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Abstract. The development of a new genetic algorithm designed for the data analysis in the 
nuclear physic experiment is presented. The calculations performed with the 
multidimensional test function identified the weakness of the real representation 
implemented to the genetic algorithm. The tests presented in this paper will result in 
upgrade of genetic operators which will be applied for the real physic case of the 
COULEX data analysis.  

1 Overview of COULEX data analysis 

Coulomb Excitation (COULEX) is a well developed method to study the electromagnetic 
properties of nuclei in the ground and excited states. The most spectacular result of this 
experimental technique is shape determination of nuclei, what is an easy way to test different 
models of nuclear structure. That’s why the main advantage of Coulomb Excitation lies in the 
fact that the interaction responsible for the process can be described by the well-established 
theory of the electromagnetic forces allowing nuclear structure to be studied in a model-
independent way in contrast to nuclear reactions. The Coulomb Excitation is the preeminent 
probe of collective degrees of freedom in nuclear structure by a direct measure of the reduced 
electromagnetic matrix elements, which can be converted with use of some rules techniques into 
deformation parameters of the nuclear shapes. 

A semiclassical theory of multiple Coulomb Excitation was developed in 1956 [1] and the 
first implementation of the method to the computer program COULEX was developed by 
Winther and de Boer in 1965 [2]. The code COULEX provided the first opportunity to calculate 
quantitatively multiple Coulomb Excitation amplitudes using an assumed set of the reduced 
electromagnetic matrix elements. 

But the main difficulty for making a model-independent analysis lies in the large number of 
reduced matrix elements influencing heavy-ion excitation. The task is to fit the set of matrix 
elements as parameters of the theory to the collection of experimental observables. It is a typical 
approach in the experimental physics but a large number of parameters and a significant 
complexity of the multiple Coulomb excitation semiclassical theory formalism make the major 
difficulties. 

From early eighties a semiclassical coupled-channel Coulomb Excitation least-squares search 
code, GOSIA [3] has become a basic tool for the data analysis. It has been developed by 



Rochester-Warsaw collaboration to analyze the large sets of experimental data required to 
unambiguously determine the many electromagnetic matrix elements involved in heavy-ion 
induced multiple Coulomb Excitation. 

The main advantages of GOSIA are: 

– χ2 fitting procedure (using a gradient method) to determine the best – with the lowest  χ2 
value – set of electromagnetic matrix elements;  

– fast approximation method developed to speed up the analysis of the complex 
experiments;  

– extensive possibilities to take into account various geometries of experimental setup. 

The main difficulty in GOSIA use is time consuming testing of alternative solutions. 
New exotic beam facilities, delivering beams of higher intensity, together with a new 

generation of highly efficient detection systems will challenge the current method of analysis. 
With a new experimental tools more information will be collected, which makes the analysis 
more complex. 

1.1 Jacob: the first approach to the genetic algorithm 
The genetic approach to COULEX data analysis was developed to overcome the difficulty which 
lies in identifying local minima. In 2008 Jacob, a program exploiting genetic algorithm to 
determine matrix elements, was completed [4]. It was based on the binary representation of the 
parameters. And it was using concatenated pairs of bit-strings (first segment of the first string 
concatenated with second segment of the second string and vice versa) as a single point crossing-
over operator for each parameter. As a selection operator the user could choose: roulette, 
tournament or truncation selection. The mutation relied on flipping random bits with: constant 
mutation probability or declining with the number of generations. It was independent for each bit 
of each chromosome. Jacob used as an objective function χ2 values which were determined in 
GOSIA executions. 

1.2 F7 function   
An a priori unknown unique solution and a time consuming calculations of the full semiclassical 
formalism of multiple Coulomb Excitation were the reasons to use a test function to study the 
properties of the algorithm. One of the popular functions for testing optimization algorithms is 
F7, proposed by Schwefel in [5]. A shape of a multidimensional version of this test function is 
similar to χ2 surface expected in real optimization problems of a Coulex data analysis. In order to 
achieve a formal agreement with the existing code, a scaling of the F7 function was applied. 

The χ2 value is never less than zero and the ranges of parameters are typically in the interval 
(–10.0, 10.0). In the application to our problem domain of F7 was scaled to fit the range of each 
parameter independently and shifted up by the value of the total global minimum. To have multi-
optimum objective surface, F7 was scaled by multiplying each argument (matrix element) by 
100. The transformed one-dimensional function F7 is shown on Fig. 1. 
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Figure 1. Scaled F7 one-dimensional function in the range  (-10.0, 10.0), with shift up = 1000 
F7( 100*x ) = (-1) * (100*x) * sin( sqrt( abs( 100*x ) ) ) + 1000 

2 Jacob2 : genetic algorithm with real representation to the Coulex data 
analysis 

The recent approach to the Coulex optimization was established by using a real representation for 
genetic algorithm. Additionally, code refactorization was performed and its flexibility to apply 
new genetic operators or representations was improved. 

 Jacob v2.0, in its present implementation (Fig. 2), exploits the representation based on real 
numbers. The selection operator may be chosen from: roulette, tournament and truncation 
selection. The crossing-over is carried out by drawing a number from the range of the selected 
parents’ parameters with a uniform distribution. The mutation is defined by changing the matrix 
elements vector with a Gaussian distribution (when it occurs, it is applied to the whole 
chromosome). 

The use of the JACOB2 code to find a solution of the real physics case found some 
difficulties to reproduce the solution received with previous technique of the optimization. To 
identify the source of the problem the test procedure with the use of test function was preformed. 

