
Shared-Memory Parallelization of an Interval

Equations Systems Solver – Comparison of Tools

Bart lomiej Jacek Kubica1∗

1 Warsaw University of Technology, Institute of Control and Computation Engineering, ul.
Nowowiejska 15/19, 00–665 Warsaw, Poland, email: bkubica@elka.pw.edu.pl

Key words: interval computations, underdetermined systems of equations, paralleliza-
tion, multi-threaded programming

Abstract This paper considers the shared-memory parallelization of an interval
solver of underdetermined systems of nonlinear equations. Four threading libraries
are investigated: OpenMP, POSIX threads, Boost threads and TBB. Directions
for further investigations on multi-threaded interval algorithms are outlined.

1 Introduction

The majority of papers about parallel interval branch-and-bound/branch-and-prune meth-
ods concentrates on distributed-memory systems, mostly using MPI. As multi-core archi-
tectures become more and more popular, the interest in shared-memory implementations
increase. Such implementations of interval methods are usually based on OpenMP (e.g.
[1], [2], [7], [3]) or less frequently POSIX threads (e.g. [4]). The purpose of this paper is
to analyze other parallelization tools to learn about their usability for interval computa-
tions. Obviously, the basic concern is efficiency, but other features (like the presence or
not of some useful primitives) are considered, too.

2 Benchmark problem

As a benchmark an interval solver of underdetermined equations systems is considered.
Solvers for other problems could also be used, but underdetermined problems are par-
ticularly intensive computationally, as there is a continuum –instead of a finite number
– of solutions. The solver has been developed by the author and its parallelization using
OpenMP did not give expected speedup (see [3]).

Interval methods are based on interval arithmetic operations and basic functions
operating on intervals instead of real numbers (so that result of an operation on numbers
belong to the result of operation on intervals, containing the arguments). We shall
not define interval operations here; interested reader is referred to several papers and
textbooks (see e.g. [1], [3], [6] and references therein).

∗

The research has been supported by the Polish Ministry of Science and Higher Education under grant

N N514 416934. The computer on which experiments were performed is shared with the Institute of

Computer Science of our University. Thanks to Jacek B laszczyk for maintaining it.



The basic meta-algorithm of the solver was the branch-and-prune method that can
be expressed as follows:

IBP (x(0); f)
// x

(0) is the initial box, f(·) is the interval extension of the function f : R
n → R

m

// Lver is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L = Lver = Lpos = ∅ ;

x = x
(0) ;

loop

process the box x, using the rejection/reduction tests ;
if (x does not contain solutions) then discard x ;
else if (x is verified to contain a segment of solution manifold) then push (Lver , x) ;

else if (tests subdivided x into x
(1) and x

(2)) then
x = x

(1) ;

push (L, x
(2)) ;

cycle loop ;
else if (x is small enough) then push (Lpos, x) ;
if (x was discarded or stored) then

x = pop (L) ;
if (L was empty) then exit loop ;

else

bisect (x), obtaining x
(1) and x

(2);

x = x
(1) ;

push (L, x
(2)) ;

end if ;
end loop

Different variants of the “rejection/reduction tests” were considered in [3]. They are
not going to be described here. Now, we consider three variants of the algorithm in
computational experiments: the Hansen variant, the Neumaier variant and the variant
using componentwise Newton operator with Herbort and Ratz heuristic.

3 Investigated tools

Four tools were compared: OpenMP, POSIX threads, Boost threads and TBB.

3.1 OpenMP

OpenMP [10] is considered to be the standard for shared-memory parallel computa-
tions, nowadays. It is an extension of C, C++ and Fortran languages, that adds compiler
directives to them.

The API is known to be very dense and – as compiler directives are usually ignored
on compilers not using OpenMP – serial and parallel variants of the program might be
identical or almost identical (which practically happens for extremely simple programs
only, though).

OpenMP gives us the following tools:
• distributing a program into parallel sections,



• parallelizing simple for loops,

• basic synchronization primitives – locks, barriers and very simple atomic operations,

• functions to control the number of threads, etc.
It is worth noticing that atomic operations include incrementing and decrementing a
variable, and arithmetic and bitwise operations. Unfortunately, many popular atomic
primitives, like compare-and-swap(), do not belong to OpenMP standard.

3.2 POSIX threads

The Pthreads library [11] describes low-level general purpose threads. The module
contains several functions to control the work of threads – many of them of low usability
for parallel computations (e. g. manipulating the thread priority or thread cancellation).
POSIX threads is a C library and it is unnatural to use it in object-oriented programs
as some concepts are incompatible (see e.g. [5]); such cooperation is possible, though.

