
A Comparative Study of Various Strategies in
Differential Evolution

Urszula Boryczka,1 Przemys law Juszczuk, 2 Leszek K losowicz 3

1 University of Silesia, Institute of Computer Science, Sosnowiec, Poland,
e-mail: urszula.boryczka@us.edu.pl

2 e-mail: przemyslaw.juszczuk@gmail.com
3 e-mail: leszekklosowicz@gmail.com

Abstract. This paper presents a comparison of various strategies of differential
evolution. Differential evolution (DE) is a simple and powerful optimization me-
thod, which is mainly applied to numerical optimization and many other problems
(for example: neural network train, filter design or image analysis). The compari-
son of various modifications (named strategies) of DE algorithm allows to choose
the algorithm version which is best adjusted to desirable requirements. Three
parameters are tested: speed, accuracy and completeness. The first section of
this article presents general optimization problem and says a little about methods
used to function optimization. The next section describes differential evolution —
basic algorithm is presented. Two different crossover methods, process of initial
population creation and basic mutation schema are described. The third section
describes the most popular DE strategies. In the fourth section a new modifica-
tion (called λ–modification) of DE algorithm is presented. Next section provides
basic information about four test functions and differential evolution parameters
used in research. The paper presents then summary and final conclusions.

1 Introduction

In the last decades many deterministic and stochastic methods of an optimization pro-
blem have been developed. However, no universal technique which could give the good
results for all optimization problems has been found yet. One of these problems is nume-
rical optimization which is used to test many new methods. Its aim is to find solution:

x∗ = arg min
x∈X

F (x)

for the quality function F (x), where X denotes a set of feasible solution and x ∈ X is a
vector x = [x1, x2, . . . , xnF]. nF is a number of function dimensions.

A major impediment for numerical optimization is multimodality of function F (x),
since the found solution may not be the global optimum. Different approaches are used
to find the global optimum for multimodal function. Since deterministic methods are
often too weak or too slow, stochastic methods are used. They often take inspiration
from biological or social behaviour. Most of stochastic techniques base on the population
of individuals which is improved in subsequent iterations of algorithm. At the beginning

of algorithm the individuals are distributed randomly in search space. In each algorithm
iteration the population is improved and individuals converge to one or more optima.
Differential evolution is one of such stochastic methods and it is described in point 2.

2 Differential Evolution

Differential evolution is a stochastic technique which was developed by K. Price and
R. Storn in 1995 [10]. It is a population–based optimization method which can be used
for example to numerical optimization [9], neural network train [6], filter design [8] or
image analysis [12]. DE is conceptually similar to the simple evolutionary algorithm,
but there are also quite big differences. First of all, the mutation is the major genetic
operator. It is not a trivial process and it also provides the algorithm convergence.
Moreover, the mutation is performed before the crossover process. Although the basic
DE algorithm is very powerful, many valuable modifications have been introduced (for
example [11], [5] and [13]).

The pseudocode of the general DE algorithm [2] is presented in Algorithm 1.

Algorithm 1: General Differential Evolution Algorithm
t = 01

Initialize the population P (0)2

while stop condition is false do3

foreach individual xi ∈ P (t) do4

Evaluate the fitness F (xi(t))5

Create the trial vector ui(t) by applying the mutation operator6

Create an offspring x′i(t) by applying the crossover operator7

if f(x′i(t)) is better then f(xi(t)) then8

Add x′i(t) to P (t+ 1)9

else
Add xi(t) to P (t+ 1)10

t = t+ 111

Return the solution (the individual with the best fitness)12

The DE algorithm begins with the initialization of population P (0) which consist
of nX individuals. The initialization consists in the random distribution of individuals.
The population should be distributed uniformly, which provides a good sampling of
search space. In the main loop of the algorithm some actions which should improve
the population are performed. For the each individual (vector) xi(t), firstly, its fitness
is evaluated. Then the mutation process follows. It consist in the creation of the trial
vector ui(t):

ui(t) = xi1(t) + F · (xi2(t)− xi3(t))

Individual xi(t) is named the target vector. (xi2(t) − xi3(t)) is a differential vector
created from the two random individuals xi2(t) and xi3(t). The differential vector gives
information about the fitness landscape and in this way the search process is directed.
F ∈ (0,∞) is a scaling factor which controls the weight of the differential vector when

the trial vector is created. Other methods of the creation of the differential vector are
mentioned in point 3. The crossover process consists in the creation of a new individual
(offspring) x′i(t). Some of the elements of vector x′i(t) come from individual xi(t) and
the others from the trial vector ui(t). This process can be expressed as follows:

x′
j
i (t) =

{
uj

i (t) if j ∈ J
xj

i (t) in other case

The set J contains the indexes which indicate the elements of the trial vector ui(t).
Usually, to determine the set J the binomial or exponential method is used (Algorithm
2 and 3 respectively).

