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Abstract — This is the first of two papers describing the process of fitting ex-
perimental data under interval uncertainty. Probably the most often encountered
application of global optimization methods is finding the so called best fitted

values of various parameters, as well as their uncertainties, based on experimen-
tal data. Here I present the methodology, designed from the very beginning as
an interval-oriented tool, meant to replace to the large extent the famous Least
Squares (LSQ) and other slightly less popular methods. Contrary to its clas-
sical counterparts, the presented method does not require any poorly justified
prior assumptions, like smallness of experimental uncertainties or their normal
(Gaussian) distribution. Using interval approach, we are able to fit rigorously and
reliably not only the simple functional dependencies, with no extra effort when
both variables are uncertain, but also the cases when the constitutive equation
exists in implicit rather than explicit functional form. The magic word and
a key to success of interval approach appears the Hausdorff distance.

1 Introduction

Handling experimental uncertainties lies at the heart of physics and other sciences. The
situation is rather clear during simple measurements, for example when determining
the mass, m, of an object under investigations. In this case the uncertainty of a single
measurement is equal to one half of the smallest division (∆) of the measuring device,
here the balance. Consequently, we can be sure that the unknown mass certainly belongs
to the interval [m − ∆/2, m + ∆/2], where m is a direct readout from the instrument’s
scale. We can try to increase our confidence into the result by repeating the measurement
several times or by using several measuring devices, maybe delivering the results with
different precision ∆. By doing so, we necessarily switch to the probabilistic way of
presenting measurement’s results, namely as a pair of two numbers: the most likely value,
m, and its standard deviation, σ(m), expressing the uncertainty of a measurement.

Nowadays more and more measurements belong to a class called indirect measure-
ments , where we deduce the numerical values of various interesting parameters without
comparing them directly to the appropriate standard. When determining the resistance
of a sample we usually take a series of measurements, obtaining many pairs (voltage,
current). Then, applying the Ohm’s law relating those two physical quantities, we find
the single proportionality constant, called resistance, R = voltage/current. Using many



measurements, not just one, we switch naturally to the probabilistic form of result’s
presentation: as the most likely value and its standard deviation (here: R and σ(R)).

This situation is highly unsatisfactory. First, we can never be 100% sure whether the
partial uncertainties are indeed small , thus justifying the application of various ‘error
propagation laws’. Secondly, neither the probability density function of measurements nor
of the result need not to be normal (Gaussian), thus invalidating the frequent claim that
the probability of the true value belonging to the interval [m − σ, m + σ] is approximately
equal to 67%. In reality, the overwhelming majority of contemporary measuring devices
deliver discrete, digital results. Such results obviously cannot be normally distributed.

In this paper I present other ways of experimental data processing, using interval
methods. Here we operate on guaranteed rather than probabilistic quantities, thus the
results obtained on this way should also be guaranteed. In practice, the results pro-
duced by straightforward interval implementation of the classical methods often appear
disappointing. In this paper I point to the possible reasons and show a remedy.

2 Basics of interval calculus

From now on we will use intervals every time our numbers are uncertain. Specifically,
by interval x we will understand a subset of real numbers: x = [x, x], where both x 6 x
are real numbers. The set of all intervals is usually written as IR. We can identify real
numbers with intervals of type x = [x, x], i.e. having their lower and upper bound equal
to each other, and called degenerate intervals , thin intervals, or singletons . This way the
set of intervals may be regarded to be an extension of real line: R

1 ⊂ IR.

Arithmetic operations on intervals are defined in such a way that the resulting interval
always contains all the possible outcomes of the operation in question (and only those
outcomes) when the real operands are arbitrarily drawn from their interval representa-
tions. One has to keep in mind that – in case of more complicated arithmetic expressions
– the final result may be overestimated .

Since intervals are sets of numbers, the set operations apply to them as well. Conse-
quently, we can obtain the intersection of two intervals or their union. This last operation
may produce a disconnected set, not an interval. Therefore the union of two intervals
is often replaced by an interval hull , that is the smallest interval containing them both:
hull (x,y) ≡ (x, y) =

[

min(x, y), max(x, y)
]

.

The nice feature of interval computations is its straightforward extensibility to op-
erate on vectors, matrices, or real-valued functions as well. The vectors with interval
components are usually called boxes and it is easy to see why. For more information on
interval computations the reader is referred to other sources [1]. In what follows we will
need two real-valued functions defined for interval arguments: w(x) = x − x > 0 (width
of interval x), and c(x) = (x + x)/2 – the center of interval x.

