
Stopping criteria for a general model of genetic
algorithm

Marcin Studniarski1
1 Faculty of Mathematics and Computer Science, University of ×ódź, ul. S. Banacha 22,

90-338 ×ódź, Poland, email: marstud@math.uni.lodz.pl

Abstract. We consider a general Markov chain model of genetic algorithm de-
scribed in [3], Chapters 5 and 6. For this model, we establish an upper bound for
the number of iterations which must be executed in order to �nd an optimal (or
approximately optimal) solution with a prescribed probability. For the classical
genetic algorithm with bitwise mutation, our result reduces to the main theorem
of [1] in the case of one optimal solution, and gives some improvement over it in
the case of many optimal solutions.

1 Introduction

Obtaining sensible stopping criteria is an important issue in the theory of genetic algo-
rithms. One of the possible approaches to this problem is to obtain upper bounds for the
number of iterations necessary to ensure �nding an optimal solution with a prescribed
probability (see [1] and references therein). In this paper we present some results of this
type for a more general model of genetic algorithm, based on the theory developed in [3]
and [5].

2 Random Heuristic Search

The RHS (Random Heuristic Search) algorithm, described in [5], is de�ned by an initial
population P (0) and a transition rule � which, for a given population P (i), determines a
new population P (i+1). Iterating � , we obtain a sequence of populations:

P (0)
��! P (1)

��! P (2)
��! ::: (1)

Each population consists of a �nite number of individuals which are elements of a given
�nite set
 called the search space. Populations are multisets, which means that the same
individual may appear more than once in a given population.
To simplify the notation, it is convenient to identify
 with a subset of integers:

 = f0; 1; :::; n� 1g. The number n is called the size of search space. Then a population
can be represented as an incidence vector (see [3, p. 141]):

v = (v0; v1; :::; vn�1)
T ; (2)

where vi is the number of copies of individual i 2
 in the population (vi = 0 if the i-th
individual does not appear in the population). The size of population v is the number

r =
n�1X
i=0

vi:

We assume that all the populations appearing in sequence (1) have the same size r.
Dividing each component of incidence vector (2) by r, we obtain the population vector

p = (p0; p1; :::; pn�1)
T ;

where pi = vi=r is the proportion of individual i 2
 in the population. In this way, we
obtain a more general representation of the population which is independent of population
size. It follows that each vector p of this type belongs to the set

� :=

(
x 2 Rn : xi � 0 (8i);

n�1X
i=0

xi = 1

)
;

which is a simplex in Rn. However, not all points of this simplex correspond to �nite
populations. For a �xed r 2 N, the following subset of � consists of all populations of
size r (see [5, p. 7]):

�r :=
1

r

(
x 2 Rn : xi 2 N [f0g (8i);

n�1X
i=0

xi = r

)
:

We now de�ne the mapping
G : � �! �;

called heuristic [5, p.9] or generational operator [3, p. 144], in the following way: for
a vector p 2 � representing the current population, G(p) is the probability distribution
that is sampled independently r times (with replacement) to produce the next population
after p. For each of these r choices, the probability of selecting an individual i 2
 is
equal to G(p)i, the i-th component of G(p).
A transition rule � is called admissible if it is a composition of a heuristic G with

drawing a sample in the way described above. Symbolically,

�(p) = sample(G(p)); 8p 2 �: (3)

Of course, a transition rule de�ned this way is nondeterministic, i.e., by applying it
repeatedly to the same vector p, we can obtain di¤erent results. It should also be noted
that, although G(p) may not belong to �r, the result of drawing an r-element sample is
always a population of size r; therefore, it follows from (3) that �(p) 2 �r.

Theorem 2.1. [5, Thm. 3.4] Let p 2 �r be the current population vector. The probability
that q 2 �r is the next population vector is equal to

r!
n�1Y
j=0

(G(p)j)rqj
(rqj)!

:

3 The RHS algorithm as a Markov chain

A sequence of random variables fXtgt2N0 (where N0 := N [f0g) de�ned on the same
probabilistic space (Z;F ;Pr), with values in a countable set S (the state space) is called
a Markov chain if, for every t 2 N and every sequence s0; s1; :::; st 2 S, the following
condition is satis�ed:

