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Abstract. Evolutionary algorithms (EA) have recently become not only tools for efficient
optimization of very difficult problems, but also are applied to simulate behavior of
different kinds of systems, among them also games, economic systems and markets. This
new domain of EA applications is known as Agent-Based Computational Economics
(ACE). This article describes two applications of EA to simple market simulations. The
main aim of EA in this approach is to find (sub-) optimal strategies of behavior for the
participants of that market game. The first example is a simple market with only several
participants and one product, well known as an instance of Cournot oligopoly game. The
second example is more complicated and describes a market of permits for CO, emission,
created by the Kyoto Protocol and introduces to the simple Walrasian model the influence
of calculated on-line permits prices.

1 Introduction

Application of EA for economic models simulation (ACE [6]) focused a big attention of
researchers in that domain, mainly due to the fact that economic systems may be quite easily
modeled using EA. Members of EA population are treated as agents, which learn to behave
almost optimally and adopt their strategy to get higher income, playing its “market-game”.
Also evolutionary operators have new interpretation in this approach. Mutation-like, exploring
operators are instances of learning by experiments while exploitation operators similar to
crossover are treated as learning by imitation [6, 13].

Generally, there are two approaches to economic modeling using EA. The first one treats
economic agents taking part in the market directly as members of the EA population [1]. The
second one assumes that one member of the EA population is an instance of the whole market
with all its participants [1] and its chromosome is a game strategy. There are different advantages
and disadvantages of both approaches. The most important shortcoming of the first one is
potentially too small or rarely too big number of population members, depending on the problem
size, but it is easy to simulate market participants with their private preferences and quality
functions. Thus, it was used to simulate the Cournot oligopoly market. The second method is
more independent on the solved problem, but it rather requires a global quality function for the
whole optimized market and thus it was used to solve the CO, permits trading problem.

The Cournot oligopoly game is a well-known example of a market game in which
participants compete on the amount of total production of some commodity, trying to



maximize their benefits, making decisions on the production quantity. This problem is the first
testing example considered in simulations.

The second task is the model of CO, permits market, which became as a consequence of
signed in 1997 the Kyoto Protocol. To know the influence of Kyoto Protocol limitations on
world economy, researchers from different countries want to build a model of such market and
find optimal selling/buying strategies for their countries. The market model, which enables to
forecast quantities and prices of traded emissions allowances and the cost of emission
reduction for different countries is very necessary. Important problem is to build a transaction
model and to solve many other problems associated with emission level reports credibility and
uncertainty [4, 8, 10, 12]. Proposed in this paper a new idea of problem solving is different that
the ideal market situation. Therefore more sophisticated market model was introduced, where
some typical elements of real market were added: the possibility of price negotiation and the
influence of real prices on obtained financial results. Next parts of the paper present EA used
to simulate both markets and results of the simulations with conclusions at the end.

2 Modeled markets

2.1 The Cournot oligopoly game

The Cournot oligopoly game is an example of a small market where only a few firms (fixed
number, in conducted tests four firms) compete on one homogeneous product, making
decisions of the quantity of their production (g;), considering information from other firms.
Firms are not allowed to cooperate. Every firm wants to maximize its profits () and tries to
find the best strategy — quantities of its production. There are only a few firms in the market to
assess their influence on it (market power). The price of the commodity depends on total
production (1) and profit depends on price and production (2):

P(t)= M- a-Q(t)= M-a-Y ¢,) (1)

i=1
1(0)= P(t)- q;(1)- b-q;(1) )

P(t) — price of produced commodity; Q(z) — total quantity of production; ¢;() — production of firm
i; m(t) — profit of firm i; ¢ — time factor; » — number of market participants; M, a, b — some
constant market parameters.

This small example was applied as a test-base for more sophisticated problem concerning
trading of CO, permits, which is described in the next section.

