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Abstract  The ability to cross saddles separating adaptive optima is one of the most
interesting features of adaptive processes. It is especially promising in the case of
multimodal optimization. This contribution deals with the impact of the saddle
slope gradient on the time of the saddle crossing. A suitable adaptive landscape
with variable saddle parameters is proposed. A simple model of evolution with
the real valued traits; proportional selection, normally distributed modifications
and without recombination is used.

1 Introduction

This contribution deals with the problem of the evolutionary saddle crossing. The
adaptive landscape is formed of two adaptive peaks separated by a distinct adaptive
saddle. An adaptive saddle can be defined as a part of the landscape that connects two
adaptive hills, but the surface of the saddle is lower than both hills at the same time,
one can imagine this as a mountain valley.

The process begins with the lower peak already populated. The population of
individuals fluctuates on it due to the effect of proportional selection and normally
distributed mutations of individuals. Finally fluctuations lead to saddle being crossed
- an escape from local optima pitfall. Afterwards, exploitation of the higher adaptive
peak improves the average fitness of the population.

The population drift through the saddle proceeds along saddle rim - individuals try to
occupy the most uplifted area[2]. Search direction perpendicular to the saddle rim cause
bigger quality loss than move along the saddle. Such conditions provide clear search
direction toward one of the adaptive hills, thus significantly reduce random drift of an
individual in the saddle vicinity.
Because of the random nature of individuals modification during reproduction phase,
all search directions are equally possible so, on steep saddles (big slope gradient) a
number of mutations leading to individual extinction might by significant. In few steps
the mutation process can put an individual in the area with high quality degradation. On
the other side low saddle slope gradient or small average value of the mutation standard
deviation may trigger a random drift inside saddle area. In both described situations
saddle crossing effectiveness is reduced. Therefore deeper insight into influence of the
saddle slope gradient on the evolutionary saddle crossing process is worth of analysis. To



perform experiments a proper adaptive landscape, with adjustable saddle slope gradient
was introduced.

Earlier research deals with many aspects of the considered evolution model, such as:
search space dimension, population size, mutation rate, adaptive landscape shape, impact
of random perturbations. Those findings, regarding basic model configuration, are used
as the reference point for experiments results considering the influence of the adaptive
saddle slope gradient on the evolutionary saddle crossing time. This paper is organised
as follows: the model of evolution is described in Section 2; an adaptive saddle and the
landscape configuration are characterized in Section 3; the data on numerical experiments
are presented in section 4; Section 5 presents and discusses simulation results; Section 6
concludes the paper.

2 Model of Evolution

The simple model of phenotypic, asexual evolution with no-overlapping generations is
considered[4]. The population of m individuals evolves in the unbounded n-dimensional
search space. The type of every individual x is given by a vector of its real valued
traits x = (x1, x2, · · · , xn), and the fitness value q(x). The fitness function q(.) generates
the adaptive landscape. It is assumed that the landscape is multimodal and consists of
adaptive hills separated by an adaptive saddles. Reproduction proceeds in two steps:

1. Selection. Parents for new generation individuals are selected, with probability
proportional to the fitness value - proportional selection.

2. Mutation. Descendants inherit slightly modified parental traits. Each trait
is mutated by adding a value of the normally distributed variable, with mean
0 and variance σ2. The value of σ is small with regard to the linear dimensions
of the adaptive landscape.

This simple model captures the essentials of the Darwinian evolution. The process
is path dependent. In the beginning the individuals of initial population concentrates
quickly into a cluster of types, with radius of about σ[2],[1]. Then this cluster moves
toward more elevated area of the adaptive landscape. When population reach the top of
the adaptive peak (local optima) enters the stage of the selection-mutation equilibrium.
While the process of mutation tries to spread population and provides exploration factor,
the proportional selection process keeps it in the vicinity of the peak by preferring
individuals with higher fitness as parents for the next generation. Individuals moves
randomly around the peak with the average fitness value distinctly lower than the locally
optimal. The population might escape the local optima pitfall if there is a saddle that
leads to some more attractive peak. The saddle crossing has a character of the random
drift. The population moves along the saddle until more attractive area is found. When
it happens, population again enters the stage of peak exploitation. The phase of saddle
crossing and adaptive peak climbing are much shorter than the state of selection-mutation
equilibrium[5].

Previous experience with the described model indicates that this is very efficient in
saddle crossing, even when these saddles are tens of σ wide, especially if the populations
are very small [5],[4]. Also this model keep its efficiency regardless of modification of the
shape of the adaptive landscapes[3].



3 Landscape

The adaptive landscape consists of two adaptive peaks connected by an adaptive saddle.
In previous research the landscape in major cases was constructed as a sum of two
multidimensional Gaussian bells. Hover in presented experiments, adaptive peaks were
modelled with multidimensional parabolas(1). Such approach was chosen to obtain a
landscape with well-defined and easy to manipulate(in terms of shape modification)
adaptive saddle, see Figure 1.

