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Abstract. The refined model for the biologically inspired agent-based
computation system EMAS conformed to BDI standard is presented.
The considerations are based on the model of the system dynamics as
the stationary Markov chain already presented. In the course of paper
space of the system states is modified in order assure state coherency and
set of actions is simplified. Such a model allows for better understanding
the behavior of the proposed complex systems as well as their limitations.

1 Introduction

Immunological systems are relatively new technique used for solving different

problems i.a. intruder detection [1–3], or optimization [4]. Evolutionary Multi-

Agent Systems (EMAS) proposed in 1996 by Cetnarowicz [5] and later researched

in [6–9] try to enrich the classical evolutionary mechanisms using social inspira-

tions [10]. These two techniques were merged and the first results were published

in [6–8]. In order to conduct intensive further research, these techniques should

be formalized, and the authors tend to perform some quantitative and qualitative

analysis representing EMAS as the stationary Markov chains.

Agents in EMAS may be perceived as autonomous individuals. Every agent

is capable of observing its environment by gathering information which it finds

important, making decisions which affect its activity and performing actions

which lead to changes in the overall state of the system (see e.g. [11, 12]).

We will focus on system that solves the global optimization problems which

consist of finding all global minimizers arg min{Φ(x)}, x ∈ D of the objective:

Φ : D → R+ where D ⊂ R
N stands for the admissible set of solutions. Every

EMAS agent contains an immutable genotype, which stands for the encoded

solution of the problem. Genotypes belong to the binary or real-number based

genotype universum U . Agents are assigned to locations (analogous of ”islands”,

see e.g. [13]) and may migrate among them. Genetic operations performed on

the agent’s genotypes, such as crossover and mutation, are similar to those used

in classical evolutionary algorithms.

Each agent is transformed asynchronously in the EMAS system. Selection

mechanisms correspond to their prototype and are based on the existence of a

non-renewable resource called life energy, which is gained and lost when agents

perform actions [9]. Direct employment of different selection techniques (such



as proportional or tournament-based) is impossible because of the asynchronous

nature of the system and decomposition of the population.

Some important optimization tasks have already been solved by EMAS and

yield more effective results than certain classical approaches (e.g. optimization of

neural-network architecture [6–8]). In contrast to the classical genetic approach

in which the network is fully trained for each individual, the fully- and partially-

trained as well as newly-introduced networks may exist at the same time in

EMAS what may enhance the adaptivity of the computation.

We present further development of the model described first in the paper [14]

and extended in [15]. The main novelty in this paper is updating the system space

in order to assure coherency, what is followed by removing unnecessary action

of death and simplifying the other actions. We also introduce the constrained

locations capacities (limited number of agents). The results gathered in this

paper prepare us for the further study of asymptotic behavior of EMAS.

2 EMAS definition

We propose the formal model for EMAS which follows results in this area already

published (see e.g. [14, 8]).

2.1 EMAS structure

EMAS may be modeled as the following tuple

< U,Loc, Top,Ag, agsel, ω,Act > . (1)

In the course of the section all symbols mentioned above will be defined.

EMAS contains a dynamic collection of agents that belong to the predefined

finite set Ag. Every agent aggen ∈ Ag contains exactly one potential solution of

the given problem or its encoded representation (genotype), so there exists the

bijection Ag � aggen → gen ∈ U . We restrict our considerations to the case of

finite universa #U = r < +∞.

The state of a single agent is characterized by the tuple Ag � aggen =<

gen, e >, where e ∈ [0, 1] stands for the fraction of the total energy gathered by

the agent.

Active EMAS agents are contained in locations described by a set of im-

mutable integer labels Loc = {1, . . . , s}. The locations are linked by the channels

along which agents may migrate from one location to another. The topology of

channels is determined by the symmetric relation Top ⊂ Loc2. We assume that

the connection graph < Loc, Top > is coherent, and does not change during the

system evolution.

2.2 EMAS state

Let us introduce the set of incedence and energy matrices X with s columns

(number of all locations) and r (number of all genotypes) rows. The columns



ince(i) ∈ X will contain energies of agents in i-th location. In other words, if

ince(i, j) > 0, it means that an agent denoted by gene j ∈ U is active, its energy

is ince(i, j) = e(j) and it is located in i-th location.

We assume, that i-th column may contain at most qi ≤ r values greater than

zero, what denotes the maximum capacity of the i-th location, and j-th row

may contain at most one value greater than zero, what expresses that j-th agent

may be present in only one location at a time. Moreover ince(i, j) ≥ 0,∀ j =

1, . . . , r, i = 1, . . . , s and
∑r

j=1

∑s
i=1

ince(i, j) = 1.

