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Abstract. Studies of a dynamical system model generated by a phenotypic evolution may
be exploited to identify an unknown fitness function of a “black-box” type. Depending on
a fitness function itself and a standard deviation of mutation, the system converges either
to stable fixed points or demonstrates a periodic and/or chaotic behavior. Stable fixed
points locate fitness optima while the unstable behavior may indicate asymmetry of the
function. A family of bimodal tent functions are analyzed with their parameters varied,
in order to gain knowledge about their optima positions and heights, saddles widths and
levels.

1 Introduction
A behavior of a dynamical system of phenotypic evolution, obtained for very small populati-
ons and a real-valued infinite search space, seems to be a reliable tool of an unknown fitness
function identification [4, 6]. Two-element populations evolving with proportional selection
and Gaussian mutation are regarded in a space of population states. Expected values of the
population states generate a discrete nonlinear two-dimensional dynamical system. An asym-
ptotic behavior of the system depends both on a shape of a fitness function and on a parameter
of evolutionary process - a standard deviation of mutation σ [2, 3, 5]. For small values of the
standard deviation, the system converges to stable fixed points. When the parameter increases,
some of the fixed points disappear, while some others change their stability. Bifurcations,
periodic orbits and chaos may also be observed.

The analysis of stable and/or unstable behavior of the dynamical system may shed light on
an unknown fitness function of “black-box” type or to design parameters of an evolutionary
algorithm used in optimization [4, 6, 7]. A task of identification of an unknown function often
occurs in engineering practice, where values of the function are obtained via mesurements. In
the paper the extension of our past activities in the field of fitness functions identification is
presented. An asymptotic behavior of the dynamical system is analyzed in details for bimodal
fitness functions composed of two unimodal tent functions. The impact of position and height
of optima for the fitness functions, as well as a width and level of a flat saddle, on fixed points
and their stability of the system is studied. In a landscape of a bimodal function with optima
separated by a flat saddle, the system behaves like in the case of an unimodal function: with
increase of the standard deviation of mutation, stable fixed points are changed by an orbit of
period of two. If a flat saddle level is high, this phenomenon is not observed. The chaos is
detected for bimodal functions without flat saddles. Neither height of optima nor shift in their
locations modifies qualitatively a behavior of the dynamical system.



The paper is organized as follows. In Section 2 the model of phenotypic evolution in the
space of population states and the underlying discrete dynamical systems are recalled. Section 3
describes the framework and fitness functions exploited in simulations. The asymptotic behavior
of the system for bimodal tent function is presented in Section 4. Section 5 provides a summary
of obtained results.

2 Dynamical system model of two-individual population
An evolutionary search with soft selection is a phenotypic evolutionary method operating in a
real-valued unbounded search space Rn [1]. Reproduction occurs with a proportional selec-
tion and the Gaussian mutation. Two-element population model of the method is considered
[5]. Evolution of two-element population P = {xxx1,xxx2} (xxxi ∈ Rn, i = 1, 2) is regarded in
a a space of populations state S, where every point corresponds to the whole population.
Assuming that the search space is one-dimensional, a population state can be represented in
R2 3 sss = {x1, x2}. Because the ordering of individuals within a population is insignificant,
an equivalence relation U is defined that glues points with permuted coordinates. Thus, the
population space S is replaced by a factor space SU = R2/U that is identified with the half-
plane (bounded by line x1 = x2) SU = {(x1, x2) : x1 ≥ x2}. It is more convenient to rotate
coordinates using the transformation w = (x1 − x2)/

√
2, z = (x1 + x2)/

√
2. Then, the state

space SU becomes the right half-plane (w ≥ 0) bounded by Z-axis and the population in
i-th generation is described by a state sssi = (wi, zi). Coordinate w corresponds to population
diversity while z – to the population mean.