The adaptive saddle is defined by formula(2). Such function generates response surface
with constant height value x̌, the slope gradient in dimensions orthogonal to saddle rim
is controlled by coefficient s. The cross section of saddle for s values used in experiments
is presented on Figure 2. Parabolas parameters for adaptive hills(1) were chosen to
obtain profile similar to Gaussian bell used in previous research, see Figure 3. On
Fig. 4 top projections of landscapes with slope gradient coefficient s = 1(Figure 4(a)),
s = 4(Figure 4(b)) and s = 16(Figure 4(c)) are presented, the difference in saddle size in
dimension n = 2 can be noticed.
The proposed fitness function(3) holds following assumptions: non negative fitness value,
global optima peak twice as high as local one, distinct saddle lower than both of adaptive
hills, symmetry along saddle rim plane.
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Figure 1. Landscape cross section, saddle slope coefficient s = 4, x̌ - saddle height.
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Figure 2. Landscape saddle transverse cross-section(x1 = 0,5), saddle slope coefficient
s = 1/16, 1, 4, 16, 64, dimension n = 2, 3, 4, . . . .
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Figure 3. Landscape cross-section profile, Gaussian vs parabolic.

4 Numeric Simulations

The experiments were designed to check the influence of saddle slope gradient on the
adaptive saddle crossing time. Thus a set of fitness functions (2)(3) with different
saddle slope gradients was used s ∈ {1/16, 1, 4, 16, 64}, all cases are shown on
Figure 2. For set of basic evolutionary process parameters: n-search space dimension,
m-population size, σ - mutation variance simulations were performed for each of five
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(a) slope gradient coefficient s = 1
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(b) slope gradient coefficient s = 4
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(c) slope gradient coefficient s = 16

Figure 4. Landscape top projection.

landscapes. The saddle crossing efficiency was measured as average time(in numbers
of generation) required to obtain quality improvement, that is the generation number
k for which the condition (4) is met.

q(xk

i ) ≥ (x̌), i = 1, 2, . . . n (4)

Such stop condition is very simple to check and quite intuitive. Although, especially
for multidimensional problems, population might move in the global peak vicinity
before quality improvement occurs[4]. The simulations were execute 2500 times for each
parameters context, the result were then averaged. Because experiments are focused on
the adaptive saddle, the saddle width is expressed relative to value of the mutation
standard deviation σ, thus saddle k-width denotes that ws = kσ.

5 Simulation Results

On Figure 5 plots with simulation results are presented. Missing points indicates, that
for given simulation parameters stop condition(4) was not reached within 1000000
generations. As expected, in major cases moderate slope gradient decries average
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(a) space n = 2 pop. size m = 4
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(b) space n = 4 pop. size m = 4
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(c) space n = 2 pop. size m = 8

 1

 10

 100

 1000

 10000

 100000

 2  4  6  8  10  12  14  16  18  20  22  24

a
v
g
. 
g
e
n
. 
n
o
.

saddle width

1/16

1

4

16

64

(d) space n = 4 pop. size m = 8
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(e) space n = 2 pop. size m = 16
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(f) space n = 4 pop. size m = 16

Figure 5. Average saddle cross time vs. saddle width, results averaged over 2500 runs.
Search space dimension n = 2, 4 , population size - m = 4, 8, 16, saddle relative width
ws = 2, 4, 6, . . . , 24. Saddle slope parameter s = 1/16, 1, 4, 16, 64.



saddle cross time comparing to steep one. Although situation presented on Figure 5(d)
shows that fine saddle slope may give opposite results s = 1/16 and s = 1. High cross time
on steep saddles s = 4, 16 is caused by a ”sudden death” effect. The area of the
saddle is relatively small thus individuals after modification are placed in a region with
low fitness value.
An interesting effect is observed for saddle with slope factor s = 1/16, 1, 4, saddle crossing
time is lower for four dimensional space then for two, that effect increases with population
growth. On the other hand for rough saddle slope configuration saddle crossing time
growth is much bigger for four dimensional search space then two dimensional. Quality
improvement, thus saddle pass over, was not achieved for small population(Figure 5(b))
and both extreme landscape configurations: s = 1/16 and s = 64. In first case low
selection pressure(small population and moderate saddle shape) triggered random search.
This effect can be also observed on Figure 5(d), saddle cross time for landscape with
s = 1/16 is bigger then for one with s = 1. This outcome is reduced with population size
increase - see Figure 5(f).

6 Conclusions.

Presented results clearly shows that the local adaptive saddle configuration has a major
influence on the evolutionary saddle crossing time. In this contribution the role of
the saddle slope gradient was examined. The proposed method[4] keeps the ability
to overcome local optimal pitfall on proposed, modified landscapes. This key feature
of evolutionary algorithms is particularly valuable in solving multimodal optimisation
problems[6].
The saddle slope gradient has a noticeable impact on saddle crossing process. Although
the results shows, that simple assumption that moderate saddle slop will decrease saddle
cross time can not be done.
The proposed landscape allows for easy manipulation of saddle slope configuration,
yet the saddle rim shape can not be modified and it has no distinct minimal value
point(contrary to the adaptive landscapes used in previous findings). Thus more research
and new saddle configuration are planed to allow deeper analysis of the issue discussed
in this contribution.
An interesting and worth of detailed examination is comparison of the presented
evolution model efficiency on diverse landscapes configuration with other evolutionary
algorithms, for example[7].
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