2.1 Common features of interval algorithms

Interval-oriented algorithms usually operate on lists of boxes and treat them accord-
ingly to their current status. Good boxes are retained for further reference, while bad
boxes are discarded as soon as possible. The third category, called pending, unresolved
or undetermined , is the most interesting and as such is the main object of processing.
The general idea is to start from a single big box, suspected to contain the solution (or



solutions) and therefore initially labelled as pending. Pending boxes, one by one, are
divided into smaller parts (usually two) and disappear from the list. Offspring boxes are
subjected to one or more tests aimed to determine their current status. Some of them are
recycled back onto pending list, while bad ones are immediately discarded, and good are
collected separately as a part of the final result. The procedure terminates when either
the list of pending boxes is empty or contains only ‘small’ boxes. On exit, the result is
a union of good boxes, possibly appended with pending ones. Empty output is a proof

that the solution(s) of our problem, if any, are located outside the initial box.
Of course, the exact meaning of bad and good depends on context.

3 The problem of experimental data fitting and its solution

Suppose we have a theory T , characterized by k unknown parameters p1, . . . ,pk, and N
(N > k) results of measurements m1, . . . ,mN , each taken at different values of some
well controlled variables, for example the varying temperature or magnetic field. Let xj

denotes the value(s) of controlled variable(s) (environment) during the measurement mj .
In what follows we will use the simplified notation:

T (p1, . . . ,pk;xj) = tj(p), j = 1, . . . , N
mj(xj) ≡ mj ,

(1)

where the upper line describes the theoretical outcomes of the experiment and the
lower one – actual experimental results. Usually each theoretical outcome tj (we will
often skip the explicit dependence of tj on the set of unknown parameters p) is crisp1

when all the arguments of T (including xj) are crisp. Contrary, the measurements mj are
always uncertain and will be considered from now on to be intervals (or more generally:
interval vectors).

The task for an experimentalist is to adjust the values of all unknown parameters
p1, . . . ,pk, in such a way that every measurement mj differs as little as possible from
the corresponding theoretical prediction tj . In fact, we would be happy to finish the
procedure observing

tj ∩ mj 6= ∅, ∀j ∈ {1, 2, . . . , N} (2)

(in simple words: the theoretical curve passes through all the experimental points) and
with unknown parameters, p’s, as narrow as possible.

Note that the requirement tj ⊆ mj for every j, although tempting, is going too far:
our results (if they exist) would be severely underestimated. Yes, we want to be accurate,
but we can’t afford to tolerate underestimates.

It is out of scope of this article to elaborate the details of many existing particular
procedures [2]–[14] aimed to maximally contract the initial box of unknown parameters
p1×· · ·×pk in such a way that all the relations (2) are satisfied. Some of those methods
(see [9]) deliver a single box being an interval hull of solutions, while others, more time-
consuming, output more boxes, covering with certainty the solution set. Technically: we
call a box bad when at least one of inequalities (2) is violated at all its internal points
and pending otherwise. In rare cases it happens to encounter tj ⊆ mj for all j’s – such
box is good and requires no further processing.

1We call the object crisp (point, point-wise, point-like) in contrast to the one having interval char-
acter, be it a real number, vector or matrix.



3.1 Advantages and disadvantages of the rigorous solution

The practical implementations of the above described approach are still rare [15, 16]
and one may wonder why. The unquestionable mathematical rigor of a procedure is
certainly among its major advantages. Unfortunately, for very practical reasons, this is
also its weak point. And here is why:

• the routine requires guaranteed intervals as measurements, i.e. the ones containing
true outcomes of an experiment with probability equal exactly to 1. It is impossible
to satisfy this requirement in laboratory practice since measurements usually have
the form m = m0 ± σ(m), where m0 is a mean value and σ(m) – its standard
deviation. Nobody knows (or cares) what is the distribution of m, even its support is
usually unknown (well, some physical quantities, like mass or absolute temperature,
have to be non-negative). Consequently, taking intervals [m0 − σ, m0 + σ] as input
data, we will most likely finish with empty set of results. This is because at least
one-third of N relations (2) has to fail, for arbitrary (even crisp!) set of unknown
parameters {p1, . . . , pk};

