
Comparative Study of Single System Image Clusters

Piotr Osi�ski 1, Ewa Niewiadomska-Szynkiewicz 1,2

1 Warsaw University of Technology, Institute of Control and Computation Engineering, Warsaw, Poland,
e-mail: p.osinski@elka.pw.edu.pl, ens@ia.pw.edu.pl

2 Research and Academic Computer Network (NASK), Warsaw, Poland.

Abstract. Cluster computing has been identified as an important new technology that may
be used to solve complex scientific and engineering problems as well as to tackle many
projects in commerce and industry. In this paper* we present an overview of three Linux-
based SSI cluster systems. We compare their stability, performance and efficiency.

1 Introduction to cluster systems

One of the biggest advantages of distributed systems over standalone computers is an ability to
share the workload between the nodes. A cluster is a group of cooperating, usually
homogeneous computers that serves as one virtual machine [8, 11]. The performance of a given
cluster depends on the speed of processors of separate nodes and the efficiency of particular
network technology. In advanced computing clusters simple local networks are substituted by
complicated network graphs or very fast communication channels.

The most common operating systems used for building clusters are UNIX and Linux.
Clusters should effectuate following features: scalability, transparency, reconfigurability,
availability, reliability and high performance. There are many software tools for supporting
cluster computing. In this paper we focus on three of them: Mosix [9] and its open source
version – OpenMosix [12], OpenSSI [14] and Kerrighed [3].

One of the most important features of cluster systems is load balancing. The idea is to
implement an efficient load balancing algorithm, which is triggered when loads of nodes are
not balanced or local resources are limited. In general, processes are moved from higher to less
loaded nodes. Many different load balancing techniques are described in literature [2, 10, 16].

2 SSI cluster systems

The idea of SSI (Single System Image) [7, 11] is to provide a view of one supercomputer for
cluster built from a group of independent workstations. All workstations’ resources such as
disks, memory, processors are seen by the user as one unique machine. The whole cluster is
identified from outside by one IP address. There are three basic features that modern SSI
cluster system should implement:

*The paper was partially supported by Polish Ministry of Science and Higher Education grant N N514

416934.

1. Distributed file system usually mounted in one place as root file system. It enables the
access to remote disks. A user see cluster hard disks as located on a single machine.�

2. Load balancing. SSI clusters are high performance clusters. The idea of moving processes
from higher to less loaded computers is implemented to improve performance.

3. Dynamic reconfiguration of a cluster. The system is robust to failure of workstations. This
implies the ability of adding and removing nodes while cluster is running. �

2.1 Mosix system
The Mosix system [1, 9] has been developed at the Hebrew University in Jerosolima by
professor Amnon Barak group. In years 1981-1988 the system was known under MOS and
NSMOS names. Since appearance of version 4 of the system working under VAX machines
on AT&T Unix system it has been known under the present name. In 1998 Linux version was
provided. At the end of 2001 Mosix became commercial software, which caused the
appearance of the OpenMosix project [7] – the open source version of Mosix. In 2007,
OpenMosix leader announced the end of the project. The Mosix team, however, are still
working, new version of the Mosix system – Mosix2 was developed.

System architecture and features
Mosix was implemented at the kernel level as a loadable module. In this solution the kernel
interface is not modified. Mosix is a cache-coherent cluster in which each process shares the
execution environment of Unique Home Node (UHN) – a node on which it was initiated. Two
resource sharing algorithms are provided: load balancing and memory ushering. The objective
of load balancing is to reduce the differences in the load between pairs of cluster nodes.
Processes are moved from higher loaded nodes to the less loaded ones. Algorithm is executed
on each node and load is balanced independently between pairs of nodes. When memory of a
node ran out the memory ushering algorithm is triggered. A given process is moved to a node,
which has enough free memory. The remote process maintains interaction with its
environment. The context of the process selected to migration is divided into two parts: deputy
and remote. Deputy context remains on UHN and cannot be migrated. Remote part of a process
is a user context and can be migrated. Hence, all processes that have migrated to other nodes
interact with user’s environment through the UHN and use the remote node resources when it
is possible.