2.2 The model of CO; permissions for emission market

The Kyoto Protocol imposing constraints on CO, emissions of participants, gives also some
opportunities to exceed them. There are usually countries that can’t exhaust their limitations —
they can sell them to different countries and due to this fact a market of emission permits
trading becomes. Trading is beneficial only when the price of permits is lower than the cost of
emission reduction for the same amount of CO,. Thus, the country which wants to offer some
permits on the market can decrease its emission level even more than its obligation and sell



remaining permits (see Fig. 1), but of course it must be a beneficial transaction and selling
permits should bring more money than spending them on emission abatement.
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Figure 1. Emission reduction cost for buying country (left): without trade (Q;) and with trade (QOx)
for buying country, K; — Kyoto limit, F; — emission after trade, F;, — initial emission and emission
reduction cost for selling country (right): without trade is equal zero (Fy<K;) and after trade is
equal Ok with emission F for selling country; K; — Kyoto limit, F — initial emission.

The simple and commonly used Walrasian model' of emission market denotes the total cost
of decreasing emission in region i down to x;, by C;(x;), (the abatement cost function). It is
usually assumed that cost functions C;(x;) are positive, decreasing and continuously
differentiable for each region. The Kyoto constraint imposed on region i is indicated by K; A
number of emission permits acquired by source is expressed by s; (5; is negative if region i is a
net supplier of permits). The goal is to minimize the reduction cost (3) to obtain the Kyoto
target (4) fulfilling needs of participants without any extra permits (5).
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E — quality function of the base model, Ci(x;) — the costs of decreasing emission at region
(country, source) i from initial value F; down to x;, s; — the number of permits acquired by region
i, K; — Kyoto target for region i, » — number of regions, x; — current emission.

Normally prices (shadow price) are defined as the cost derivatives in a given point, but
typically the cost reduction function and exact reduction cost are not known or are known very
imprecisely [12]. Even if they were known, they could not be directly applied, because they
are not the only one component of emission permits’ price. More factors are typically
influencing prices of goods and the same mechanisms may have role in the permits market. In
the described approach the most important factors are of course estimated emission reduction
costs. The upper limit of price is a buyer emission reduction cost, the lower limit is a seller
emission reduction cost. Thus, the transaction price must be between them (in the opposite

! Walrasian trade model claims that prices are calculated by some market authority on the basis of supply
and demand in a market and all transactions are conducted according to this price.



case transaction is not profitable for one participant). It is assumed that transaction is finalized
only when permit price, which was negotiated, is lower than the cost of reduction for the
buyer, and higher than the cost of the seller. It is obvious that each party wants to maximize its
profit. In the further described evolutionary approach, maximization over s and 7 is performed
for each transaction by genetic operators, while the total maximization over x is the EA task.
Described assumptions become a basis for a new model with quality function (6).
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G — quality function of the new model, 7 — number of conducted transactions of permits
buying/selling, C;(x;;) — the costs of decreasing emissions at region i from initial value Fy; to value x;
after j transactions, K; — Kyoto target for region i, » — number of regions, x; — current emission, s; — the
number of emission permits acquired by region i at transaction j, 7z; — price of permits bought/sold.

The new model described by formulae (6-8) maximizes the difference between cost with
no trade and cost in case of trade plus expenditures for the permits. It allows to include also
buying/selling permit price, which considerably influences transaction profitability and
decision to buy/sell permits or to reduce emissions rather than to buy permits. Thanks to new
function it is possible to find a solution, which maximizes the profit from emission trading. In
the previous model’s goal function (3) the cost of emission reduction without including any
buying prices and expenditures for this goal is minimized (Walrasian model, which assumes
that transactions are conducted with previously calculated optimal price, the same for all
market members), but the cost of buying can be considerable, in comparison to expenditures
for CO, reduction if there is no trade. Also a different method of permit price setting is
accepted. The participants of the market must set the minimal price, below which price permit
cannot decrease to avoid a case when country, which reports emission below the Kyoto level
has zero marginal cost of abatement (comp. Fig. 1). Therefore marginal cost (e.g. shadow
price) is not a derivative of abatement cost, but derivative with minimal value. The real price
of permit and number of traded permits is not known, before computer simulation of market
activity.