• the quick and dirty fix, coming to the mind in the above situation, is to use wider
intervals, like [m0 − 3σ, m0 + 3σ], as ‘almost guaranteed’ input data. Depending
on the individual luck, this trick may or may not work. If it doesn’t then we are
left without even a foggy idea what are the values of our unknown parameters. If
it works then uncertainties of so obtained parameters are often very large, very
pessimistic – at least when compared with those obtained on other ways. Besides:
are we entitled to ‘scale back’ the obtained uncertainties dividing them all by 3?
The only honest answer is no;

• sometimes, when the fix works, the uncertainties of unknown parameters appear
unrealistically, not to say suspiciously, small. This will surely happen when among
our data there is at least one element which should be labeled as a ‘near outlier’.
It may be due to the undetected data transmission/recording error, power line
fluctuations, or whatever.

• another approach is to require fitted curve to pass through at least N1 < N exper-
imental points, without any prior indication which points are to be preferred. The
sensible choice for N1 is N1 ≈ 2N/3. We will not discuss further this idea.

On the other hand, when all our data are credible but the solution set is empty – our
theory T must be flawed. This could be a very strong statement, but is not. There is
one more possibility: the experimental uncertainties are seriously underestimated, delib-
erately or otherwise. So, experimenters, be warned: cheating will be severely punished
by interval methods and will bring you nowhere!

Concluding: while the rigorous approach has many advantages, we definitely need
something else.

3.2 Back to the basics

The situation is especially upsetting when experimental data look fine, and we are
sure the theory is correct, yet the interval routine returns no answer at all. What can we
do?

In classical data analysis, the LSQ method (Least Squares) is most commonly used
to find unknown parameters. In short, its essence is to minimize the quantity called chi



squared :

χ2(p) =
N

∑

j=1

(mj − tj(p))2

σ2

j

, (3)

where p is a (crisp) vector of k unknown parameters – arguments of the function χ2. We
are looking for such a vector p⋆ as to have χ2(p⋆) = min. It is well known that LSQ
method never fails and always produces some results, even for completely wrong theory.

The LSQ method is due to Carl Friedrich Gauß (1777–1855) and was originally in-
vented by him around 1794. Later on, in 1809, the same author gave it solid statistical
interpretation. We will not proceed with statistical properties of χ2 and LSQ method in
general, instead we will rather concentrate on the original idea. And it was like that:

Due to unavoidable experimental uncertainties (then called errors), it is unlikely to
draw a line representing theoretical outcomes as a function of environment (x) and have
the experimental points mj(x) lying precisely on this curve at the same time. Note that
the notion of standard deviation of the measurements was practically unused those days,
so the measurements were just numbers. This means there were no denominators in
formula (3). Varying the unknown parameters pj ’s, we deform the theoretical curve so
as to have it running as closely to the experimental points as possible, thus solving the
problem.
Remark: Gauß could not speak about the distance (between a theoretical curve and

experimental points), at least not in a strict mathematical sense, since this notion
was introduced into mathematics many years later, by another German mathe-
matician, Felix Hausdorff (1868–1942), and, independently, in 1905, by Romanian
mathematician Dimitrie Pompeiu (1873–1954) [17].

Having known the notion of distance, Gauß would almost certainly use it in his early
idea of LSQ method. Indeed, the formula (3) is nothing else as squared Euclidean distance
in N -dimensional space, where σj serves as a unit length in direction j.

4 Interval version of LSQ method

The problem of global optimization is well studied. Interval researchers have also con-
tributed their share to this field. They have already devised many interval-thinking-
inspired, rigorous procedures aiming to solve such tasks. Minimizing χ2 is obviously one
of them. Simple optimization cases, in LSQ sense, were investigated since at least 1990
[18]. Several closely related problems have been successfully solved using rigorous interval
algorithms, yet the specific difficulties, recalled in Sec. 3.1, still have not been addressed
satisfactorily.

The enormous potential of interval methods for uncertain data processing has been
recognized long ago (1993) by Walster and Kreinovich [19]. Kosheleva and Kreinovich
(1999) pointed that the cost of interval approach only slightly exceeds the traditional
(probabilistic) one [20]. Muñoz and Kearfott (2001) have shown that non-smooth cases
should be essentially no more difficult than regular ones [7]. Only one year later (2002),
Yang and Kearfott heralded ‘new paradigm’ and ‘new way of thinking about data fitting’
[21]. Unfortunately, they did not show how to practically implement their ideas other
than for linear equation set. Finally, (2005) Zhilin [13] found the solution for the case
when measurements are (multi)linearly related to the environment.