Mosix provides transparent process migration and automatic load balancing in the cluster.
Migration of processes using system V semaphores, pipes and sockets is possible. Mosix does
not provide full SSI. All the processes, which were launched on a given node are displayed,
even if they have been moved to remote nodes. However, processes initiated on other nodes are
not displayed. The cluster wide CPU usage and global memory statistics are not displayed. If a
process is initiated on a given node the PID identifier for this node is assigned to it. The PID
space is not unique cluster wide. Mosix supports hot node removal or addition. The
checkpointing mechanism is not implemented.

2.2 OpenSSI system
The OpenSSI system [12] appeared in 2001 based on the NonStop Cluster project for Unix
Ware – an operating system created by Novell and Unix System Laboratories in 90’s. Solutions
proposed in LVS (Linux Virtual Server) and CI (Custer Infrastructure for Linux) have been
adopted to OpenSSI.

System architecture and features
The OpenSSI architecture can be divided into three parts: outside kernel extensions for high
availability and management, kernel extensions and extensions that provide SSI view of a
cluster. To enable transparent process migration a special extension to the kernel was
introduced. It is called Vproc (Virtual Processes). The idea lies in adding a virtual layer to the
Linux kernel, which is responsible for process management. This layer consists of two lists of
structures: pvproc structure that points to the task_struct – the structure representing the
process in the Linux system and vproc – structure that contains PID of a process. Node on
which process was launched is called origin node whereas the node on which the process is
currently running is called local node. Origin node is responsible for tracing the process state
and localization (in case of migration). The local node stores all three process structures:
task_struct, vproc and pvproc. In case of migration the origin node stores only virtual
structures: vproc and pvproc. Thanks to the Vproc extension there is no need to leave the
substitute process on the origin node while migration like in Mosix system.

OpenSSI allows transparent process migration and load balancing within the cluster. It also
provides the migration of group of threads. The load balancing algorithm used in OpenSSI is
the one derived from the Mosix system. There is possibility to migrate processes using system
V memory segments, system V semaphores, pipes and sockets. In OpenSSI all processes
running in the cluster are displayed. The devices of all nodes in the cluster are visible through
the /dev directory and can be accessed through every node. The unique space of processes PIDs
is preserved. OpenSSI provides hot node adding and removal while the cluster is running. A
checkpointing mechanism is not provided.

2.3 Kerrighed system
Kerrighed [3, 4] is another open source software for creating efficient SSI computing clusters.
The biggest advantage over previously described systems is its speed and efficient process
communication and also effective implementation of file system. It supports the SMP machines
for building a cluster. The Kerrighed project was started in 1998 at the university IRISA in
Paris by Christina Morin group. Since 2006 the project is developed by Kerlabs, INRIA,
partners from the Xtreem consortium and many contributors.

System architecture and features
The Kerrighed system consists of seven modules described in [4]. Kerrighed implements its
own library responsible for high performance communication. It offers user friendly
programming interface. To enable transparent process migration the mechanisms, such as
process ghosting, containers and migrable streams were implemented. The goal of the process
ghosting mechanism is to extract the process state and store it on a given device (disk, network
or memory). The container is used to data sharing across cluster nodes. The migrable stream
mechanism is used to provide efficient migration of communicating processes.

Kerrighed provides transparent migration of processes as well as single threads. The same as
in the OpenSSI system all processes created on any node in the cluster and all processes that
migrated are displayed. The unique list of processes PIDs is preserved among the cluster. The
biggest disadvantage is impossibility to reconfigure the cluster while it is running – adding and
removing nodes has not been implemented. Also the node failure results in failure of a whole
cluster. Kerrighed is still in progress, and in many cases the stability is not preserved.