Pr (Xt = stj Xt�1 = st�1; :::; X1 = s1; X0 = s0) = Pr (Xt = stj Xt�1 = st�1) ;

provided Pr(Xt�1 = st�1; :::; X1 = s1; X0 = s0) > 0.
A matrix is called stochastic if all its elements are nonnegative and the sum of every

row is equal to 1. A stochastic matrix �(t) = [�i;j(t)]i;j2S is called the transition matrix
of the Markov chain fXtgt2N0 at time t, t � 1, if �i;j(t) = Pr (Xt = sj j Xt�1 = si) for
all j 2 S and i such that Pr(Xt�1 = si) > 0. A Markov chain is called (temporally)
homogeneous if there exists a matrix � = [�i;j]i;j2S being the transition matrix of this
Markov chain at every time t.
Let us now return to the RHS algorithm described in Section 2. It generates a sequence

of populations
p̂, �(p̂), �2(p̂); ::: , (4)

where p̂ is a �xed initial population. The RHS can be regarded as a Markov chain where
the state space is �r and the values of successive random vectors X0, X1, X2,... are
populations (4). Since p̂ is �xed, we may assume that X0 is a random vector taking on
the single value p̂ with probability 1.
We denote by Pr (q j p) = Pr(�(p) = q) the probability of obtaining a population q

in the current iteration of the RHS algorithm provided the previous population is p. It
follows from Theorem 2.1 that

Pr(q j p) = r!
n�1Y
j=0

(G(p)j)rqj
(rqj)!

: (5)

Since this probability does not depend on t, we deduce that the RHS algorithm is a
homogeneous Markov chain with the constant transition matrix � = [�p;q]p;q2S , where
S = �r, and the elements

�p;q = Pr(q j p) (6)

are given by (5).

4 The transition matrix of a genetic algorithm

In this section we consider a genetic algorithm as a particular case of the RHS. We assume
that a single iteration of the genetic algorithm produces the next population form the
current population according to the following procedure:

1. Choose two parents from the current population by using a selection method which
can be described by some heuristic (e.g. proportional, ranking or tournament
selection; see [5, § 4.2]).

2. Crossover the two parents to obtain a child.
3. Mutate the child.

4. Put the mutated child into the next population.

5. If the next population contains less than r members, return to step 1.

The process of selection usually uses a �tness function f :
 �! R+. For example,
in proportional selection, the probability of choosing an individual i 2
 is proportional
to its �tness f(i). The �tness function also de�nes optimality in the problem we have to
solve (see Section 5).

The only di¤erence between the iteration described above and the iteration of the
Simple Genetic Algorithm de�ned in [5, p. 44] is that in our version mutation is done
after crossover. This change in order facilitates the probability estimates needed for the
proof of Theorem 5.2 below.

To derive our stopping criteria, we will use some properties of mutation which is
generally understood as changing one element of the search space to another, with a
certain probability. The way of implementing selection and crossover is not important
for our model, so we omit the discussion of them (we refer the reader to [3, Chapter
5]). The only requirement is that the composition of the three operations (selection,
crossover, mutation) can be described in terms of some heuristic that does not vary in
time (i.e., the de�nitions of the corresponding genetic operators are independent of the
generation index t). This implies that algorithms with self-adaptation are excluded from
our considerations.

We assume that mutation consists in replacing a given individual from
 by another
individual, with a prescribed probability. Let us denote by ui;j the probability that
individual i mutates to j. In this way, we obtain a n � n matrix U = [ui;j]i;j2
. The
probability of generating individual j 2
 from population p by successive application of
selection, crossover and mutation is equal to (compare with the �rst equation on p. 120
in [3])

G(p)j = Pr([j] j p)scm =
n�1X
i=0

uij Pr([i] j p)sc; (7)

where the symbol [i] means that we generate a single individual i (not a whole population
as in (5)), the subscript sc means that we are dealing with the composition of selection
and crossover, and the subscript scm indicates the composition of selection, crossover
and mutation. To get a whole new population, one should draw an r-element sample
from probability distribution (7). The probability of generating a population q in this
way is equal, by (5) and (7), to

Pr(q j p)scm = r!
n�1Y
j=0

(Pr([j] j p)scm)rqj
(rqj)!

: (8)

According to (6), equation (8) gives also a formula for the transition matrix of our
algorithm.

5 Stopping criteria for a genetic algorithm

We now consider the problem of maximizing the �tness function f over
. For any " � 0,
we de�ne the set of "-optimal solutions as follows:

+ :=

�
j 2
 : f(j) � max

i2

f(i)� "

�
:

In particular, for " = 0,
+ is the set of (global) optimal solutions. Let
� :=
n
+.
We assume that the goal of the RHS algorithm is to �nd some element of
+. We

say that element i has been found in iteration t if population � t(p̂) contains at least one
copy of individual i, which is equivalent to � t(p̂)i > 0.
Let S� denote the subset of the state space S = �r consisting of all populations which

do not contain an element of
+:

S� :=
�
p 2 S : pi = 0; 8i 2
+

	
;

and let S+ be the set of all remaining populations: S+ := SnS�. The populations in S+
contain at least one copy of some individual from
+. Thus, we can say that an element
of
+ has been found in iteration t if the population generated in iteration t belongs to
S+. We will denote by At the event that no element of
+ has been found in iteration t:

At :=
�
� t(p̂) 2 S�

	
:

The following lemma gives an upper bound of the probability that no element of
+

has been found in the �rst t iterations. Due to space limitations, we do not give the
proof here; it will appear elsewhere.