 
Figure 2. Jacob2 



3 Jacob 2 tests with F7 

For Jacob2 tests with six dimension F7 function was chosen. Ranges of parameters were defined 
as not symmetrical to reproduce conditions of the real case. In particular three different groups of 
parameters’ ranges were chosen: 

1. (0.1 , 5.0) 
2. (-3.0, 3.0) 
3. (-0.3 , 0.3) 

Each chromosome is a vector of six parameters: one in the first range of variability, next three 
in the second one, and finally last two parameters are defined in the third range shown above. 
This happened because in the first range the global minimum is deep and more or less in the 
middle of the range. In the second – the global minimum is on the periphery and there is more 
than one minimum closer to the middle of the range. In the third case the minima are not very 
deep; also the range is fairly narrow. These are the reasons to manifold some ranges – to check 
the repeatability of finding minima. 

Two crucial questions are as follows. 

1. How often does the algorithm find the correct (global) minimum after a fixed number of 
generations? 

2. What is the sampling scheme of the algorithm during minimization process? 

To find the answers, test simulations were carried out. One thousand times a population of 
fifty chromosomes evolved for one hundred generations. The chromosomes for populations were 
generated with uniform distribution on the candidate solutions surface. Two kinds of data were 
stored: 

1. repository of all points (chromosomes) for which objective function value (F7 value) was 
evaluated, 

2. the best point (chromosome) from each population reached during the evolution process. 
Genetic operators which are applied are as follows: 

-  truncation selection with 60% threshold level in each generation, 
- mutation with constant mutation probability equals to 10% and standard deviation 

equals to 0.05. 
In the first range (Fig. 3 and 4) the global minimum was easily detected. Almost all starting 

populations converged to correct minimum. Also the highest density of sampling was around the 
global minimum – in other minima only slightly increased. 

In the second range (Fig. 5 and 6) the global minimum is close to the left limit of the range. 
Frequency of reaching the global minimum is twice the frequency of reaching the second. The 
same is with the sampling density. 

In the third range (Fig. 7 and 8), perhaps because of the narrow range, the sampling is very 
much diffused. The most often found minimum is very shallow and close to the middle of the 
range. The global minimum is again at the limit of the range and only an increase of sampling 
may be noticed there. 
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Figure 3. Sampling in repository 
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Figure 4. Best chromosome after 100 generations 
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Figure 5. Sampling in repository 
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Figure 6. Best chromosome after 100 generations 
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Figure 7. Sampling in repository 
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Figure 8. Best chromosome after 100 generations 

4 Sampling on the constant objective function 

The global minimum in the previous example is never reached simultaneously for all six 
parameters. Most often it is only the first one and three out of the rest five. What is the reason? 

To explain it, we should take a deeper inside view at the genetic algorithm. Let us consider a 
constant objective function. Then the sampling of the surface should be uniform because there is 
no reason to increase sampling density in any part of the sampling space. 

To check this hypothesis a population of five hundred chromosomes was generated one 
thousand times. The surface sampling is presented on Figs. 9, 11, and 13. Also one thousand 
times a population of one hundred chromosomes evolved for fifty generations and it is presented 
on Figs. 10, 12, and 14). 

It is observed (Figs. 9-14) that only the starting distribution is uniform – it is based on a 
pseudo-random numbers generator. But it is seen that the evolving process concentrates on the 
sampling in the middle of the range. This effect is independent from the range. It means that the 
genetic operators cause this phenomenon. Which of them, then? 

The selection (truncation selection) kills the chromosomes with too low objective function 
value. But in this case the objective function value is always constant, so the selection works 
randomly. There is no concentration ability in it – the sampling should still be uniform. 

The mutation randomly changes selected chromosomes with Gaussian distribution. But 
chromosomes are randomly distributed at the beginning, so the sum of distributions will be a 
uniform distribution. 

The crossing-over is defined as uniformly generated number from the range of parents’ 
parameters values. So the expected value is the average from parents’ parameters values and 
because parents are distributed uniformly, it concentrates in the middle of the range. This 



explains the mystery. The crossing-over operator makes not authorized concentration of 
sampling. 
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Figure 9. Starting population 
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Figure 10. Population after 50 generations 
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Figure 11. Starting population 
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Figure 12. Population after 50 generations 
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Figure 13. Starting population 
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Figure 14. Population after 50 generations 



5 Conclusions 

The genetic algorithm operators shouldn’t impose any increase of sampling resulting form their 
construction. The sampling density should only be related to the algorithm convergence. 

In the presented example, the convergence of crossing over operator perturbs finding the 
minimum. Global minimum was never reached because in the second range (second, third and 
forth parameter) global minimum lies on one of the limits of the range. In the third range (fifth 
and sixth parameter) the convergence which is a result from the depth of minimum is weaker 
than the convergence of the crossing over operator. So the convergence of crossing-over operator 
caused concentration of sampling in other part of the surface and as the result disallowed finding 
of the global minimum. 

During construction of genetic algorithm the convergence of genetic operators should be 
avoided; except of the cases where it is intentional. 

The calculations performed with the multidimensional F7 function identified the weakness of 
the real representation implemented to the genetic algorithm applied for the physics optimization 
problem. The presented tests procedure can be used to improve the genetic operators and 
compare the performance with the binary representation of the problem used in the Jacob 1. 

The use of the F7 function allows performing the test with an a priori known solution of the 
optimizing problem. It is important since the full calculation of the χ2 surface in the physical case 
is not possible due to time consuming multidimensional χ2 determination. The tests presented in 
this paper will result in upgrade of genetic operators which will be applied for the real physics 
case of the COULEX data analysis. 
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