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Abstract.

This paper reports results of an ongoing research on MOSFET parameter ex-
traction using the EKV model. This work continues efforts in finding the best
method for efficient and robust parameter extraction based on voltage-current
structure characteristics. In the extraction process, voltage-current characteristics
are matched by the characteristics generated by the model. Values of parameters
for which the best match is observed are the result of the extraction. The ex-
traction process is considered an optimization problem, which is then solved by
an evolutionary algorithm followed by the Nelder-Mead simplex. The influence of
the measurement error on the extraction results is investigated experimentally.

1 Introduction

This paper reports an ongoing research on the MOSFET (Metal-Oxide Semiconductor
Field-Effect Transistor) parameter extraction. CMOS (Complementary Metal–Oxide
Semiconductor) is currently the leading technology in the field of integrated circuits (IC)
production. More details on the background of this work can be found in [2, 3] where
the first part of this research has been presented.

The main goal of our work is to develop a method for extracting values of a set
of transistor parameters, which would be computationally efficient and robust against
measurement error. Our approach consists in comparing two sets of voltage-current I-V
characteristics – (1) a set of output current values measured for the given input voltage
values for a real MOSFET structure, and (2) a set of model-generated output current
values for the same input voltages. When the model values match real ones for the same
inputs, then the model parameters under extraction are assumed to match the respective
values of the real structure.

The first attempt described in [2] was to use the Pierret-Shields model [7]. This is
a relatively simple model simulating a number of physical effects present in the modeled
class of transistors. A combination of an evolutionary algorithm and the Nelder-Mead
simplex [6] was used to minimize the mean square error of matching measured and
model-generated current-voltage characteristics. In this work the Pierret-Shields model
has been replaced with the EKV model [4, 5], which is well recognized in the field of
MOSFET modelling and takes into account a significantly larger number of physical
MOSFET phenomena. The aim of experiments described in this paper was to evaluate
the usability of the EKV model in the task of transistor parameter extraction.



We tried to determine the number of global or sufficiently good local optima for
the objective function which is based on the EKV model. If there were more than one
such optimum for a given set of I-V characteristics, then the extraction results would
be ambiguous. The second aim of our work was to determine whether the measurement
errors have any impact on the extraction results – and if true how strong it is.

The paper is organized as follows. Section 2 provides more details about the EKV
model itself, the parameters under extraction, and the optimization methods. In section
3 the results of an experiment determining the number of global optima are described.
Section 4 presents the results of an experiment considering the impact of the measurement
error on the final extraction results. The last section draws some final conclusion and
presents possible outlook.

2 Extraction method details

The extraction process described in this paper consists of two main components: the
EKV transistor model and the optimization method. The latter uses two optimization
algorithms: an evolutionary algorithm (AE) which is used to determine rough approx-
imation of the solution, and is followed by the Nelder-Mead simplex, whose task is to
perform fine tuning of the final solution. This approach is quite robust against getting
stuck into poor local optima, and also shows good exploitation capabilities.

2.1 EKV model

In this work the EKV model version 2.6 was used. It was developed by Matthias
Bucher of the Swiss Federal Institute of Technology [1], and was implemented in the
C language. The model has 26 configurable electro-physical parameters, most of which
have been set to constant values. Six of these parameters have been extracted, namely:
vto (long-channel threshold voltage), gamma (body effect factor), phi (bulk Fermi po-
tential), kp (transconductance parameter), theta (mobility reduction coefficient), and
ucrit (longitudinal critical field).

Every parameter was constrained by its minimal and maximal value; this results in
a set of box constraints, as following: vto: (0.0, 2.0), gamma: (0.0, 2.0), phi : (0.0, 2.0),
kp: (0.0, 0.001), theta: (0.0, 0.2), and ucrit : (106, 108).

To assure that every parameter is treated with the same importance in the opti-
mization process, all of them have been scaled to (0.0, 1.0) range. Since the minimum
and maximum values of parameter gamma are of two orders of magnitude different, the
logarithm of its value is extracted.