Gathering all these conditions, the set of incedence and energy matrices, that

constitutes the EMAS space of states, may be described in the following way:

X =

⎧⎨
⎩ince ∈ [0, 1]r·s :

r∑
j=1

s∑
i=1

ince(i, j) = 1

∧ ∀ i = 1, . . . , s

r∑
j=1

[ince(i, j) > 0] ≤ qi

∧∀ j = 1, . . . , r

s∑
i=1

[ince(i, j) > 0] ≤ 1

}
(2)

where [·] denotes the value of the logical expression contained in the parentheses.

2.3 EMAS behavior

Every agent starts its work in EMAS immediately after being activated. In every

observable moment a certain agent gains the possibility of changing the state of

the system by executing its action.

The following random function is used do determine, which agent will be the

next one to interact with the system

agsel : X → M(Ag) (3)

where here and later M(·) stands for the space of probabilistic measures. The

probability agsel(x)({gen}) vanishes when the agent aggen is inactive in the

state x ∈ X.

After being chosen, the agent chooses one of the possible actions, then it

checks whether the associated condition is true, if so, the agent performs the

action. The agent suspends its work in the system after performing the action

which results in its death. The cycle of an agent’s life is presented in Figure 1.

Every agent may perform actions contained in a predefined, finite set Act.

The action, whose decision is to be evaluated by an agent, is chosen using the

following function

ω : U × X → M(Act). (4)

In the simplest case ω returns the uniform probability distribution over Act.



Fig. 1. Agent’s state transition diagram

Every action α ∈ Act is the pair (δα, {ϑgen
α }), gen ∈ U where

δα : U × X → M({0, 1}) (5)

will denote the decision. The action α is performed with the probability δα(gen, x)({1})
by the agent aggen in the state x ∈ X. Moreover

ϑgen
α : X → M(X) (6)

defines the non-deterministic state transition caused by the execution of the

action α by the agent aggen. The trivial state transition

ϑnull : X → M(X) (7)

such that for all A being the measurable set in X and all x ∈ X

ϑnull(x)(A) =

{
1 if x ∈ A

0 otherwise
(8)

is performed with the probability δα(gen, x)({0}).

2.4 EMAS actions

Let us consider the following set of actions

Act = {repr, get,migr} (9)

where repr activates an agent as the offspring agent in the system, get lets the

better agent (better — in the means of predefined fitness function) to take the

part of the life energy from the worse agent and may make the agent with low

energy inactive, migr denotes migration of agents between two locations.

Let us denote by l the location of the current active agent (indexed by the

genotype gen) performing the action (i.e. ince(l, gen) > 0).

The decision of the of energy transfer action get is

δget(gen, x)({1}) =

{
1 if NBAGgen �= ∅
0 otherwise

(10)

where NBAGgen = {{U \ {gen}} � gen′ : ince(l, gen′) > 0} is the set of agents

neighboring aggen (present in the same location), for an arbitrary gen ∈ U and



x ∈ X. So, the agent decides to transfer the energy, when it has at least one

neighboring agent. In this case the following state transition is performed:

ϑ
gen
get (x)(A) =

1

#NBAGgen

⎛
⎝ ∑

gen′∈BETgen

χA(x′(x, gen, gen′))+

∑
gen′∈NBAGgen\BETgen

χA(x′(x, gen′, gen))

⎞
⎠ (11)

where

BETgen = {NBAGgen � gen′ : FITN(gen′) ≥ FITN(gen)} (12)

is the set of neighboring agents better than the active agent in the means of

fitness function defined as follows FITN : U → R. The fitness function is related

in some way to the objective Φ. In the simplest case FITN(gen) = Φ(code(gen)),

where code : U → D is the encoding function. Moreover χA(·) denotes the

characteristic function of the set A.

During the meeting, better agent takes part of energy of the worse agent,

then the following state transition is performed:

x′(x, a, b) = ince′ :

ince′(i, j) =

⎧⎨
⎩

ince(i, j) − Δe if j = a ∧ i = l

ince(i, j) + Δe if j = b ∧ i = l

ince(i) otherwise

(13)

Here x = ince and Δe = min{ince(l, a), etr} denotes the portion of energy that

may be passed between agents during single get action (in both cases), Δe > 0

is the variable parameter that characterizes the action get.