3 Comparative study of SSI cluster systems

Many numerical tests were performed to present efficiency, availability and stability of
described SSI cluster systems. The goal of the tests was to compare the systems performance in
case of different types of applications.

3.1 Testing environment

Tests were carried out on three computers connected with 10/100 Mbps Ethernet switch as
depicted in Fig. 1. The specification of cluster nodes is presented in Table 1.

Figure 1. Testing environment

Table 1: Cluster nodes specification

Node CPU info Memory info Swap used
1 1728 MHz AMD Duron™, 64 KB cache 768 MB DDR SDRAM 1500 MB
2 2528 MHz AMD Sempron™, 128 KB cache 1536 MB DDR SDRAM 3200 MB
3 1528 MHz Intel® Celeron®, 64 KB cache 1024 MB SDRAM 2100 MB

The following versions of systems were considered: OpenMosix 2.4.26 kernel version [13],
OpenSSI 2.0 [15] with 2.6.11 kernel version, Kerrighed 2.1.1 [5] with 2.6.20 kernel version.
Testing programs were written in C, and compiled with gcc.

3.2 Testing examples

Two types of tests were performed for each system:
Single node performance measurement. The goal of these tests was to run 1, 2 and 3 instances
of calculating program and measure execution time for each series. Measurements show how
single node with specific cluster kernel enabled deals with execution of a user code.
Cluster performance measurement. These tests were divided into two parts:
• User code execution performance measurement. The objective was to show the

performance of each system in case of complex (time consuming) calculations. For each
system a specified number of calculating program instances were run. The processes were
executed independently without any internode communication. During all tests the
calculations were stopped after performing 5•107 iterations of the algorithm.

• System code execution performance measurement. The objective was to show the
performance of each system when running a program strongly connected to the local
resources. Tests were carried out on the cluster consisting of two nodes and were divided
into two series. In the first series the program was run on the node 1 and was migrated to
the node 3. In the second ones the program was run directly on node 3 (without migration).

For user code execution testing purposes a usercode program was written. It solves an
optimization problem (1) using simple random search (Monte Carlo method).

�
�

�
�
�

� −+= � ∏
= =

n

i

n

i

i
i

x i

x
xxf

1 1

2)cos(1
40

1
)(min , where D = {xi: -20 < xi < 20} (1)

For system code execution testing purposes a systemcode program was written. The main
feature of this program is long execution time of system code. Program extensively calls
system commands.

The following measurements were considered during the experiments:
• Execution time: the time needed for the system to execute a task.
• Load: the load of each node was measured every second until the end of a test.
• Bandwidth: the incoming, outgoing and total bandwidth were measured on each node

network interface during execution time of each test.
The goal of these measurements was to compare the efficiency of load balancing algorithms

and migration mechanisms implemented in the considered cluster systems. All values presented
in figures and tables are average results of five runs of both types of programs.

4 Test results

4.1 Single node performance evaluation

The performance evaluation of three SSI clusters is presented. In the first set of tests the
execution times of calculations performed on a single node were compared. From Fig. 2 we see
that the Kerrighed system is about 2 times faster then OpenMosix and OpenSSI. The difference
in program execution times can be explained by the kernel versions, Kerrighed offers the
efficient solution.

Figure 2. Single node performance evaluation

4.2 Cluster performance evaluation

User code execution performance results
Next we assumed that calculations were done by three machines in the cluster. All processes
were launched on the node 1 and were migrated to balance the load. Fig. 3 shows the execution
times of seven series of tests with number of processes from 3 to 192 for OpenMosix, OpenSSI
and Kerrighed. The best results were obtained for Kerrighed. The execution times for
OpenMosix and OpenSSI systems were similar. However in the series with bigger number of
processes (Fig. 4) OpenSSI performance dropped significantly. It seems that OpenSSI wasn’t
able to efficiently distribute such big number of processes over the nodes in the cluster.