In SU , expected values of the population state can be calculated as it was done in [5]. The
final expressions of expected values in the (i+ 1)-st generation for w and z are given{

Ei+1[w|sssi] =
√

2
πσ + (1−Ψi2) · σ ·Θ(wi/σ)

Ei+1[z|sssi] = zi + Ψi · wi,
(1)

where q(x) denotes a fitness of the individual x and

q1 = q(x1) = q
(
w+z√

2

)
, q2 = q(x2) = q

(
z−w√

2

)
, Ψ(w, z) = q1−q2

q1+q2
, Ψi = Ψ(wi, zi),

Θ(ξ) = φ0(ξ) + ξΦ0(ξ), φ0(ξ) = 1√
2π

(exp
(
− ξ

2

2

)
− 1), Φ0(ξ) = 1√

2π

∫ ξ
0

exp(− t
2

2 )dt.

Expected values (1) generate a two dimensional discrete dynamical system

(w, z) −→ F (w, z) =
[
F1(w, z) = Ei+1[w|sssi]
F2(w, z) = Ei+1[z|sssi]

]
. (2)

The asymptotic behavior of dynamical system (2) was studied and fixed points and their stability
were determined. Fixed points (ws, zs) of the system are characterized by

ws ' 0.97σ, Ψ(ws, zs) = 0.

Recent studies demonstrate that, in general, fixed points of the system (2) are located
in vicinity of optima and saddles of a fitness function. Saddle fixed points are unstable.
The optima points are stable for small values of the standard deviation of mutation and may
loose their stability for larger σ. Then periodical orbits and/or chaos appeared. Till now,



symmetrical and asymmetrical, unimodal and bimodal Gaussian functions and unimodal tent
functions were studied [2, 4, 6]. Unimodal fitness functions have at most one fixed point
localizing the optimum. The fixed point is stable for small values of the standard deviation of
mutation. For large σ the stable fixed point disappears and a periodical orbits for symmetrical
functions or period doubling bifurcations leading to chaos for asymmetrical ones arise. For
bimodal Gaussian fitness functions, the dynamical system has up to three fixed points. Points
are located near optima and a saddle. Optima fixed points are stable for small σ whereas a
saddle fixed point is unstable. When the value of standard deviation of mutation is increased,
the system looses stability and an orbit of period two is observed for symmetric functions or
asymmetric functions with hills of equal width and different optima height. For functions with
different hills width unstable chaotic behavior was detected.

Keeping trace over the asymptotic behavior of the dynamical system may be useful in setting
parameters of the soft-selection based evolutionary algorithms when applied to optimization
problems. The analysis of the behavior may prove its usefulness in an identification of an
unknown fitness function. The number of fixed points is tightly correlated with modality of the
function. For small σ, fixed points reliably localize optima while chaotic behavior (for larger
σ) may indicate the asymmetry of a fitness function.

3 Prerequisites

In simulations expected values of coordinate z were calculated until either its stable state was
reached or an assumed number of iterations were performed. The stable state was called out
when the values of z in two consecutive iterations differed less than the prescribed tolerance,
ε = 10−6. The maximal number of iterations was fixed on 5000. The stable value of coordinate
w: ws ∼= 0.97σ, in computations was rounded to ws = σ. Values of the standard deviation of
mutation were uniformly taken from range [0.05, 2] with the step ∆σ = 0.005. Initial states
s0 = (w0, z0) and s0 = (w0,−z0) were generated setting w0 ∈ {0.1 + i · 0.2}, i = 0, 1, . . . , 4,
and z0 ∈ {0.1 + i · 0.2}, i = 0, 1, . . . , 8.