The library gives us the following tools:
• creating and joining a thread; several functions to manipulate it,

• synchronization primitives: mutexes (i. e. mutual exclusive locks), readers-writer
locks, barriers and condition variables,

• functions to manipulate data placed in thread-local storage.
There is no POSIX API for atomic operations; we must apply other tools to use them.

3.3 Boost threads

Boost threads [9] are a portable threads variant for C++. They are simply an object-
oriented envelope over POSIX threads. In particular we have scoped locks here (unlike
POSIX mutexes they are compatible with the exception-throwing mechanism). Other
than that the API is quite analogous to Pthreads. Again – no atomic operations.

3.4 TBB

The Intel Threading Building Blocks [12] is a tool for building multi-threaded pro-
grams working in multi-core environments and aiming applications in parallel computing.
This library is very different from the three above.

The module is a C++ template library, designed as a very high-level API. We do not
use threads directly here, but rather some tasks that are mapped onto physical threads
somehow. Consequently, the library does not have some basic primitives like the barrier
or a condition variable. Rather than that, it offers some parallel algorithms concepts,
like parallel_for, parallel_do, parallel_reduce, etc.

Writing programs with this tool requires a different approach than with the other
three techniques.

The library contains:
• parallel programming concepts,

• several variants of locks – ordinary mutexes, spin mutexes, queueing mutexes, etc.

• a very rich set of atomic operations,

• several other useful tools, like the memory allocators classes, containers for parallel
data structures and a user-space task scheduler.

According to the documentation, as TBB are designed for parallel computations, they
attempt to make an efficient use of the cache and other processor resources.



4 Implementation

The implementation for OpenMP, Pthreads and Boost threads is very similar and based
on the scheme we encounter in [1] and [4]. As in the pseduocode (Section 2) we have
a linked list of boxes to consider, a list of verified solution boxes and possible solution
boxes. Access to each of the lists is guarded by a mutex.

In all three variants we use a global variable num_working_threads, showing how
many threads are not idle. When this variable becomes zero, the computations should
be finished.

A difference is that for POSIX and Boost threads we use a condition variable instead;
OpenMP does not have this primitive and an active waiting loop must be used here.

The implementation is quite different for TBB. The author used the concept of
parallel_do (i. e. a few tasks execute some sort of a do...while loop), though some
other concepts could be utilized too, probably. The initial box is passed to one of the tasks
and results of its bisection are distributed between tasks using the so-called “feeder”. So,
we do not have a list of boxes to consider there, i. e. we do not keep it explicitly.

The Reference Manual (on web page [12]) is not clear about how the work items are
stored or in what way acquiring them is synchronized. We can only learn that adding
additional work items by the feeder results in better scalability than in the situation
when “all of the items come from the input stream” (which would be impossible in our
program, anyway).

As for other implementations we have two lists of solutions with dedicated locks –
spin mutexes are used there, as the operation of inserting a box is not time consuming.

5 Test problems

Three problems are considered in numerical experiments – all of them used in [6] and [3].
The first one is called the hippopede problem:

x2
1 + x2

2 − x3 = 0 , (1)

x2
2 + x2

3 − 1.1x3 = 0 .

x1 ∈ [−1.5, 1.5], x2 ∈ [−1, 1], x3 ∈ [0, 4] .

Accuracy ε = 10−3 was set.
The following problem, called Puma, arose in the inverse kinematics of a 3R (three

revolute joint) robot and is one of typical benchmarks for nonlinear system solvers:

x2
1 + x2

2 − 1 = 0 , x2
3 + x2

4 − 1 = 0 , (2)

x2
5 + x2

6 − 1 = 0 , x2
7 + x2

8 − 1 = 0 ,

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 = 0 ,

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022 = 0 ,

x6x8 + 0.3578x1 + 0.004731x2 = 0 ,

−0.7623x1 + 0.2238x2 + 0.3461 = 0 ,

x1, . . . , x8 ∈ [−1, 1] .

In the above form it is a well-determined (8 equations and 8 variables) problem with
16 solutions that are easily found by several solvers. To make it underdetermined the



last equation was dropped (as in [3]). The variant with 7 equations was considered in
numerical experiments as second test problem. Accuracy ε = 10−4 was set.