4.1 Correct interval form of χ2

How to ‘translate’ the fundamental formula (3) into its interval counterpart? The first
idea is to simply replace real-valued measurements mj by their interval representations
mj, apply the same trick to theoretical predictions tj → tj , and retain real-valued σj ’s.
Consequently, the functional χ

2 becomes interval-valued as well. So far, so good, but
wait.

In the light of what was said before, we have to rewrite (3) in terms of distance
between experimental and theoretical (predicted, simulated) points. Yet the expression
mj − tj , nor even |mj − tj |, is not the correct mathematical distance! There are two
reasons for that:

• it is not a real number, and

• the implication (m = t) ⇒ (m − t = 0 ) is false.
This naturally raises the question: what is the distance between two intervals, here

m and t? Following Hausdorff, we will use his metrics, adapted for IR space by Moore
[22] as:

d (a, b) = max
(

| a − b | ,
∣

∣ a − b
∣

∣

)

. (4)

Before continuing, let us only note that another function d′ (a, b) = C · d (a, b), where
C > 0 is a fixed number, is a correct distance, too. Additionally, the mathematical
distance is not expressed neither in miles nor millimeters, or in any other units – it
is simply dimensionless. This is important, since using the strict mathematical distance
between intervals we will be able to fit our experimental data obtained from two (or more)
completely different experiments, provided the sets of unknown parameters, relevant to
each experiment separately, have non-empty intersection. Simply speaking – it is possible
to fit several curves simultaneously, in a single run.

Remark: The Euclidean distance between theoretical and experimental points is not
the only thinkable distance. We will discuss other N -dimensional metrics in the
other article. We will stick, however, to the Moore-Hausdorff distance as one-
dimensional metrics in IR, no matter that there are other choices, see for example
[23] and [24]. Note also that Moore-Hausdorff distance specialized to the real line
simplifies to the familiar form: d(a, b) = | a − b |, as one might expect.

4.2 Analyzing χ2 term by term

Consider now again a single term in (3). What is the distance between the predicted
value t and the true value m⋆ (m⋆ is a real number, not interval)? All we know about m⋆

is that it satisfies the double inequality: m 6 m⋆ 6 m, with exact value of m⋆ remaining
unknown. According to the definition (4) we have (m⋆ = [m⋆, m⋆] = m⋆):

d (t, m⋆) = max
(

|t − m⋆| ,
∣

∣t − m⋆
∣

∣

)

∈ R (5)

We don’t know which internal point of m is equal to m⋆. Suppose for a moment that
m′ coincides2 with one of the endpoints of m, say m′ = m. Call the current distance
d(t, m′ = m) = ξ. What happens when m′ gradually moves to m – the other endpoint
of m?

2For a moment we will be dealing with some m
′, not even necessarily contained in [m, m], rather

than with m
⋆. This is just for purity: m

⋆ is a fixed number and we want m
′ to be variable.



If t and m are disjoint then ξ will linearly increase or decrease, depending on the
relative position of t and m on a real axis. We will finally get either d (t, m) = ξ + w(m)
or d (t, m) = ξ−w(m) (this must be a positive number as t ∩ m = ∅). Consequently we
have bounded the true distance d (t, m⋆) with uncertainty |d (t, m) − d (t, m)| = w(m).
This is indeed very remarkable result, especially when compared with the so called natural
interval extension of a basic building block of χ2, namely the expression ‘t − m’. There
we always have w(t − m) = w(t) + w(m) > w(m). In our approach the uncertainty of
a distance in question never exceeds the uncertainty of an individual measurement and
– surprisingly – it does not depend on current accuracy of unknown parameters.

It remains to show how this result changes when t and m overlap. Previously, thanks
to the disjointness of t and m, only one argument of (5) was ‘active’ at all times, meaning
that its value defined the distance. Now, at some point m′ (not necessarily m⋆), the two
arguments can exchange their roles and the other one may become ‘active’. If this happens
(it may not) then the direction of change of ξ will change too, thus ‘un-doing’ the already
acquired change. Therefore the final change of ξ cannot even reach w(m).