2.2 Objective function

Adoption of the EKV model and the optimization algorithms in order to compose
a parameter extraction method is as follows. Given are I-V characteristics measured for
the MOSFET structure under extraction. Next, given a parameter vector p and the
input voltage values (V) from the I-V measurements, an output set is generated using
the EKV model. Then, the model-generated output set and measured current values
set (I) are compared for all input values and the mean square error (mse) is computed,



which is the optimizers’ objective function to be minimized:

mse(p) =
1

n
·

n∑

i=1

(ci − ekv(p,vi))
2

(1)

where n is the number of measurement points, vi is the i -th input voltage, ci is the
corresponding measured output current, and ekv denotes calculations performed by the
EKV model.

2.3 Optimization methods

During all experiments described in this paper the same configuration for optimization
methods was used. The evolutionary algorithm’s population size was set to 15 individuals,
the algorithm was stopped after reaching the number of 250 iterations, and the selection
was non-elitist, fitness-proportional. The first population was initialized randomly with
uniform distribution within the box constraints. Every individual was a subject to an
uncorrelated Gaussian mutation with zero mean and standard deviation equal 0.02 – i.e.
2% of the whole value range for a single parameter. No crossover was used.

The Nelder-Mead simplex was initialized with the best parameter vector found by the
evolutionary algorithm. It was stopped when the minimum distance between any pair of
simplex vertices reached the value of

√
6 · 10−5, which is 10−5 times the diagonal of the

admissible set.

3 Determining the reliability of extraction results

The first two experiments were aimed at recognizing the objective function landscape,
and especially at determining the number of good local optima. If there was any lo-
cal optimum with the objective function value comparable to the global optimum, the
extraction results would be ambiguous.

The first experiment, described in the following subsection, was designed to determine
whether a known set of parameter values can be extracted from an artificially generated
measurements set.

3.1 Re-discovering parameters of an existing structure

Values of parameters used to generate the artificial measurements set corresponded
to an existing MOSFET structure and were as follows [4]. The six parameter under
extraction were: vto = 0.647, gamma = 0.78, phi = 0.93, kp = 4.304 ·10−5, theta = 0.026,
and ucrit = 4 · 106. The rest of the parameters, which were set to constant values and
were not a subject of extraction, were: cox = 0.7 ·10−3, xj = 1.5 ·10−7, dw = −2.0 ·10−8,
dl = −5.0 · 10−8, e0 = 0.0, tox = 6.5 · 10−8, lambda = 0.23, weta = 0.05, leta = 0.28,
q0 = 2.8 · 10−4, lk = 5.0 · 10−7, iba = 2.0 · 108, ibb = 3.5 · 108, ibn = 1.0, tcv = 1.5 · 10−3,
bex = −1.5, ucex = 1.7, ibbt = 0.0, avto = 1.0 · 10−8, akp = 2.5 · 10−8, agamma =
1.0 · 10−8, kf = 1.0 · 10−27, af = 1.0, xqc = 0.0. Parameters nsub, vfb, u0, nqs, and
satlim were turned off – i.e. set to NaN value.

The set of measurement points was generated in the following way. A sequence of
values distributed evenly within the admissible voltage range was used for every input
voltage. This resulted in a set of input values distributed on a rectangular grid. Then,



for every input vector the output current was computed using the EKV model set up
with the aforementioned parameters set. A number of different input voltage sets was
generated, each with different grid granularity, which resulted in different set sizes.

Since the extraction method is non-deterministic, it was run 500 times, and the results
were compared to see whether it is able to re-discover the same set of parameter values
in each run. This was performed independently for every input set.

In Fig. 1 mse error plots are presented for each of the optimized parameters. Every
point in the picture represents the value of a single parameter and the mse error value
for a single final solution yielded by the hybrid of the evolutionary algorithm followed
by the Nelder-Mead simplex. This means that with quite high probability each of these
points is also a local optimum or is in a local optimum’s vicinity.

The narrow end of each of tornado-like shapes visible in Fig. 1 matches the original
parameter value used to generate the input set. Also, given that in each plot there is
only one such narrow end, this may suggest that there is only one global minimum of the
mse error function, and that it represents the original parameter vector used for input
set generation. From plots in Fig. 1 the following conclusions can be also drawn.

First of all, the global minimum which is located in the lowest point of the tornado-
like shape on each plot is rather hard to find. The hybrid method ends in local optima
in most of its runs. Histogram of the logarithm of the mse error presented in Fig. 2
shows that there are at least two well-distinguishable groups of the extraction method
result. One of them, with mse error logarithm greater or equal to −16, comprises the
vast majority of all results. The second group, with mse error logarithm value lower
than −20, is formed by the results located in the narrow end of the tornado-like shapes
presented in Fig. 1.