The last system arose in aircraft equilibrium problems:

−3.933x1 + 0.107x2 + 0.126x3 − 9.99x5 − 45.83x7 − 7.64x8 +

−0.727x2x3 + 8.39x3x4 − 684.4x4x5 + 63.5x4x7 = 0 , (3)

−0.987x2 − 22.95x4 − 28.37x6 + 0.949x1x3 + 0.173x1x5 = 0 ,

0.002x1 − 0.235x3 + 5.67x5 + 0.921x7 − 6.51x8 − 0.716x1x2 +

−1.578x1x4 + 1.132x4x7 = 0 ,

x1 − x4 − 0.168x6 − x1x2 = 0 ,

−x3 − 0.196x5 − 0.0071x7 + x1x4 = 0 .

This problem has 5 equations in 8 variables. As in [6] no bounds were given, we take –
as we did in [3] – xi ∈ [−2, 2], i = 1, . . . , 8. Accuracy ε = 10−1 was set.

6 Numerical experiments

Numerical experiments were performed on a computer with 16 cores, i. e. 8 Dual-Core
AMD Opterons 8218 with 2.6GHz clock. The machine ran under control of a Fedora
10 Linux operating system. The solver was implemented in C++, using C-XSC 2.2.3
library [8] for interval computations. The GCC 4.3.2 compiler was used.

Results are given in Tables 1–3. The larger font marks the shortest computation time
for all tools and threads numbers for a variant of the algorithm.

Other experiments. Results for a few experiments are not listed in the tables, but
are worth mentioning. To check if the reason of relatively poor performance of OpenMP-
based implementation is the lack of condition variable, the author implemented a variant
of program using Pthreads, where active waiting is used instead of the condvar. Perfor-
mance of this variant did not differ from the performance of the other Pthreads-based
variant. So the problem is not active waiting loop, but something in the internal imple-
mentation of OpenMP. The author also tried to optimize the performance of TBB-based
variant, by using lock-free synchronization; instead of having mutexes guarding the two
lists of solutions, we use the compare-and-swap() instruction to add boxes to them,
retrying the insertion in the case of collision. Measurements showed that collisions (and
retrials) had been relatively rare, but the improvement of program performance was
negligible if any.

7 Conclusions

Comparison of different threading tools is not simple as several criteria might be con-
sidered. Even comparison of computation times must take into account that programs
using different linbraries have to be diffferent, as it was discussed in previous sections.
All four tools allow to obtain some speedup, but far below the linear one. Results are
comparable, but in several cases (all methods for problem (1) and methods “Hansen”
and “cmp Newton” for problem (3)) TBB performed best (obtained shortest computa-
tion times). As for other tools, OpenMP seems to scale worse than other tools for 8



Table 1. Parallelization of algorithms for Problem (1).

Hansen method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 268 184 109 95 91 87
speedup 1 1.46 2.46 2.82 2.95 3.08

POSIX time (sec.) 275 171 106 90 90 87
speedup 1 1.61 2.59 3.06 3.06 3.16

Boost time (sec.) 276 182 113 88 90 92
speedup 1 1.52 2.44 3.14 3.07 3.00

TBB time (sec.) 273 158 89 68 69 84
speedup 1 1.73 3.07 4.01 3.96 3.25

Neumaier method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 221 128 83 72 67 64
speedup 1 1.73 2.66 3.07 3.30 3.45

POSIX time (sec.) 235 130 78 69 67 63
speedup 1 1.80 3.01 3.41 3.51 3.73

Boost time (sec.) 227 138 82 76 70 67
speedup 1 1.64 2.77 2.99 3.24 3.39

TBB time (sec.) 212 121 64 55 59 54
speedup 1 1.75 3.31 3.85 3.59 3.93

cmp Newton method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 197 129 78 66 62 61
speedup 1 1.53 2.53 2.98 3.18 3.23

POSIX time (sec.) 207 125 75 65 60 55
speedup 1 1.66 2.76 3.18 3.45 3.76

Boost time (sec.) 202 130 81 68 63 62
speedup 1 1.55 2.49 2.97 3.21 3.26

TBB time (sec.) 197 114 66 50 47 54
speedup 1 1.73 2.98 3.94 4.19 3.65

threads – the difference seems especially significant for test problem (3). Boost threads
perform noticeably worse than POSIX threads for problem (1), but for other two prob-
lems results are less clear – reasons of this behavior require further investigation. TBB
seems particularly interesting as a parallelization tools and further investigations of this
library for use in interval computations are planned.

Bibliography

[1] T. Beelitz, B. Lang, C. H. Bischof, “Efficient Task Scheduling in the Parallel Result-

Verifying Solution of Nonlinear Systems”, Reliable Computing 12(2006), pp.141-151.



Table 2. Parallelization of algorithms for Problem (2) with 7 equations.