Algorithm 2: Binomial method of the set J determination
j∗ ∼ U(1, nF)1

J = J ∪ {j∗}2

foreach j ∈ {1, 2, . . . , nF } do3

if U(0, 1) < CR and j 6= j∗ then4

J = J ∪ {j}5

Algorithm 3: Exponential method of the set J determination
J = {}1

j ∼ U(0, nF − 1)2

repeat3

J = J ∪ {j + 1}4

j = (j + 1) mod nF5

until U(0, 1) ≥ CR or |J | = nF

These simple algorithms provide random choice of vector indexes to the set J . The
choice of each index j is performed with some probability CR ∈ [0, 1]. The greater the
value of CR, the bigger the chance that the index j will be added to the set J . After
the crossover process the offspring is compared with its parent. Next, the better one of
these individuals is added to the new population. The last step of the algorithm is the
increment of the generation counter t. The best individual from the last generation is
the result of the DE algorithm.

3 DE strategies

Like for many other evolutionary algorithms, also for differential evolution many modi-
fications were developed. The most often modified elements of DE algorithm are:
• a method of target vector selection (denoted as x),
• a number of differential vectors used for trial vector creation (y),
• a crossover method (z).
Each of the DE algorithms can be described by strategy DE/x/y/z. Most often

described DE strategies are [2]:

• Strategy I: DE/rand/1/z
It is the DE strategy which characterises the basic DE algorithm. It uses random
(rand) selection of target vector and only one differential vector for the trial vector
creation. Like other strategies also this one can use binomial (bin) or exponential
(exp) crossover. In the DE/rand/1/z strategy the trial vector is calculated form
the equation:

ui(t) = xi1(t) + F · (xi2(t)− xi3(t))

• Strategy II: DE/best/1/z
In this strategy the best individual x̂(t) from the current population is the target
vector. In this case the trial vector ui(t) is calculated as follows:

ui(t) = x̂(t) + F · (xi2(t)− xi3(t))

• Strategy III: DE/x/nv/z
nv signifies the number of differential vectors used for trial vector ui(t) creation.
Trial vector in this strategy is calculated from the following equation:

ui(t) = xi1(t) + F ·
ns∑

k=1

(xi2,k(t)− xi3,k(t))

(xi2,k(t) − xi3,k(t)) denotes the kth differential vector (k ∈ {1, 2, . . . , nv}). The
larger the value of nv, the better the search space exploration. Unfortunately, the
more differential vectors are used in the mutation, the greater the complexity of
the algorithm.

• Strategy IV: DE/rand to best/nv/z
In DE/rand to best/nv/z strategy the target vector is calculated partly from the
best individual in the current population and partly from the random individual:

ui(t) = γx̂(t) + (1− γ)xi1(t) + F ·
ns∑

k=1

(xi2,k(t)− xi3,k(t))

Parameter γ ∈ [0, 1] denotes which of these individuals is more importance. The
closer to zero the value of γ, the more important the random individual xi1(t)
(exploration is favoured). In other case, the best individual x̂(t) in the current
population has more weight (exploitation is favoured). If γ ≈ 0.5, then both
individuals have similar influence on the trial vector ui(t).
• Strategy V: DE/current to best/1 + nv/z

This strategy requires at least two differential vectors to create the trial vector
ui(t). The first of them, (x̂(t) − xi(t)), is calculated from the best individual x̂(t)
in the current population and from the target vector xi(t). The rest of differential
vectors (F · (xi1,k − xi2,k)) are created from two random individuals xi1(t) and
xi2(t). The trial vector ui(t) is calculated as follows:

ui(t) = xi + F · (x̂(t)− xi(t)) + F ·
nv∑

k=1

(xi1,k(t)− xi2,k(t))

4 λ–modification

λ–modification has been introduced to improve the accuracy and speed of DE algorithm.
It is conceptually very simple and consists in multiplication of the target vector by
parameter λ when the trial vector ui(t) is calculated. For DE strategies described in
point 3 the trial vector is determined as follows:
• Strategy I′: ui(t) = λ · xi1(t) + F · (xi2(t)− xi3(t)),