Figure 3. Execution time – OpenMosix, OpenSSI and Kerrighed

Tests for Kerrighed and the number of program instances equal 384, 768 and 1536 weren’t
completed due to the system failure. Kerrighed is not stable system.

Figure 4. Execution time – OpenMosix and OpenSSI.

Next a load of separate node was measured. The goal was to compare the efficiency of load
balancing algorithms and migration mechanisms. Figures 5 – 7 present measurements for
OpenMosix and OpenSSI, and 768 processes. The architecture of Kerrighed assumes that all
system commands provide the information about the whole cluster, so it was impossible to
measure load of the separate nodes in this case.

Figure 5. Load measurement, node 1

Figure 6. Load measurement, node 2

Figure 7. Load measurement, node 3

Results presented in Fig. 5 – 7 show clearly that OpenMosix is much efficient when big
amount of processes has to be migrated. The load was balanced taking into account the
resources and CPU of all computers in the cluster. Node 1 was much more loaded than other
nodes in case of OpenSSI. It shows that the implementation of migration mechanism needs
some improvements. It collapses in case of big number of processes migration. More detailed
measurements of the overhead of process, stream and socket migration in case of the discussed
cluster systems can be found in [7].

Figure 8. Network traffic measured on the node 1 interface

The interprocess communication in the context of process migration was considered. Fig. 8
presents the average traffic loads on the interface of node 1 for OpenMosix, OpenSSI and
Kerrighed during each experiment. The tests were performed for number of processes from 3 to
1536. It can be observed that for small number of processes OpenMosix generates the biggest
overhead traffic. The situation changes when number of processes increases - Kerrighed starts
to generate a big traffic. The results for OpenSSI are similar for all tests.

In summary, OpenMosix was stable during all series of tests. The even distribution of load
among the nodes according to their CPU speed was the main factor for increased performance.
The bandwidth measurements indicate that when executing big amount of processes the system
is focused on computation rather and reduces further migrations. Test of the OpenSSI system
showed that for big amount of processes the system is unable to evenly distribute the load
between the nodes. Constant and relatively low bandwidth for each series is caused by this
defect. The shortest execution times were achieved for Kerrighed system. This comes out from
the efficient kernel implementation. Unfortunately Kerrighed was unable to complete more
complex tests.

System code execution performance results
The objective of this series of experiments was to compare the performance of cluster systems
and show the overhead involved by process migration in case of programs with extensive usage
of system commands. From Table 2 we see that execution times of migrated syscode program
are almost the same as without migration in case of Kerrighed and OpenSSI. The performance
of OpenMosix is very low when migrating a system-related processes.

Table 2: The syscode program, execution times in seconds

 OpenMosix OpenSSI Kerrighed
Without migration 26,23 25,26 21,57
With migration 12541,99 25,76 21,92

Table 3: Bandwidth measurements – migration of syscode program

 OpenMosix OpenSSI Kerrighed
Bandwidth [kB/s] 1852,77 11,59 9,18

Table 3 presents the bandwidth measurements after syscode program migration. All processes
were launched on the node 1 and migrated to the node 3. For Kerrighed and OpenSSI the
average bandwidth is not very high. The same test for OpenMosix gives very high average
bandwidth. It is obvious that the migration of processes using system calls and interprocess
communication should be minimized in case of OpenMosix. In case of syscode program every
system call is associated with data transfer between kernel and user space, hence the
communication between two parts of the process: remote - located on the current node, and
deputy - located on UHN is very frequent.

The loads of node 1 and 3 measured for syscode program execution and the OpenMosix
system are presented in Fig. 9. It can be observed that OpenMosix reduces the migration of
programs that extensively use the communication to the kernel. It is sensible behavior.