5 Main result

The analysis just presented is intuitive and easy to follow, but still crude. It says nothing
about the values of bounds, being limited only to their separation. This is not enough
to be useful in practice. In particular, it is easy to show that m′ at which the two
arguments of (5) are equal to each other is m′ =

(

t + t
)

/2 – the center of interval t (but
only when m′ also belongs to m, otherwise there is no such point and switching of roles
does not occur). For such m′, the distance d (t, m′) = (t − t)/2. With this fact in mind,
we are able to derive the exact bounds for the distance ρ, between a predicted value t of
an experimental outcome, under known environment x, and the true value m⋆ ∈ m, in
the same circumstances x. They are following:

• when c(t) ∈ m:

lower bound: ρ = 1

2
w(t)

upper bound: ρ = max [ d (t, m), d (t, m) ]
(6)

• when c(t) 6∈ m:

lower bound: ρ = min [ d (t, m), d (t, m) ]

upper bound: ρ = max [ d (t, m), d (t, m) ],
(7)

where d (·, ·) is a Moore-Hausdorff distance between intervals. Please note that generally

d (t,m) 6= max [ d (t, m), d (t, m) ] , (8)

so the above bounds cannot be written in a more compact form.
In addition, we have introduced a new symbol, ρ, for the mathematically correct

distance between the true measured quantity and its interval theoretical estimate. ρ

stands for its interval enclosure (note the bold font). The intuitively shown relation
w(ρ) 6 w(m) remains true.



6 Discussion

In conclusion, the recommended form of interval version of χ2 functional is:

χ
2 =

N
∑

j=1

[

ρ (tj (p1, . . . ,pk), mj)

w(mj)

]2

, (9)

where ρ =
[

ρ, ρ
]

is given by (6) and (7), respectively. To recover the unknown parameters
p1, . . . ,pk, one has to find a global minimum of (9) with respect to those parameters.
This task may be accomplished using procedures developed mostly by Luc Jaulin and
Éric Walter (set-inversion methods) as well as ideas first put forward by Shary [25].
Especially the Jaulin’s and Walter’s algorithm SIVIA looks very promissing: it spares
a great deal of computing time by bisecting only some boxes, leaving intact those al-
ready classified as good . No matter which approach will be adopted, it is clear that no
crisp values of unknown parameters can be ever obtained, just because all m’s are inter-
vals. On the other hand, this very feature is highly desirable, since the uncertainties of
searched parameters are evaluated very credibly and as nearly a side effect, with no extra
effort. This observation sheds new light not only on the problem of experimental data
fitting in general, but also substantially changes our perspective on reliable estimates of
uncertainties in indirect measurements.

Once the measurements are completed, the values of all m’s, as well as their widths,
are fixed. This makes possible to use widths of measurements as the natural unit lengths
in every direction of N possible. That is why m’s are present in denominators of all
components of the sum (9). When we speak of distances this is the only choice of appro-
priating individual weights to all measurements. There is no space left for arbitrariness,
as it sometimes happens in other versions of the so called weighted LSQ regression.

As the measurements are fixed during calculations, the interval enclosure ρ of the
distances between the true unknown values m⋆

j and their theoretical predictions tj , is
perfect and cannot be further improved. Moreover, those widths are uniquely determined
by the accuracy of the real measurements, not guessed or necessarily subjectively evalu-
ated by a human expert. The optimal widths are very fortunate, since the lower is the
width of the interval extension of a function being minimized, the more precisely the
global minimum may be located. At least at this respect our procedure definitely beats
the natural approach.

Important last minute note: The interval enclosure ρ, decribed here, lacks an impor-
tant property: it is not inclusion monotonic. The lack of inclusion monotonicity is
rather rare and went undetected during first numerical experiments. Take for exam-
ple m = [10, 35], t = [0, 60], t′ = [0, 30], and t′′ = [30, 60]. Obviously t′ ⊂ t, t′′ ⊂ t,
t′ ∪ t′′ = t and ρ(t,m) = [30, 50]. On the other hand ρ(t′,m) = [15, 35] 6⊂ [30, 50]
and, similarly, ρ(t′′,m) = [25, 50] 6⊂ [30, 50]. This renders ρ, the interval enclosure
of the Hausdorff distance between intervals, completely unsuitable for our purpose.
Paradoxically – it is too accurate!

In the second part of this work a connection between interval hulls of solutions and
statistical description of their uncertainties will be demonstrated and discussed.
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