The decision of the reproduction action repr gets for an arbitrary gen ∈ U

and x ∈ X

δrepr(gen, x)({1}) =

⎧⎨
⎩

1 if ince(l, gen) > erepr ∧ RPAGgen �= ∅
∧

∑r

j=1
[ince(l, j) > 0] < ql

0 otherwise

where RPAGgen = {NBAGgen � gen′ : ince(l, gen′) > erepr} is the set of

neighboring agents with higher energy than the variable threshold of reproduc-

tion erepr. So, the agent decides to reproduce when its energy reaches or exceeds

erepr and when it has at least one neighbor with the proper energy When these

conditions are satisfied, the following state transition is performed

ϑgen
repr(x)(A) =

1

#RPAGgen∑
gen′∈RPAGgen

∑
gen′′∈U

MIX(gen, gen′)({gen′′})χA(x′(x, gen, gen′, gen′′)) (14)



where MIX : U×U → M(U) is the family of probability distributions associated

with genetic mixing (crossover followed by mutation, see e.g. [16]). In particular

MIX(gen, gen′)({gen′′}) denotes the probability that gen′′ is born from the

parents gen and gen′.

The next state of the system x′ is now defined as

x′(x, a, b, c) = ince′. (15)

When child agent indexed by gen′′ does not exist (∀i : ince(i, gen′′) = 0) then

ince′(i, j) =

⎧⎨
⎩

ince(i, j) − e0

2
if j ∈ {a, b} ∧ i = l

e0 if j = c ∧ i = l

ince(i, j) otherwise

(16)

so, two agents identified by a and b create an offspring agent c and put it into their

location. When the offspring agent already exists in the system (∃j : ince(j, c) >

0) then

ince′(i, j) =

⎧⎨
⎩

ince(i, j) − e0

2
if j ∈ {a, b} ∧ i = l

ince(i, j) + e0 if j = c ∧ i = l

ince(i, j) otherwise

(17)

where e0 is the start energy of single agent, while x = ince. Thus energy of the

already active offspring agent is raised by e0 < erepr.

The decision of the migration action migr is given by

δmigr(gen, x)({1}) =

{
1 if ince(l, gen) > emigr

0 otherwise
(18)

for all gen ∈ U and x ∈ X, where emigr ≥ erepr is a general energy threshold

for migration. So, the agent decides to migrate when its energy reaches suffi-

cient level. Let l ∈ Loc be the label of the current location of the active agent,

ACCLOCl = {Loc \ {l} � l′ : ((l, l′) ∈ Top) ∧ (
∑r

j=1
[ince(l′, j) > 0] < ql′)} is

the set of neighboring locations with the number of agents lower than maximum.

The state transition for the migration action has following form

ϑ
gen
migr(x)(A) =

1

#ACCLOCl

∑
loc′∈ACCLOCl

χA(x′(x, gen, loc′)) (19)

where

x′(x, a, k) = ince′ : ince′(i, j) =

⎧⎨
⎩

0 if j = a ∧ i = l

ince(l, a) if j = a ∧ i = k

ince(i, j) otherwise

(20)

while x = ince. The agent migrates to the one of uniformly chosen neighboring

locations and the incidence matrix is changed.



2.5 EMAS dynamics

We intend to present the EMAS as the stationary Markov chain with the set of

states X. The function of the stochastic state transition may be obtained in the

following steps.

Let us denote by {ρgen
α }α∈Act,gen∈U the transition functions for all actions

and all agents. The probability of passage from the state x to the state belonging

the measurable subset A ⊂ X caused by the action α invoked by the agent aggen

is then

ρgen
α (x)(A) = δα(gen, x)({0}) ∗ ϑnull(x)(A) + δα(gen, x)({1}) ∗ ϑgen

α (x)(A).

(21)

Let {ρgen}gen∈U be the set of transition function which are related to the

activity of the agent aggen, then

ρgen(x)(A) =
∑

α∈Act

ω(gen, x)({α})ρgen
α (x)(A). (22)

Finally, the transition function for a single EMAS step is given by

τ(x)(A) =
∑

gen∈U

agsel(x)({gen})ρgen(x)(A). (23)

3 Conclusions

In the course of paper, EMAS system was formally described according to the

standard of BDI architecture (see e.g. [12]). The space of states of both systems

and the transition functions allowing for uniform Markov chain modeling of the

systems were proposed. The quantity of agents in the localizations was also

limited.

In the opinion of authors, modelling of the system with use of Markov chains

allows for better understanding of the behavior of the proposed complex systems

as well as their constraints.

However the general form of the Marcovian kernels of the system state tran-

sition functions were identified, we intend to study the asymptotic behavior with

respect to the probability distributions of mixing operator MIX, agent selection

functions agsel, ω and energy thresholds of agents and lymphocytes. One of the

most challenging task will be to investigate, if there exists certain configura-

tions of agent’s energy thresholds, for which every possible energetic state will

be reachable after finite sequence of steps. This would prove the global search

capabilities of the proposed systems.

Modelling and analysis of concurrent behavior of the system is also envis-

aged.
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