Hansen method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 1628 1283 488 353 321 314
speedup 1 1.27 3.34 4.61 5.07 5.18

POSIX time (sec.) 1645 880 489 412 399 314
speedup 1 1.87 3.36 3.99 4.12 5.24

Boost time (sec.) 1757 894 479 380 375 320
speedup 1 1.96 3.67 4.62 4.69 5.49

TBB time (sec.) 1660 866 446 332 326 317
speedup 1 1.92 3.72 5.00 5.09 5.24

Neumaier method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 162 86 44 33 32 31
speedup 1 1.88 3.68 4.91 5.06 5.23

POSIX time (sec.) 168 87 47 39 35 32
speedup 1 1.93 3.57 4.31 4.80 5.25

Boost time (sec.) 166 86 47 40 36 33
speedup 1 1.93 3.53 4.15 4.61 5.03

TBB time (sec.) 161 82 44 33 31 30
speedup 1 1.96 3.66 4.88 5.19 5.37

cmp Newton method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 1168 644 377 288 283 280
speedup 1 1.81 3.10 4.06 4.13 4.17

POSIX time (sec.) 1235 654 357 303 270 267
speedup 1 1.88 3.46 4.08 4.57 4.63

Boost time (sec.) 1243 672 397 358 341 314
speedup 1 1.85 3.13 3.57 3.65 3.96

TBB time (sec.) 1211 643 322 306 314 291
speedup 1 1.88 3.76 3.96 3.86 4.16

[2] T. Beelitz, C. H. Bischof, B. Lang, “Intervals and OpenMP: Towards an Effi-

cient Parallel Result-Verifying Nonlinear Solver”, in: An Mey, D. (ed.), Proc.
EWOMP’03, September 22-26, 2003, Aachen, Germany, Aachen, 2003, pp. 119-125.

[3] B. J. Kubica, “Interval methods for solving underdetermined nonlinear equations

systems”, presented at SCAN 2008, El Paso, Texas, 2008.

[4] B. J. Kubica, A. Wozniak, “A multi-threaded interval algorithm for the Pareto-front

computation in a multi-core environment”, presented at PARA 2008 Conference,
Trondheim, Norway, 2008.

[5] N. Maclaren, “Why POSIX Threads Are Unsuitable for C++”, a C++ Standard
Committee Paper, 2006, http://www.open-std.org/jtc1/sc22/wg21/ .



Table 3. Parallelization of algorithms for Problem (3).

Hansen method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 4250 2249 1201 895 894 893
speedup 1 1.89 3.54 4.75 4.75 4.76

POSIX time (sec.) 4486 2329 1231 907 881 846
speedup 1 1.93 3.64 4.95 5.09 5.30

Boost time (sec.) 4398 2282 1212 924 863 859
speedup 1 1.93 3.63 4.76 5.10 5.12

TBB time (sec.) 4441 2269 1160 887 801 784
speedup 1 1.96 3.83 5.01 5.54 5.66

Neumaier method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 1759 923 489 369 371 362
speedup 1 1.91 3.60 4.77 4.74 4.86

POSIX time (sec.) 1793 976 491 403 354 352
speedup 1 1.84 3.65 4.45 5.06 5.09

Boost time (sec. ) 1767 947 479 377 348 345
speedup 1 1.87 3.69 4.69 5.08 5.12

TBB time (sec.) 1822 930 478 365 364 359
speedup 1 1.96 3.81 4.99 5.01 5.08

cmp Newton method
tool \ threads num. 1 2 4 6 7 8

OpenMP time (sec.) 1118 585 325 240 228 221
speedup 1 1.91 3.44 4.66 4.90 5.06

POSIX time (sec.) 1183 620 327 246 230 210
speedup 1 1.91 3.62 4.81 5.14 5.63

Boost time (sec.) 1125 593 307 232 210 214
speedup 1 1.90 3.66 4.85 5.36 5.26

TBB time (sec.) 1165 591 309 244 228 204
speedup 1 1.97 3.77 4.77 5.11 5.71

[6] A. Neumaier, “The Enclosure of Solutions of Parameter-Dependent Systems of

Equations”, in Reliability in Computing (ed. Moore, R), Academic Press, 1988.

[7] R. van der Pas, “Using OpenMP to parallelize interval algorithms”, presented at
SCAN 2008, El Paso, Texas, 2008.

[8] C-XSC interval library, http://www.xsc.de .

[9] Boost http://www.boost.org .

[10] OpenMP http://www.openmp.org .

[11] POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads .

[12] Intel Threading Building Blocks http://www.threadingbuildingblocks.org .


