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Abstract.
In the paper we deal with the problem of three-dimensional shape reconstruc-

tion when its two-dimensional projections from selected directions are available.
This situation corresponds e.g. to the trial of digitalizing the shape from pho-
tographs. We propose a methods for creating the mesh, projecting the shape
keeping the information about light and perspective. On this basis we use SA
technique to modify this shape in a controlled way in order to reproduce the
initially assumed one best.

1 Introduction

The problem of 3D shape from 2D silhouette reconstruction is now one of the most
interesting and challenging problems of computers graphics algorithmics. There is a large
number of papers which try to deal with this issue using different approaches. Among
them one can mention eg.: volumetric intersections of polyhedra analysed analytically [2]
as well as in the application to the hard problem of tree shape [11]; tomographic model
which obviously needs the more specifically prepared data coming from the intersections
[10, 1] used especially for medical purposes. Also a lot of specific algorithms based
frequently on different methods of projecting the shape have risen, like Mercier’s [9]
one which needs the specific hardware or Chen’s [3] where the points of observation are
constant. An interesting model of continuous convex reconstruction from multiviev has
been presented in [7, 6]. In the another group of papers one can find the use of global
optimization methods to different visualization problems. Quite successful are eg. [8, 5]
where the reconstruction doesn’t concern the whole sample but only the surface or a
little different problem of image quantisation [4].

In this paper we are going to present some preliminary works concerning the appli-
cation of simulated annealing global optimization to the problem of 3D object recon-
struction using the digitalization offered by OpenGL library. It may be noticed that the
problem of back 2D picture estimation form proposed 3D shape is often studied using
different methods of projections. In our method we use a rich algebraic solutions incor-
porated in this library to visualize the object as a view from the arbitrary position of
arbitrary number of cameras and in arbitrary conditions. We propose the method of
differentiating pictures in order to compare them and present some results for simple
polyhedra.



2 Shape creation and picture rendering

Our reconstruction procedure has to start from the defining of initial shape which will
further undergo the optimization. The method of construction is related to the method
of projecting the shape onto two-dimensional pictures corresponding to the camera view.
Because we are going to use OpenGL algebraic libraries the shape will be presented as
constructed from flat triangles. The scheme of this process is shown on fig.1.

Figure 1. Schematic presentation of the figure creation method. Empty circles are sampled on
the sphere, full circles are the internal points sampled on the line between the centre of sphere
and the empty circle, solid lines correspond to the visible edges while the dashed one to the only
invisible one.

Initially we define a spherical hull encompassing the reconstructed object. Then the
appropriate number of points is sampled uniformly on the sphere. These points are
represented on the figure as open circles. Selected points are connected with the centre
of sphere and on these lines there are sampled real point, shown as black circles. Thin
lines connect points on the sphere with its center while thick ones corresponds to the
visible edges of exemplary tetrahedron. Thin dotted line shows an invisible edge. Such a
method has certainly some advantages as well as drawbacks. Both of them are connected
to the organization of points. From one point of view the spherical notation makes it
possible to order the points according to their radial and azimuthal angles. From the
other hand it is very time consuming to perform such orderings. The presented approach
is also appropriate to code wide class of objects. This remark is obvious for all convex
objects but also for those which do not obey this condition one can find the successful
representation. The only requirement is that we have to find an internal point such that



every half-line going from this point intersects the hull exactly one time.
The object created and represented according to above description is then projected as

a view in all of the cameras defined in a system using OpenGL libraries. This algorithm
allows to introduce into reconstruction procedure all features offered by this library.
One can define, except of triangulated shape, the material covering the walls, refraction
coefficients, position and character of lights sources. The number of cameras as well as
light sources is practically unlimited, so generally we can define arbitrarily complicated
system of 2D silhouettes creation.

3 Optimization

As an optimization procedure we use the well known simulated annealing (SA). The
choice of this method seems to be almost natural for this case. Having well defined
set of points, during every single step we try to shift the coordinates of only one of
them. Contrary to the shape creation, we use here the Cartesian coordinates. In the
further considerations we will denote: T0-initial temperature, ηT -diminishing factor for
temperature, x0-initial value of sampling interval width, ηx-diminishing factor for interval
width.

Two stop conditions were defined. We force the stop after given number of steps,
usually it is 1500 or 2000 as it will be visible on plots. Alternatively we allow to stop
when either current temperature or current interval width reaches selected small value.
Usually, the process which finished due to this second condition stopped in the local
minimum.

The final object which can be analysed during the optimization process is the set of
3 ∗ ncameras matrices. The numbers come from the need to present the view from the
positions of all cameras (therefore the size of matrix is given by the product of width
and height of the original picture obtained from this camera) as well as for three basic
colours independently. The search space correspond to the possibility of filling of all
single pixel + colour combinations with the preciseness related to the assumed colour
depth. In our calculations it was always equal to 256. The objective function used in
minimization has to reflect the differences especially in color interpretation. Therefore
we decided to define the difference between images img1 and img2 as:

f(img1, img2) =
∑
cam

∑

pix

(|∆r|+ |∆g|+ |∆b|) (1)

In the formula above the first summation is taken over all cameras, the second one
over all pixels in sample and ∆r, ∆g, ∆b means the relative difference of intensities of
respectively red, green or blue color assigned to a pixel. With this formula the maximum
difference between the white and the black pixel is equal to 3. At this stage we don’t also
take into account the weights connected to the sizes of pictures obtained using different
cameras.