Lemma 5.1. Suppose that, for some � 2 (0; 1), we have thatX
q2S�

�p;q � �; 8p 2 S: (9)

Then
Pr (A1 \A2 \ ::: \At) � �t (10)

for all t 2 N.

Using Lemma 5.1, we can easily obtain a lower bound for the probability that an
element of
+ has been found in the �rst t iterations. Indeed, let Bt denote the event
that an element of
+ has been found in iteration t:

Bt := ZnAt :=
�
� t(p̂) 2 S+

	
: (11)

Then, assuming (9), we get from (11) and (10)

Pr (B1 [::: [Bt) = Pr((ZnA1) [::: [(ZnAt))
= Pr(Zn(A1 \ ::: \At))
= 1� Pr(A1 \ ::: \At) � 1� �t: (12)

The following theorem gives a more precise lower bound of the form (12) for the
genetic algorithm model considered in the earlier sections.

Theorem 5.2. We consider the general model of genetic algorithm, described in Section
4, being a special case of the RHS algorithm with the heuristic G given by (7). Suppose
that the set
+ of "-optimal solutions has the form

+ = fj1; j2; :::; jmg; (13)

where the (possibly unknown) number m of these solutions is bounded from below by some
known positive integer �m. Suppose also that there exists a number � 2 (0; 1=n] satisfying

ui;j � �; 8i; j 2
: (14)

Then the probability of �nding an element of
+ in the �rst t iterations is at least

1� (1� �m�)rt:

Proof. We will show that the assumption of Lemma 5.1 is satis�ed with � = (1� �m�)r.
Let Pr(S� j p)scm denote the probability of generating a population in S� from popu-
lation p by �rst applying heuristic G given and then drawing an r-element sample from
probability distribution G(p). Further, let Pr([
�] j p)scm denote the probability of gen-
erating an individual in
� from population p by single application of the operations of
selection, crossover and mutation (which is equivalent to drawing a one-element sample
from G(p)). Then the left-hand side of (9) can be rewritten as follows:X

q2S�
�p;q =

X
q2S�

Pr(q j p)scm = Pr(S� j p)scm

=
�
Pr([
�] j p)scm

�r
=
�
1� Pr([
+] j p)scm

�r
; (15)

where the third equality in (15) follows from the independence of r random variables
constituting an r-element sample.
Now, using (7) and (14), we deduce that, for any p 2 S and j 2
,

Pr([j] j p)scm � �
n�1X
i=0

Pr([i] j p)sc = �; (16)

where the �nal equality follows because we sum up probabilities of disjoint events whose
union is the entire sample space Z. Taking into account the representation of
+ given
by (13), and using inequality (16), we get

Pr([
+] j p)scm =
mX
l=1

Pr([jl] j p)scm �
mX
l=1

� = m� � �m�: (17)

Conditions (15) and (17) imply X
q2S�

�p;q � (1� �m�)r:

We may assume without loss of generality that
+ 6=
; then �m � m < n, and (1 �
�m�)r 2 (0; 1). Hence, we may apply Lemma 5.1 with � = (1� �m�)r to obtain

Pr (A1 \ ::: \At) � (1� �m�)rt;

for all t 2 N. By using (12), we can estimate the probability of �nding an element of
+
in the �rst t iterations as follows:

Pr (B1 [::: [Bt) = 1� Pr(A1 \ ::: \At) � 1� (1� �m�)rt;

which concludes the proof of the theorem.

Corollary 5.3. For any � 2 (0; 1), we denote by tmin(�) the smallest number of iterations
required to guarantee that an element of
+ has been found with probability �. Then

tmin(�) �
�

ln(1� �)
r ln(1� �m�)

�
; (18)

where dxe is the smallest integer greater than or equal to x.

Proof. By choosing the number of iterations t satisfying the inequality

1� (1� �m�)rt � �; (19)

we have guaranteed that an element of
+ has been found with probability at least �.
Inequality (19) is equivalent to the following one:

t � ln(1� �)
r ln(1� �m�)

: (20)

For each positive integer t satisfying (19) (or equivalently, (20)), we have that tmin(�) � t.
Hence, by taking t equal to the right-hand side of (18), we get the desired inequality for
tmin(�).

Corollary 5.3 suggests the following criterion of termination of a genetic algorithm.
First, we choose the probability � (guarantee level) with which we want to �nd an "-
optimal solution of our optimization problem. Next, we compute the number T of re-
quired iterations, where T is the right-hand side of formula (18). We run T iterations
of the algorithm, and at each iteration we store in memory and update the best individ-
ual (in the sense of the value of f) found so far. Then the best individual found in T
iterations is an "-optimal solution with probability �.