The second important change is introducing of transactions. Transactions are conducted
iteratively until no one can be conducted (due to lack of benefit for both participants). Prices
and amounts of transferred permits are negotiated. Thus, present market model is dynamic,
contrary to static base one.



3  Evolutionary methods used to simulate described markets

3.1 Evolutionary simulation of the Cournot oligopoly game

Evolutionary simulation of the Cournot oligopoly game uses a specialized evolutionary
method, based on solutions described in literature [1, 13], but with some new extensions.
These extensions are: specialized genetic operators, encoding method and ranking of applied
market strategies. First of all it must be noticed that simulation method is not a typical
evolutionary algorithm, but some kind evolutionary method described in Algorithm 1.

Random initialization of strategies of the population of market players.
Modification of market players’ strategies using specialized genetic operators.
Valuation of obtained results and modification of the players’ sets of experiences.
Selection of new strategies on the basis of stored data.

If a stop condition not satisfied, go to 2.

Nk =

Algorithm 1. The evolutionary method of market game simulation.

As it is possible to see in the Algorithm 1, the evolutionary method does not have a
selection of individuals, except it the selection of strategies is introduced. In this case the
notion “strategy” means simply a quantity of production in current game.

Each player conducts it own calculations during the repeated games and tries to optimize
its profits or in different words, its own quality function. All players create one market, but are
treated as separate population members, thus they can develop independently, optimizing their
own strategies. In the approach with many evolving markets, players are only parts of one
population member (market) and it would be difficult to value them separately, because one
population member has usually one optimized criterion

To learn its strategy, the player stores data about production (strategies) and obtained
profits (sums of obtained incomes) in past games and according to this experience it usually
selects high valued strategies. The data structure describing one player contains:

ea value of current production (strategy);

ea vector of all used strategies (they are integer and limited to the set of values 0...M), but

not all strategies are usually applied;

ea vector of real values of obtained results of the same length as the previous one, where

the strategy from the first vector corresponds with sum of obtained profits from the
second vector;

ea vector of integer numbers, which describes numbers of applications of all used

strategies.

Genetic operators are selected to modify strategies using special adaptation method, which
uses reinforcement learning and is described in [5, 11, 14]. Genetic operators mainly randomly
modify the selected strategy and this becomes a player’s bid for the next game. A set of
genetic operators contains:

erandom value generation (0...M);
esmall random modification of selected strategy;
ea (slightly modified) copy of some previously used strategy of one of the players.



3.2 Evolutionary algorithm for simulation of the CO, emissions market

In this case a standard evolutionary algorithm is used, which works in the manner as it is
shown in the Algorithm 2, with some adjustments to the solved problem.

Random initialization of the population of solutions.

Reproduction and modification of solutions using genetic operators.
Valuation of the obtained solutions.

Selection of individuals for the next generation.

If a stop condition not satisfied, go to 2.

M

Algorithm 2. The evolutionary algorithm.

One population member contains information about all the countries participating in the
market, so it is a complete solution of the problem. It is possible to create as many individuals
as needed (in the simulations about 400 are used) and obtain the same number of mainly
different solutions. Of course the best one is the most important, but in some circumstances
several of the remaining solutions can be used. Information needed to describe one country is
encoded as a vector of 8 real-valued numbers:

stheoretical price of own permits (shadow price);
ethe real price of current sold/bought permit;
ethe value of current sold/bought permits;
enumber of currently sold/bought permits;

ethe total sum of sold/bought permits;

ecurrent emission;

eprevious emission (before present transaction);
evalue of present and previous goal function

The population member contains the same number of such vectors as a number of market
participants. To modify solution, the following genetic operators were used:

ecompetition — the chosen country set some numbers of permits for sale, and the other set
offers to buy, when the best option is chosen, the solution is modified,

ebilateral sale — the randomly chosen two countries conduct transaction and if they make
a deal, profitable for both of them, the solution is modified.