• Strategy II′: ui(t) = λ · x̂(t) + F · (xi2(t)− xi3(t)),

• Strategy III′: ui(t) = λ · xi1(t) + F ·
∑ns

k=1(xi2,k(t)− xi3,k(t)),

• Strategy IV′: ui(t) = λ · (γx̂(t) + (1− γ)xi1(t)) + F ·
∑ns

k=1(xi2,k(t)− xi3,k(t)),

• Strategy V′: ui(t) = λ · xi + F · (x̂(t)− xi(t)) + F ·
∑nv

k=1(xi1,k(t)− xi2,k(t)).
Parameter λ (arbitrarily set to 0.5) significantly reduces the distance which is covered
by the individuals in the subsequent iterations. It results in convergence improvement,
which is especially desired in the final stage of calculations. This simple modification
yields surprisingly good results, which has been presented in point 5.

5 Experimental study

The aim of this research work is to determine how various DE strategies influence the
results for numerical optimization tasks. Three parameters are tested: speed (SPD)
– the average number of algorithm iterations which is needed to achieve the accuracy
not worse then the assumed accuracy threshold; error (ERR) – the average calculation
error for certain number of iterations; completeness (CMP) – the average number of
DE algorithm runs in which the assumed accuracy is achieved (for certain number of
iterations). DE algorithm has the following parameters: binomial crossover, crossover
parameter CR = 0.5 [9], mutation parameter F = 0.7 [9], population size nX = 100,
number of differential vectors nv = 2 (for strategy III), parameter γ = 0.5 (for strategy
IV), λ = 0.5. During tests for ERR and CMP parameters, the number of algorithm
iterations amounts to 2000. The following four functions (all 20 dimensional) are tested:
• De Jong: F1(x) =

∑20
i=1 x

2
i for xi ∈ [−5.12, 5.12]

f(x∗) = 0, accuracy threshold (for the parameter ERR): 0.5%

• Rosenbrock: F2(x) =
∑19

i=1[(1− xi)2 + 100(xi+1 − x2
i)2] for xi ∈ [−2.048, 2.048]

f(x∗) = 0, accuracy threshold: 0.5%

• Rastrigin: F3(x) = 200 +
∑20

i=1[x2
i − 10 cos(2πxi)] for xi ∈ [−5.12, 5.12]

f(x∗) = 0, accuracy threshold: 0.5%

• Ackley: F4(x) = −20 ·exp
(
−0.2 ·

√
1
20

∑20
i=1 x

2
i

)
−exp

(
1
20

∑20
i=1 cos(2πxi)

)
+20+

exp(1) for xi ∈ [−32.768, 32.768]
f(x∗) = 0, accuracy threshold: 0.5%

For each test function and each of the DE strategies mentioned in point 3, DE algo-
rithm is run 1000 times and the obtained results are averaged. The test results (without
modification) for parameters SPD, ERR and CMP are placed in Tables 1, 3 and 5 respec-
tively. Tables 2, 4 and 6 show the obtained test results for DE algorithm with applied
λ–modification.

Table 1. Test results for SPD parameter (without modification)

Function Strategy I Strategy II Strategy III Strategy IV Strategy V
De Jong 582 82 1468 43 58

Rosenbrock 1812 136 6632 60 82
Rastrigin >10000 654 >10000 253 656
Ackley 2821 147 6426 110 147

Table 2. Test results for SPD parameter (with λ–modification)

Function Strategy I′ Strategy II′ Strategy III′ Strategy IV′ Strategy V′

De Jong 78 50 351 42 40
Rosenbrock 112 69 684 59 92
Rastrigin 1126 1035 >10000 254 8231
Ackley 209 127 941 109 161

Table 3. Test results for ERR parameter (without modification)

Function Strategy I Strategy II Strategy III Strategy IV Strategy V
De Jong 0.01% 3.6% 2.8% ≈ 0% ≈ 0%

Rosenbrock 1.1% 0.2% 4.9% 0.3% 0.4%
Rastrigin 83.1% 0.2% 91% ≈ 0% ≈ 0%
Ackley 54.3% 0% 91.2% ≈ 0% ≈ 0%

Table 4. Test results for ERR parameter (with λ–modification)

Function Strategy I′ Strategy II′ Strategy III′ Strategy IV′ Strategy V′

De Jong ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0%
Rosenbrock 0.4% 0.4% 0.4% 0.4% 0.4%
Rastrigin 53.0% 0.1% 67.0 % ≈ 0% 51.85%
Ackley ≈ 0% 0% ≈ 0% ≈ 0% ≈ 0%