4 Exemplary results

We start the presentation of results from the most simple three dimensional convex shape
which can be build from triangles, ie. tetrahedron. In the fig.2 there are presented the



images obtained in different phases of optimization for the such a tetrahedron.

Figure 2. The images of optimized 4-vertex shape.

As it has been written earlier, the number of cameras is arbitrary. In all experiments
we decided to use three cameras and the pictures are organized in the way that as well
the original one those obtained during optimization process for the specific camera are
grouped in the same columns. The rows contain images at different stages of optimization,
namely: (a) original picture, (b) the last obtained during minimization (f ≈ 18), (c)
f ≈ 50, (d) f ≈ 100, (e) f ≈ 500, (f) f ≈ 1000, (g) starting configuration f ≈ 2300.
The image sizes are identical for all three cameras (100x100) and the maximal objective
function value may be 9 ∗ 104. It should be pointed that the method of constructing
of initial shape leads to quite reasonable values of difference for starting configuration.



First steps of optimization leads especially to enlarge the tetrahedron in order to preserve
the correct order of magnitude and at last steps one can observe the convergence to the
real shape. For the values f < 100 one can hardly observe differences between successive
images. On the presented plot it can be seen only small shift of the lowest point which
may be observed as a slight curvature on the left one where the border between the
background and the enlightened part should be exactly horizontal. The final images
(f ≈ 18) may not be distinguished from the original one although some slight differences
still occur.

In order to compare the results for another pattern in fig.3 there are presented the
original and the best obtained images for different tetrahedron.

Figure 3. The original and the best images for another 4-vertex shape.

In the fig.4 there are shown the results of optimization for hexahedron. Here one
can visibly distinguish the images especially due to insufficient light at the bottom ones.
The final difference value is about 250 and one may expect that in next steps would be
decreased. We want however to keep the stop condition at 2000 steps.

Let us now return to the first shape and present some efficiency results for this process.
The crucial parameters are certainly those characteristic for simulated annealing, listed
in the preceding section. In the table 1 there are presented main statistical values char-
acterizing the optimization process for different sets of these parameters.

It may be discussed which one of them is the most important, whether we are inter-
ested in one good ”hit” in a good result or in the larger set of better approximations
for eg. further hybrid algorithm. It seems to be justifiable that the values of ηT and ηx

about 0.95 which means rather slow (however not extremely) cooling are most successful.
We can try also to make an attempt to early qualification whether the optimization

run is promising or it will probably fall into deceptive local minimum. In fig.5 we can
observe the dependence of objective function on the number of step for 4 runs: two
”good” ones and two ”bad” ones.



Figure 4. The original and the best images for 5-vertex shape.

T0 ηT x0 ηx average deviation median min max
100 0.95 4 0.95 325 398 42.9 7.7 974.3
100 0.95 4 0.97 259 387 24.9 9.8 871.2
100 0.97 4 0.95 1080 686 979 266.0 2746
100 0.97 4 0.97 505 414 621 42.7 1282
50 0.95 4 0.95 254 388 23.5 4.2 953.8
100 0.9 5 0.9 504 511 424 13.7 1372

Table 1. The statistical estimations for different optimization parameters. The numbers in
columns concern the objective function values at the end of optimization process.

It may be observed that in initial phase the dependence is of exponential character
(correlation coefficients are equal to 0.99, 0.89, 0.95, 0.87 for successive runs as enumer-
ated in the figure) but the damping coefficient differ significantly. For the better runs it is
about 4∗10−3 while for the worse 1∗10−3. This fact may give an interesting information
about the predictability of efficiency.

5 Conclusions

Concluding the presentation we have to put an attention on few facts which partly has
been mentioned in the text. Although the method seems to produce correct result, the
samples which were taken into account were quite simple. The comparison of convergence
for 4-vertex and 5-vertex shapes show that every additional point makes the optimization
significantly harder. The positive information is however that even greater difference for
hexahedron is of quantitative character and qualitatively we can say that we are generally
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Figure 5. Dynamics of optimization process.

in the basin of attraction of global minimum. This observation leads to the conclusion
that some form of local optimization should be proposed. The comparison of images
(b)-(d) in fig. 2 shows that in this phase (obtained really after about thousand steps)
SA works indeed only as a local optimizer.

It may be reasonable to use other global optimization techniques like eg. genetic
algorithm. Here one should however notice the problem that will also arise for the
samples with greater number of vertices. Using SA we can try to control the positions of
points checking the fulfilment of conditions described earlier. The lack of this control may
lead to the intersections of triangles what makes the analysed set of points useless. As a
solution we are going to use Delaunay triangulation on a sphere which is unfortunately



the next time consuming factor.
Finally we can say that the proposed attempt is promising although needs a lot of

detailed improvements.
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