Figure 9. The nodes’ loads – syscode program, the OpenMosix system

5. Summary and conclusions

When choosing a cluster software one has to take into consideration four important factors:
reliability, simplicity of installation and administration, performance and future development.
Results presented in this paper should help to make decision, which of three SSI cluster
systems is the best for a given application. All considered systems allow to dynamically
balanced load of cluster CPU. Mosix and its open source version OpenMosix systems are most
reliable and easy in administration in comparison to their competitors. They are robust to
failure of nodes and provide the biggest number of system commands. The installation is
simple and user-friendly. The performance of the systems is not bad. Unfortunately, from
Tables 2 and 3 we can see that the process migration mechanism implemented in Mosix is not
efficient when migrated processes extensively use interprocesses communication or system
calls. It results the dramatic extra overheads in communication. Another drawback is that
Mosix does not cover all SSI features.

OpenSSI implements nearly all SSI features that a user can expect. In general, it offers very
reliable tool for clustering. However in case of multiple processes the performance of OpenSSI
is below the one offered by Mosix and Kerrighed. The system is easy to install. Administration
is supported by many useful commands, however the system provides less functionality in
comparison to Mosix.

The main advantage of Kerrighed in comparison to others is its high performance and
efficient process communication. Similarly to OpenSSI it covers nearly all SSI features. The

main disadvantage is the worst reliability. It is not stable software for creating clusters – it is
still in early development. Installation of a system and its administration are troublesome.

The paper presents only several features of given systems. We focused on comparison of
load balancing and migration mechanisms. To perform more complete set of tests concerning
for example systems scalability we need to curry out the experiments on the cluster consisting
of many machines.

Bibliography

[1] A. Barak, O. La’adan, A. Shiloh, Scalable Cluster Computing with Mosix for Linux,
Proceedings of Linux Expo, pp. 95-100, Raleigh, 1999.

[2] A. Chhabra, G. Singh, S.S. Waraich, B. Sidhu, and G. Kumar, Qualitative Parametric
Comparison of Load Balancing Algorithms in Parallel and Distributed Computing
Environment, Proc. of World Academy of Science, Engineering and Technology, Vol. 16,
pp. 58-61, 2006.

[3] Kerrighed project home page: http://www.kerrighed.org/wiki/index.php/Main_Page
[4] Kerrighed reference manual. http://www.kerrighed.org/docs/PI-1576.pdf
[5] Kerrighed 2.1.1 download. http://rpm.pbone.net/index.php3
[6] R. Lottiaux and P. Gallard, Kerrighed Internal, Technical Report, Irisa / Inria University,

Paris, 2005.
[7] R. Lottiaux, B. Boissinot, P. Gallard, G. Vallee, C. Morin, OpenMosix, OpenSSI and

Kerrighed: A Comparative Study, Proceeding of IEEE International Symposium on
Cluster Computing and the Grid (CCGrid '05), Cardiff, UK, 2005.

[8] P. L. McEntire, J. G. O'Reilly, and R. E. Larson, Distributed Computing: Concepts and
Implementations, IEEE Press, New York, 1984.

[9] Mosix project home page: http://www.mosix.org
[10] R. Motwani and P. Raghavan, Randomized algorithms, ACM Computing Surveys

(CSUR), 28(1), pp. 33-37, 1996.
[11] E. Niewiadomska-Szynkiewicz, A. Kozakiewicz, A. Karbowski, Distributed

Computation in Clusters and Grids, ICCS WUT, Warsaw 2007 (in Polish).
[12] OpenMosix project home page: http://openmosix.sourceforge.net/
[13] OpenMosix 2.4.26 kernel rpm download.

http://sourceforge.net/project/showfiles.php?group_id=46729&package_id=137967
[14] OpenSSI project home page: http://openssi.org/cgi-bin/view?page=openssi.html
[15] OpenSSI 2.0 download.

http://sourceforge.net/project/showfiles.php?group_id=32541&package_id=154064&rele
ase_id=565029

[16] S. Sharma, S. Singh, and M. Sharma, Performance Analysis of Load Balancing
Algorithms, Proc. of World Academy of Science, Eng. and Technology, Vol. 28, pp. 269-
271, 2008.