A bimodal fitness function is composed of two tent functions separated by a flat saddle.
It admits to set easily various values of optima heights and localizations, a saddle width and
level (Fig. 1.a.)

q =



((h1 − hv)/(B −A)) · (x−A) + hv if x ∈ [A,B)
((hs − h1)/(C −B)) · (x−B) + h1 if x ∈ [B,C)
hs if x ∈ [C,D)
((h2 − hs)/(E −D)) · (x−D) + hs if x ∈ [D,E)
((hv − h2)/(F − E)) · (x− E) + h2 if x ∈ [E,F ]
hv otherwise

(3)

where A < B < C ≤ D < E < F , h1 > hs, h2 > hs. For convenience ls = D − C stands
for the saddle width. If not mentioned opposite, default values of parameters are the following:
h1 = 2, h2 = 1, hs = 0.1, hv = 0.001, ls = 2. Various shapes of the fitness were considered:
functions with or without flat saddle (Fig. 1.b), functions with flat saddle of different level
(Fig. 1.c), functions with optima of equal or different height (Fig. 1.d) and function (Fig. 1.a)
shifted along the x axis.
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Figure 1. Bimodal fitness functions: a) a general form; b) functions with different saddle width (hv =
hs = 0.1, h1 = 2, h2 = 1), 1. ls = 0, 2. ls = 1, 3. ls = 2, 4. ls = 3; c) functions with different saddle
level (hv = 0.1, ls = 2, h1 = 2, h2 = 1), 1. hs = 0.1, 2. hs = 0.25, 3. hs = 0.5, 4. hs = 0.75;
d) functions with optima of equal or different height (hs = hv = 0.1, ls = 0), 1. h1 = 2, h2 = 1, 2.
h1 = 5, h2 = 3, 3. h1 = 5, h2 = 5

4 Behavior of the dynamical system - results

In general, behavior of the system is independent of an initial value of coordinate w, which
describes a diversity of population. It is understandable when looking at evolution of expected
value of coordinate w [4, 6]. Its value is bounded, from above and below, and very quickly
attains its stable value. The value of E[z] corresponds to an expected location of population
and thus influences behavior of the system. In Fig. 2.a bifurcation diagrams for the function
without a flat saddle (ls = 0) are presented. A single fixed point, for small values of the
standard deviation of mutation, is replaced by periodical orbits and chaos when the parameter
increases. Stable fixed points locate both fitness optima. For all three tested values of coordinate
w0, diagrams look similar to each other and differ only in values of σ for which the unstable
behavior appeared. Detailed diagrams for w0 = 0.5 are presented in Fig. 2.b. Depending on
an initial value of z0, different optima are located i.e. initial state sss0 = (0.5, 0.1) is situated in
the attraction basin of the global optimum whereas trajectories started at the other states are
attracted by the local optimum and changed attractor for larger σ. Later on bifurcation diagrams
for positive values of z0 are mainly presented because for negative z0 they are symmetrical.
Exemplary diagrams for both positive and negative z0 are displayed in Fig. 4.
Flat saddles width. The effect of a flat saddle between optima is analyzed for functions with
various saddle widths (ls = 1, 2, 3) and compared with the fitness without a flat saddle (Fig. 3).
For a fitness with a flat saddle both initial coordinates w0 and z0 may effect expected trajectories
depending on localization of individuals corresponding to the initial state. Trajectories started
in a state for which both of individuals (x1 and x2) are placed on a flat saddle remain in
the state because there is no difference in fitness of the individuals, Ψ = 0 and from (1):
Ei+1[z] = zi. Stable fixed points located optima unless one of individuals is situated on an
optimum hill. For example: sss0 = (0.5, 1.1) corresponds to population P = (1.13, 0.42) for
which individual x1 is situated on the local hill of the function (3) with ls = 2. Trajectories
started at this state converge to fixed points near the local optimum. For saddles of width
ls = 1, 2 and 3 stable optima fixed points loose stability for large σ and pitchfork bifurcations
give a rise to orbits of period of two (Fig. 3). The doubled period bifurcations and chaos are
detected only for fitness without a flat saddle (Fig. 2). This effect may be explained easily. For
functions with a flat saddle optima are separated. They do not influence each other as in the
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Figure 2. Bifurcation diagrams for fitness (3) with no flat saddle (ls = 0) and various initial states
sss0 = (w0, z0): a) initial states with w0 = 0.1, 0.5, 0.9 and various values of z0 given in diagrams; b)
initial states with fixed w0 = 0.5 and various values of z0; h1 = 2, h2 = 1