Secondly, it becomes clear that since the extraction method has a non-deterministic
character, only a fraction of final results is close enough to the actual parameter value
to be considered reliable. Thus, only after a decent number of the extraction method
runs, the best solution will be located in proximity of the global optimum. In Fig. 2 this
fraction of best results comprises approximately 10% of all results.

3.2 Random structures re-discovering

In the second experiment the same procedure was performed, but this time for a hun-
dred different random parameters sets. Every set was chosen with a uniform distribution
within the box constraints. Then, for every set 500 independent runs of the extraction
method were performed.

Table 1 presents mean value of the mse error and mean values of the extraction errors
for each parameter. Parameter extraction error values are given in percent. All values
are presented for percentiles: 50th, 25th, 15th, 5th, and 1st (best solution found). It is
important to mention, that ordering by the misfit of characteristics measured by the mse

error as defined in equation 1 might be different from ordering by the extraction error
value specific to any of the parameters.

This experiment once again shows that due to the non-determinism of the extraction
method it should be run many times to yield a satisfactory low level of the mse error.
However, if the number of runs is large enough, the best obtained results are very close
to the actual values for each parameter.



Figure 1. Plot of the logarithm of the matching error (Y axis) vs. each parameter value (X
axis)

4 Impact of the measurement error on the extraction quality

In reality, every measurement is made with an error. We examine the influence of a non-
systematic error assuming that the measured value x and its measurement x̂ are related
according to:

x̂ = x + ε (2)

where the random error is denoted by ε ∼ N (0, σ(x)), and σ(x) means that the standard
deviation if a function of the measured value.

Two error values of the standard deviation were considered, namely 0.1% and 0.5%
of the input value. For each error standard deviation the whole following procedure was
performed.

Firstly, a set of parameter values to be re-discovered using the extraction method
was chosen – these values were the same as presented in section 3.1. Then, artificial



Figure 2. Histogram of the logarithm of the mse error

Percentile mse Mean relative error for
vto gamma phi kp theta ucrit

50th 7.817 · 10−13 4.889 4.994 60.51 0.9203 6.294 6.051
25th 4.442 · 10−13 1.625 1.953 14.60 0.2752 2.882 2.372
15th 1.045 · 10−13 0.9608 1.556 8.438 0.1412 1.595 0.9124
5th 5.172 · 10−13 0.1165 0.94 7.048 0.0301 0.2658 0.2309
best 1.74 · 10−13 0.0014 0.171 0.195 0.0015 0.0083 0.0145

Table 1. Mean relative error for chosen percentiles – mse and for each parameter

measurement sets were generated according to the following procedure:

1. a set of input voltage values was generated,

2. every input voltage value was disturbed according to:

v̂i,j = vi,j + ε (3)

ε ∼ N (0, σ(vi,j))

where vi,j is the original input value, and σ(vi,j) is the error’s standard deviation,

3. output current ci was computed using the EKV model and the disturbed input
voltage values,

4. the output current value was then randomly disturbed with the standard deviation
σ(ci) according to:

ĉi = ekv(v̂i) + ε (4)

ε ∼ N (0, σ(ekv(v̂i)))

where v̂i is the input disturbed by the random error, ĉi is the corresponding current-
output measurement calculated for v̂i by the use of ekv denoting the EKV model,

5. the final artificial measurement set was obtained by combining the disturbed values
from points 1. and 4.



Then, for each artificial measurements set 500 independent runs of the extraction
method were performed. Tables 2 and 3 present the experiment results. From results
gathered for each input set – with respect to the mse formula given in equation 1 – the
best 5% was chosen. Then, for this top 5% of results, the average relative extraction
error value for each parameter was computed. The error is expressed as the percentage
of the original parameter value.