6 The case of strings over an arbitrary alphabet

We now consider the model of genetic algorithm described in [2], where individuals are
represented as strings of symbols drawn from an arbitrary alphabet of cardinality c.
Without loss of generality we may identify this alphabet with the set of integers modulo
c:

Zc := f0; 1; :::; c� 1g;

where c � 2. For any a; b 2 Zc, we de�ne the operator of addition modulo c as follows:

a� b := (a+ b)mod c:

Each element a 2 Zc has exactly one inverse element with respect to the operation �,
denoted by �a. For simplicity, we use the notation

a	 b := a� (�b):

We assume that the search space
 of a genetic algorithm is the set of all strings of length
` composed of elements of Zc (a string is a �nite sequence of elements which are called
digits here). More precisely, we have

 = Zc � :::� Zc| {z }
` times

:

We can easily extend the operations � and 	 onto
 by performing them componentwise.
Further, we assume that the mutation operation in the considered genetic algorithm

is de�ned by a mutation rate (see [2, Remark 1]). Such a mutation acts as follows:
�rst a mutation mask m 2
 is randomly selected, and then an individual y 2
 (also
randomly selected) is replaced by y�m. A number � 2 [0; 1=2) is called a mutation rate
if it speci�es a probability distribution �̂ 2 � by the formula

�̂m :=

�
�

c� 1

�n(m)
(1� �)`�n(m) ; 8m 2
;

where

� �̂m is the probability of selecting m as a mutation mask;
� n(m) is the number of nonzero digits in m; it is also the number of digits in y that
will be mutated (i.e., changed by adding modulo c the respective nonzero digit of
m);

� `� n(m) is the number of digits in y that do not get mutated.

It should be remembered that, in the process of mutation described above, two proba-
bility distributions are used: �̂ for selecting the mutation mask, and another distribution
�̂ 2 � for selecting the individual y to be mutated. Since mutation follows after selection
and crossover, we have �̂k := Pr([k] j p)sc (assuming that the previous population is p).
The probability that i 2
 mutates to j is equal to (cf [4, str. 474])

ui;j = �̂j	i =

�
�

c� 1

�n(j	i)
(1� �)`�n(j	i) : (21)

Corollary 6.1. Under the assumptions of Theorem 5.2 and Corollary 5.3, if the elements
of the matrix U are given by (21), then

tmin(�) �

266666
ln(1� �)

r ln

�
1� �m

�
�
c�1

�`�
377777 : (22)

Proof. Since � 2 [0; 1=2), we have � � c�1
c , which, after simple calculations, gives

1� � � �

c� 1 : (23)

Conditions (21) and (23) imply

ui;j �
�

�

c� 1

�`
:

By de�ning � := min
�
1
n ;
�

�
c�1

�`�
, we ensure that the assumptions of Theorem 5.2 are

satis�ed. Inequality (22) then follows from (18).

Comparing Corollary 6.1 with Theorem 1 of [1], we see that, for �m = 1, these two
results give the same estimate under the assumption (23). However, for �m > 1, the result
obtained here is strictly better.

7 Final remarks

The stopping criteria presented in this paper use only some properties of mutation. The
properties of selection and crossover have no in�uence on them: because the probabilities
Pr([i] j p)sc in (16) sum up to 1, their values are not essential for our estimate. This
observation suggests that it should be possible to strengthen the results by making some
use of the fact that, in the process of selection, better individuals are chosen with greater
probabilities. Another possible way of improvement is to incorporate the case where
crossover is done after mutation. This could possibly be accomplished by using the result
of Exercise 5 on p. 35 in [5] which gives a su¢ cient condition for the mutation scheme and
the crossover scheme to commute. Further research will be devoted to these two questions
as well as to obtaining similar results for multiobjective optimization problems.
Acknowledgment. The author wishes to thank Prof. Robert Schaefer for his helpful

comments.

Bibliography

[1] D. Greenhalgh, S. Marshall, Convergence criteria for genetic algorithms, SIAM Jour-
nal on Computing 30 (2000), 269-282.

[2] G.J. Koehler, S. Bhattacharya, M.D. Vose, General cardinality genetic algorithms,
Evolutionary Computation 5 (1998), 439-459.

[3] C.R. Reeves, J.E. Rowe, Genetic Algorithms � Principles and Perspectives: A Guide
to GA Theory, Kluwer, Boston, 2003.

[4] J.E. Rowe, M.D. Vose, A.H. Wright, Structural search spaces and genetic operators,
Evolutionary Computation 12 (2004), 461-493.

[5] M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory, MIT Press,
Cambridge, Massachusetts, 1999.