case of function without flat saddle and may be regarded as a single unimodal symmetric hills.
For small σ the other hill is not “seen” and the dynamical system behaves as in the unimodal
case.
Flat saddles level. The effect of a saddle level is analyzed for a flat saddle with various level
hs = 0.1, 0.25, 0.5, 0.75 (Fig. 4). Because diagrams for different values of w0 look similar,
see Fig. 2, 3, remaining results are presented only for w0 = 0.5. For hs = 0.25 and hs = 0.5
figures for both positive and negative values of z0 are shown. Elevation of a saddle causes
that bifurcations arising for large σ and initial individuals located on local or global optimum
hill are less distinct and for higher saddle levels utterly disappeared. In that case trajectories
converge to fixed points located on hills’ slopes separated by a saddle (which are not as steep
as the others). A lack of bifurcations for higher saddle levels may be explained by smaller
difference in fitness of individuals located on hills and on saddle, thus trajectories can stabilized
on slopes.
Optima height. The fitness function with and without flat saddles and various optima heights:
different heights h1 = 2, h2 = 1 and h1 = 5, h2 = 3 and equi-height hills h1 = h2 = 5,
were regarded (Fig. 1.d). Results presented in Fig. 5 show that influence of optima height is
negligible. For symmetrical function without a flat saddle (ls = 0, h1 = h2 = 5) and a given
initial state only one optimum was detected.
Shift along x axis. Functions with different localization of optima (positions of the global
optimum B = −1, 0, 1) were regarded. General pattern of diagrams is analogous. Because
initial states for all functions were the same, only the global optimum was detected for the
function with B = 1 (location of the local optimum required larger values of z0). Interesting
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Figure 3. Bifurcation diagrams for fitness (3) with different saddle width ls and various initial states
sss0 = (w0, z0); values of z0 are given in diagrams; h1 = 2, h2 = 1, hs = 0.1

and worth of further studies is an example of the function with the global optimum located at
zero: chaos lasts for small range of σ and then the system converges to one stable fixed point
again and switches to orbit of period of 2 later on.

5 Conclusions

A case study of the dynamical system generated by phenotypic evolution for bimodal fitness
functions composed of two tent functions was presented. Different parameters constituting the
fitness function were examined in context of using the results in identification of an unknown
fitness function.

It turned out that studies of fixed points can be carry out for one value of coordinate w0

only, varying values of z0 in a wide range. Generally, for small values of standard deviation
of mutation σ, fixed points locate optima of a fitness. Fixed points lazy stayed at an initial
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Figure 4. Bifurcation diagrams for fitness (3) with different saddle levels and various initial states sss0 =
(0.5, z0); values of z0 are given in diagrams; h1 = 2, h2 = 1, ls = 2
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Figure 5. Bifurcation diagrams for fitness (3) with different optima height and various initial states
sss0 = (0.5, z0), values of z0 are given in diagrams; a) ls = 0; b) ls = 2

state may indicate a flat surface of a function (saddle or plateau). In this case, fixed points
may change position and locate an optimum if trajectories started at states for which at least
one individual is at the optimum peak. Thus, such an initial state can serve as a hill indicator.
Small differences in fitness between individuals on hills and on a flat saddle (functions with
a high saddle level) may cause that unstable behaviors (orbits and/or chaos) do not appear.
Chaos was detected for functions without a flat saddle where there is a mutual influence of
both optima on the system. Different optima height and the shift of the function along x axis
have a minor effect on the system behavior. The presented case study seem to confirm our
earlier observations, gained from the analysis of Gaussian-like uni- and bi-modal fitness, that
following the asymptotic behavior of dynamical system (2) is a useful tool in identification of
“black-box” fitness functions.
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