Prices and numbers of traded permits are randomly chosen. The number of traded permits
is chosen from interval {1,..,5}, and the permit price is as a value between buying offer and
sale offer with the expected value as average of these two values (simulation of the negotiation
process). The fitness function for EA is directly a problem’s quality function described by
formula (6). The fitness function does not have any punishment part for constraints (7) and (8)
violation, because forbidden solutions are not produced by initializing function or genetic
operators.

4 Results of computer simulations
4.1 Results for the Cournot oligopoly game

Computational tests were conducted for parameters n=4, a=1, b=56, M=256 of equations (1) and
(2). Four firms compete on the same product, trying to maximize their profits. Results of 10° games



are presented in Fig. 2, for the best and the worst player, but remaining ones are quite similar (but
not identical, as it can be seen in Tab. 1).
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Figure 2. Histograms of obtained profits and chosen strategies obtained for player I (up) and II (bottom)
after 10° iterations.

In the discussed case the problem has three equilibriums [1]:
ecollusion equilibrium, where firms act as a single firm with ¢=25 and 7=2500;
eNash equilibrium with ¢=40 and 7=1600;
ecompetitive equilibrium with ¢=50 and 7=0.

As it can be seen in Fig. 2, the best player the most frequently selects strategies that are
located between Nash and competitive equilibrium with average profits a little higher than for
Nash equilibrium. The worst player frequently chooses strategies with a little smaller
production than required for the Nash point and obtains significantly worse results than the
best player.

Table 1. Average profits obtained by players after 10° games.

Player 1 11 111 IV
Average profit 1789.03 1299.29 1 1495.60 | 1317.14
The most freq. used strategy 46 36 40 36




4.2 Results for CO, emission permit trading problem

Computer simulations were conducted on a standard data set, similar to works [3, 9, 12]. The
following countries: USA, EU, Japan, Canada-Australia-New Zealand (CANZ) and Former
Soviet Union (FSU) are taken into account. The data presented in this work are rather
approximate. For instance they consider data for USA, but this country hasn’t signed the
Kyoto protocol yet. Though, it would be difficult to practically start the CO, permissions
market omitting the country with the biggest CO, emission level in the world. Thus, the USA
are usually considered in simulations, but this causes the fact that real prices of permits are
smaller than obtained from different models considering the USA presence, because of
significantly smaller demands.

The emission abatement costs depend on value of emission reduction according to the
formula (9) (quadratic cost function) [3, 9]. The marginal price (10) is a derivative of cost
function, with a small modification of both component formulae (for x<F, and for x>F,) —
introduction of value min_p which is a minimal price of allowances, prevents the situation where
permits are sold with price 0, which may occur when costs of emission reduction are 0 for a
country with F;<K;: Table 2 describes coefficients of the cost function (9) and shadow price (10)
for considered countries.

C(x)= a-(Fy- x)? for x< F, ©)
0 for x2 F
max((2-a- (F, - x)),min_p) for x< F,
c(x)= . (10)
min_p for x2 F

min_p —minimal price of permits, @ — cost function parameter; F, — initial emission; x — actual emission.

Table 2. Data applied for calculations.