Input Mean relative error for
set size vto gamma phi kp theta ucrit

2197 0.125 0.220 1.330 0.022 0.506 0.470
729 0.382 0.228 1.976 0.008 0.052 0.093
343 1.018 0.336 4.957 0.072 1.253 0.207
125 0.005 0.720 2.457 0.302 5.454 1.701

Table 2. Average extraction error for top 5% of results, σ = 0.1%

Input Mean relative error for
set size vto gamma phi kp theta ucrit

2197 1.97 4.47 28.12 1.09 9.55 0.14
729 3.0 6.8 46.0 1.6 10.0 2.9
343 0.47 2.23 5.09 0.63 12.83 3.11
125 6.2 3.0 29.4 1.1 7.1 1.0

Table 3. Average extraction error for top 5% of results, σ = 0.5%

It can be seen that for σ = 0.1% the extraction error values are in most cases no
greater than 1%. Apart from phi and theta, the extraction errors for the parameters are
quite similar. Results obtained for σ = 0.5% presented in table 3 are visibly worse, which
is a clear demonstration that the extraction quality goes down when the measurement
error increases. For both values of the measurement error standard deviation, phi and
theta seem to be the hardest to extract, while vto, kp and ucrit give most satisfactory
error results.

No clear dependence of the extraction error on the number of measurement points
can be observed. This may be due to the non-deterministic extraction method character.

In Fig. 3 mse error plots for each extracted parameter are presented. After intro-
ducing the measurement error tornado-like shapes around the original parameters values
cannot be observed. This means that the fraction of results close to the global optimum,
i.e. the original parameters set, cannot be distinguished under the mse criterion so easily
this time.

It can be observed that the impact of the measurement error on the extraction results
cannot be ignored. This is visible both in plots in Fig. 3 and in tables 2 and 3 containing
the error values.

Even though the relative extraction error values seem to be quite significant, in fact
error values no greater than ±5% are usually acceptable as the extraction results in the
field of MOSFET parameter extraction.

Also, as mentioned before, error values are not directly correlated to the input set size,
which might be due to the randomness in the extraction process. We suppose that with



Figure 3. Plot of the logarithm of the matching error (Y axis) vs. each parameter value (X
axis), measurement error σ = 0.1%

bigger number of independent runs the correlation between the set size and extraction
error would be higher. However, the relative differences of the extraction error among
all parameters seem to be quite similar regardless of the presence or strength of the
measurement error.

5 Conclusions and outlook

This paper presents a next step of research on robust and efficient extraction method for
MOS transistor parameters. We have analysed the possibility of using the EKV model
as the component of this method. First of all, it has been experimentally confirmed that
a function returning the discrepancy between a real voltage-current measurement set and
a EKV-generated one has one global optimum. This optimum can be found with a given
level of probability. This allowed us to find out how the measurement error affects the



final extraction result. The conclusion is that, apart from the two worst parameters
phi and theta, this method yields acceptable results.

We plan to gain a better insight on the measurement error propagation and possible
methods which minimize its impact. Secondly, we believe that the extraction method
can be handled in a number of steps, in each step a different subsets of parameters might
be extracted from data. Finally, some field-specific extraction methods might be used to
initialize the EA in the proximity of the actual global optimum.
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Grabiński, Swiss Federal Institute of Technology for sharing the EKV model implemen-
tation.

Bibliography

[1] EKV Authors webpage. http://legwww.epfl.ch/ekv/people.html.

[2] J. Arabas and S. Szostak. Hybrid Evolutionary Algorithm in MOSFET parameter
extraction. Prace Naukowe Politechniki Warszawskiej, Elektronika, 2008.

[3] J. Arabas, S. Szostak, L.  Lukasiak, and A. Jakubowski. Studies of the feasibility of us-
ing global and local optimization methods in MOSFET characterization. Elektronika,
1, 2008.

[4] M. Bucher, C. Lallement, F. Theodoloz, C. Enz, and F. Krummenacher.
The EPFL-EKV MOSFET model equations for simulation, version 2.6. 1997.
http://legwww.epfl.ch/ekv/pdf/ekv v262.pdf.

[5] C. Enz, F. Krummenacher, and E. Vittoz. An analytical MOS transistor model valid
in all regions of operation and dedicated to low-voltage and low-current applications.
Journal on Analog Integrated Circuits and Signal Processsing, pages 83–114, 1995.

[6] J.A. Nelder and R. Mead. A simplex method for function minimization. The Com-

puter Journal, pages 308–313, 1965.

[7] R.F. Pierret and J.A. Shields. Simplified long-channel MOSFET theory. Solid-State

Electron, 26, 1983.




