means that the number of executed
metaepochs was reduced to 7 in the comparison with the value of this parameter given in
Table 2. Each experiment was repeated 30 times under the same configuration of parameters.
For both algorithms each run took about 12, 21 and 47 minutes of CPU time respectively for
each ”50× 20”, ”100× 20” and ”200× 20” problem.

We reported in Table 4 the makespan values obtained by the two algorithms under study
together with theoretical lower bounds (lb) and upper bounds (ub) of the makespan taken from
OR-library originally published in [1] and frequently updated on the following website: (http:
//people.brunel.ac.uk/$ˆ–“sim˝$mastjb/jeb/info.html). These upper bounds are the currently
best-known makespans for Taillard’s benchmarks.

From the results in Table 4 we can observe that HGS-Sched outperforms MSXF-GA for all
but one Taillard’s benchmarks. HGS-Sched gives better results than those reported in the OR-
library in 20% of considered instances defined for ”50×20” problem and in 10% of considered
instances defined for ”100 × 20”. It was not so effective for ”200 × 20” problem. However,

Table 4. Comparison of best makespan values for the selected Taillard’s benchmark problems. Best
results are shown in bold

Problem MSXF-GA HGS-Sched lb-ub Problem MSXF-GA HGS-Sched lb-ub

50× 20

3861 3851 3771- 3850

100× 20

6242 6223 6106 - 6202
3709 3708 3668- 3704 6217 6192 6183
3651 3641 3591- 3640 6299 6270 6252- 6271
3726 3721 3635- 3720 6288 6282 6252- 6271
3614 3613 3553- 3610 6329 6298 6254- 6269
3690 3682 3667- 3681 6380 6319 6262- 6314
3711 3703 3672- 3704 6302 6302 6302- 6364
3699 3698 3627- 3691 6433 6301 6184- 6268
3760 3742 3645- 3743 6297 6280 6204- 6275
3767 3760 3696- 3756 6448 6421 6315- 6401

Problem MSXF-GA HGS-Sched lb-ub

200× 20

11272 11265 11152-11195
11299 11276 11152-11195
11410 11324 11281
11347 11319 11275
11290 11285 11259
11250 11212 11176
11438 11392 11337-11360
11395 11383 11301-11334
11263 11209 11145-11192
11335 11331 11284-11288

the differences between obtained makespan values and the best values from OR-library are not
significant, so we can conclude that HGS-based scheduler seems to be the promising method in
the exploration of the ”big valley” structure in the optimization landscape for some Taillard’s
problems. The main advantage of HGS application is no need of implementation a specialized
complicated local search mechanism.

5 Conclusions and future work

In this work we have presented the implementation of Hierarchic Genetic Strategies (HGS)
for Permutation Flowshop Scheduling Problem. We have examined several variations of HGS
operators in order to identify a configuration of operators and parameters that works best for
the problem aiming at the design of efficient batch schedulers. The HGS implementation was
experimentally studied using a known benchmark of static instances for the problem and the
obtained results were compared with the effective local search-based scheduler and the best
obtained results known from the literature. From the experimental study we observed that HGS-
Sched can be an effective tool for exploration of the ”big valley” structure in the optimization
landscape for the PFSP.

In our future work we plan to study the performance of the HGS scheduler in the heteroge-
neous environment like computational grid systems. The results of simple experiments reported
in [5] confirm high efficiency of our methods in solving large scale static problems defined in
[3]. We would also like to design an interface for the HGS scheduler for its application to real
Grid environments.

Bibliography
[1] J. E. Beasley. Or-library: Distributing test problems by electronic mail. European

J.Operational Research,, (41):1069–1072, 1990.
[2] H. G. Beyer. The Theory of Evolution Strategies. Natural Computation. Springer Vlg.,

Berlin-Heidelberg, 2001.
[3] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P.

Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed Computing, 61(6):810�–837,
2001.

[4] R. Gwizdała J. Kołodziej and J. Wojtusiak. Hierarchical genetic strategy as a method
of improving search efficiency,. Advances in Multi-Agent Systems, R. Schaefer and S.
Sȩdziwy (Eds.), UJ Press, Cracow, pages 149–161, 2001.

[5] J. Kołodziej, F. Xhafa, and Ł. Kolanko. Hierarchic genetic scheduler of independent jobs
in computational grid environment. In To Appear, editor, Proc. of ECMS09, 2009.

[6] C. R. Reeves. Landscapes, operators and heuristic search. Annals of Operations Research,
86:473–490, 1999.

[7] C. R. Reeves and T. Yamada. Genetic algorithms, path relinking and the flowshop se-
quencing problem. Evolutionary Computation, 6(1):230–244, 1998.

[8] R. Schaefer and J. Kołodziej. Genetic search reinforced by the population hierarchy.
FOGA VII,Morgan Kaufmann, pages 383–401, 2003.

[9] T. Śliwiński and E. Toczyłowski. Algorytm harmonogramowania zadań podzielnych na
maszynach równoległych przy uwzględnieniu przezbrojeń i ograniczeń zasobowych. In
Proc. of XV National Conference of Automation 2005, Warszawa, 27-30.06.05, 2005.

[10] E. Taillard. Benchmarks for basic scheduling problems. E. J. of Oper. Res, (64):278�–285,
1993.

[11] T. Yamada and R. Nakano. Scheduling by genetic local search with multi-step crossover.
In 4th PPSN, pages 960�–969, 1996.

[12] T. Yamada and C. R. Reeves. Permutation flowshop scheduling by genetic local search.
In Pro- ceedings of the 2nd IEE/IEEE International Conference on Genetic ALgorithms
in Engineering Systems (GALESIA ’97), pages 232–238, 1997.