Country Initial emission Cost function Limit Kyoto
(region) (Fo) parameter (a) (K)
MtCly MUSD/(MtC/y)* MtCly
USA 1820.3 0.2755 1251
EU 1038.0 0.9065 860
Japan 350.0 2.4665 258
CANZ 312.7 1.1080 215
FSU 898.6 0.7845 1314

Table 3. Results after assuming perfect permit market model (the column “Final price” denotes the
shadow price in the equilibrium point).
Country Final Emission Final price Number of Permits Emission
(region) MtCly USD/tC imported expenditures reduction cost

permits Mt/y MUSD/y MUSD/y

USA 1562 143 310 11974.3 18523.7
EU 959 143 100 15790.6 5515.1
Japan 321 143 63 29987.6 2074.3
CANZ 248 143 33 16077.6 4638.2
FSU 808 143 -506 -73830.3 6439.5




Table 4. The results of simulations from the new model (the column “Final price” denotes the shadow price
in the point where trade finished due to lack of benefit) for the assumption that the seller imposes prices.

Country Final Emission Final price Number of Permits Emission
(region) MtCly USD/tC imported expenditures | reduction cost
permits Mt/y MUSD/y MUSD/y
USA 1562.0 142.3 311 50222.9 18381.1
EU 959.0 143.2 99 15014.8 5657.5
Japan 321.0 143.1 63 14420.0 2074.3
CANZ 248.0 1434 33 1741.7 4638.2
FSU 808.0 142.2 -506 -81399.3 6439.5

Table 5. The results of simulations from the new model (the column “Final price” denotes the shadow
price in the point where trade finished due to lack of benefit) for the assumption that buyers impose prices

Country Final Final price Number of Permits Emission
(region) Emission USD/tC imported expenditures reduction cost

MtCly permits Mt/y MUSD/y MUSD/y

USA 1562.0 142.3 311 32055.6 18381.1
EU 959.0 143.2 99 10593.3 5657.5
Japan 321.0 143.1 63 6760.6 2074.3
CANZ 248.0 143.4 33 1695.1 4638.2
FSU 808.0 142.2 -506 -51104.6 6439.5

Application of EA method to simulate the permits market gives some additional benefits,
because the result is not the only one set of parameters, but a set of possible scenarios. EA
operates on a population of mostly different solutions and computations are conducted in non-
deterministic way. Especially negotiation of permit’s prices are modeled as random numbers
with little modified normal distribution (prices are generated from the interval which is profitable
for both countries, if there is no such interval, no transaction is made), thus different scenarios
depend mainly on negotiated (i.e. randomly generated in the simulation) prices. This is also the
reason of presentation of obtained results in two tables. Table 4 presents results from the scenario
with high prices, imposed by sellers, Tab. 5 with low prices, imposed by buyers. As it is possible
to notice, differences between them are not very high, except the columns “Permits
expenditures”. Results were selected from 10 conducted simulations.

Analyzing the data in Tab. 3 (old model), 4 (new model with high prices), and 5 (new model
with low prices), it is possible to know that introduction of permit’s prices into the trading model
causes the situation that similar amounts of permits are traded among countries, but permits
expenditures are quite different, especially not profitable for the USA. This conclusion seem to
be reasonable, because free market prices are a little bit higher than in the optimal Walrasian
model. Of course results obtained using the old model (Tab. 3) with EA simulations are almost
identical with these ones obtained by researchers using different optimization techniques.

It should be noticed that the final equilibrium price for the market is obtained as a
consequence of small steps — transactions between market participants, not as in the traditional
approach — a result of global calculation. The obtained results are different because the price
does not depend only on the shadow price, but also on the difference between shadow prices of
market participants and also on some “negotiation abilities”, modeled as a random value. Thus,
there are several local equilibrium points among countries and the market simulation stops
when no profitable transaction can be done.



5 Conclusions

This article describes two applications of EA to market simulations. The first one is a non-
standard method without traditional selection of individuals but very applicable for game
problems. the second is more traditional version of EA, but with specialized operators for
market simulations. As it could be noticed, evolutionary algorithms are very flexible tools for
analyzing economic phenomena. It is possible to consider more different factors applying EA
than using standard methods, for instance including prices of emission permits to ideal market.
Introduction of several additional effects, like better models of price negotiations and
uncertainty of reported emissions will be a challenge for continuing research in this domain.
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