6 Conclusions

After the analysis of the test results of experiments with the use of the various DE
strategies (without λ–modification) the following conclusions may be reached:

Table 5. Test results for CMP parameter (without modification)

Function Strategy I Strategy II Strategy III Strategy IV Strategy V
De Jong 46% 48% 49% 39% 45%

Rosenbrock 35% 67% 49% 45% 44%
Rastrigin — 54% — 54% 58%
Ackley 52% 55% 36% 52% 48%

Table 6. Test results for CMP parameter (with λ–modification)

Function Strategy I′ Strategy II′ Strategy III′ Strategy IV′ Strategy V′

De Jong 100% 100% 100% 100% 100%
Rosenbrock 100% 100% 100% 100% 100%
Rastrigin — 41% — 100% —
Ackley 100% 100% 100% 100% 100%

• the strategies II, IV and V (all use the best individual to create the trial vector)
significantly reduce the calculation error (Table 3) and also work much faster then
others (Table 1),

• the strategy IV gives the best result for the parameter SPD (Table 1),
• for the all functions good results for the parameter CMP gives the strategy II,
• the strategies I and III are weak and give poor results.

λ–modification introduces the following changes:
• it increases the speed of the calculations for almost all test function (Table 2) —

only Rastrigin Function and Strategy V′ behave otherwise,
• it significantly reduces the calculation error (Table 4),
• it strongly increases the research completeness (Table 6),
• only for Rastrigin Function λ–modification sometimes lowers the optimization qu-

ality,
• λ–modification increases the optimization quality regardless of the accepted stra-

tegy.
This research shows that neither of DE strategies (without λ–modification) provides

best results for all test functions simultaneously. However, the DE/rand to best/nv/z
strategy seems to be the best. When λ–modification is not applied, this strategy gives
the best result for the parameter SPD and also in many cases for the parameter ERR. DE
algorithm which uses this strategy and λ–modification gives the best results for all test
function. This strategy uses the best (assurance of exploitation) and a random (assurance
of exploration) individual to calculate the trial vector. The use of nv differential vectors
gives a lot of information about the fitness landscape and properly directs the search
process.

λ–modification presented in this paper requires further research (up to the present
it has been tested only for one value λ = 0.5). Firstly, the best value (or values range)
for parameter λ should be determined and then the method for dynamical changes of its
value or its self-adaptation should be worked out.

Bibliography

[1] S. Das, A. Konar, and U. K. Chakraborty. Two improved differential evolution
schemes for faster global search. In GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, pages 991–998, New York, NY, USA,
2005. ACM.

[2] A. Engelbrecht. Computational Intelligence: An Introduction. Halsted Press, New
York, NY, USA, 2002.

[3] R. Joshi and A. C. Sanderson. Minimal representation multisensor fusion using
differential evolution. In CIRA ’97: Proceedings of the 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation, page 266,
Washington, DC, USA, 1997. IEEE Computer Society.

[4] J. Lampinen and I. Zelinka. Mixed variable non-linear optimization by differen-
tial evolution. In Zlin, Czech Republic. Technical University of Brno, Faculty of
Technology Zlin, Department of Automatic Control, pages 45–55, 1999.

[5] J. Liu and J. Lampinen. A differential evolution based incremental training method
for rbf networks. In GECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 881–888, New York, NY, USA, 2005. ACM.

[6] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis. Effective backpropagation
training with variable stepsize. Neural Netw., 10(1):69–82, 1997.

[7] K. Price, R. Storn, and J. Lampinen. Differential evolution – A practical Approach
to Global Optimization. Springer, 2005.

[8] R. Storn. Differential evolution design of an iir-filter. In in IEEE International Con-
ference on Evolutionary Computation ICEC96, pages 268–273. IEEE Press, 1996.

[9] R. Storn. On the usage of differential evolution for function optimization. In NA-
FIPS’96, pages 519–523. IEEE, 1996.

[10] R. Storn and K. Price. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J. of Global Optimization, 11(4):341–
359, 1997.

[11] J. Tvrd́ık. Differential evolution: Competitive setting of control parameters. In Pro-
ceedings of the international multiconference on computer science and information
technology, pages 207–213, 2006.

[12] Kasemir K. U. and K. Betzler. Detecting ellipses of limited eccentricity in images
with high noise levels. Image and Vision Computing, 21:221–227(7), 10 February
2003.

[13] D. Zaharie. A multipopulation differential evolution algorithm for multimodal opti-
mization. In Proceedings of Mendel 2004, 10th International Conference on Soft
Computing, pages 17–22, Brno, Czech Republic, 2004.

