
Performance inversion of interval Newton narrowing

operators

Bart lomiej Jacek Kubica1∗

1 Warsaw University of Technology, Institute of Control and Computation Engineering, ul.
Nowowiejska 15/19, 00–665 Warsaw, Poland, email: bkubica@elka.pw.edu.pl

Key words: interval computations, underdetermined systems of equations, Newton
operators

AbstractThis paper describes a phenomenon of performance inversion of Newton
operators – more precise operators might result in longer computation of a branch-
and-prune method. Examples are presented and possible reasons of this behavior
are discussed.

1 Introduction

In previous papers of the author (see [4], [5]) an interval solver of underdetermined equa-
tions systems was presented. A prepared reader might notice a strange phenomenon in
the numerical results presented there – in some cases the use of more precise narrowing
operators leads to slowdown of the algorithm. This phenomenon – we shall call it “per-
formance inversion” was not analyzed or named there. It is going to be considered in
this paper in details.

The mechanism the solver is based on are interval methods. They are based on
interval arithmetic operations and basic functions operating on intervals instead of real
numbers (so that result of an operation on numbers belong to the result of operation
on intervals, containing the arguments). We shall not define interval operations here;
interested reader is referred to several papers and textbooks, e.g. [1], [2], [7].

The solver was based on the branch-and-prune schema that can be expressed by the
following pseudocode:

IBP (x(0); f)
// x

(0) is the initial box, f(·) is the interval extension of the function f : R
n → R

m

// Lver is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L = Lver = Lpos = ∅ ;

x = x
(0) ;

loop

∗

The research has been supported by the Polish Ministry of Science and Higher Education under grant

N N514 416934. The computer on which experiments were performed is shared with the Institute of

Computer Science of our University. Thanks to Jacek B laszczyk for maintaining it.



process the box x, using the rejection/reduction tests ;
if (x does not contain solutions) then discard x ;
else if (x is verified to contain a segment of solution manifold) then push (Lver , x) ;

else if (tests subdivided x into x
(1) and x

(2)) then
x = x

(1) ;

push (L, x
(2)) ;

cycle loop ;
else if (x is small enough) then push (Lpos, x) ;
if (x was discarded or stored) then

x = pop (L) ;
if (L was empty) then exit loop ;

else

bisect (x), obtaining x
(1) and x

(2);

x = x
(1) ;

push (L, x
(2)) ;

end if ;
end loop

The paper [4] considered different variants of the “rejection/reduction tests” – these were
several variants of interval Newton operators. Let us focus on two of them.

2 Newton operators

Consider a system of m equations in n > m variables:





f1(x1, x2, . . . , xn) = 0
. . .
fm(x1, x2, . . . , xn) = 0

.

Such system is linearized and an iteration of Gauss-Seidel type is performed on it.
As the system is underdetermined, we can modify only m out of n variables in each

step – without the loss of generality let us assume we modify variables with indexes
i = 1, . . . , m, treating the remaining variables (i = m + 1, . . . , n) as parameters.

The iteration can be constructed in a few ways. Let us consider two of them.

GS_I_step
(
x, x̌

)

for i = 1, . . . , m do

compute Yi:, the i-th row of the preconditioning matrix Y ;

x
new = x̌i −

(
Yi: · f(x̌1, . . . , x̌n) +

n∑
j=1,j 6=i

Yi: · Aj: · (xj − x̌j)
)
/(Yi: · Ai:) ;

if
(
x

new ∩ xi = ∅
)
then return, signaling no solutions ;

replace xi by
(
x

new ∩ xi

)
;

end for ;
end GS_I_step



GS_II_step
(
x, x̌

)

for i = 1, . . . , m do

compute Yi:, the i-th row of the preconditioning matrix Y ;

x
new = x̌i −

(
Yi: · f(x̌1, . . . , x̌m, xm+1, . . . ,xn) +

m∑
j=1,j 6=i

Yi: · Aj: · (xj − x̌j)
)
/(Yi: · Ai:) ;

if
(
x

new ∩ xi = ∅
)
then return, signaling no solutions ;

replace xi by
(
x

new ∩ xi

)
;

end for ;
end GS_II_step

In both cases Aij = ∂fi(x)
∂xj

.

What is the difference between two above pseudocodes ? In GS_I we have a non-
square (n × m) matrix A and “thin” free summand b = Yi: · h(x̌1, . . . , x̌n). In GS_II A

is a square m×m matrix and the free summand b = Yi: · h(x̌1, . . . , x̌m, xm+1, . . .ldo ts ,xn)
is not thin.

It is actually equivalent to using the mean value form and a natural interval extension
of a function f̃i(xm+1, . . . , xn) = fi(x̌1, . . . , x̌m; xm+1, . . . , xn).

Which of them is better ? We shall consider it in Section 4. Now, let us describe test
problems that will be used to compare the operators.

3 Test problems

The following problems were considered in numerical experiments.
The Puma problem ([6]) arose in the inverse kinematics of a 3R robot and is one of

typical benchmarks for nonlinear system solvers:

x2
1 + x2

2 − 1 = 0 , x2
3 + x2

4 − 1 = 0 , (1)

x2
5 + x2

6 − 1 = 0 , x2
7 + x2

8 − 1 = 0 ,

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 = 0 ,

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022 = 0 ,

x6x8 + 0.3578x1 + 0.004731x2 = 0 ,

−0.7623x1 + 0.2238x2 + 0.3461 = 0 ,

x1, . . . , x8 ∈ [−1, 1] .

In the above form it is a well-determined (8 equations and 8 variables) problem with
16 solutions that are easily found by several solvers. To make it underdetermined the
last equation was dropped (as in [4]). The variant with 7 equations was considered in
numerical experiments as second test problem. Accuracy ε = 10−4 was set.

The second problem is a single circle on the plane:

x2
1 + x2

2 − 4 = 0 , x1, x2 ∈ [−3, 5] . (2)

And another curve on a plane; it is the sum of two concentric circles ([4]):

(x2
1 + x2

2 − 4) · (x2
1 + x2

2 − 1) = 0 , x1, x2 ∈ [−3, 5] . (3)



4 Efficiency of the operators

Now, let us discuss the performance of both Newton operators. Tables with computa-
tional results are given in next section. This layout might be inconvenient a bit, but – as
actual experiments that were done rely on the analysis here – it seems the only natural
schema.

According to textbooks, e.g. [1], [2], [7] the mean value form is inferior with respect
to natural interval extension for large intervals and superior for “sufficiently small” ones.
On the other hand, for relatively simple functions and sparse systems of equations one
might expect the GS_II method to be more precise.

So, let us have a look at the experimental results. Consider the Puma problem (all
test problems are described in Section 3). Let us investigate the performance of both
methods. For typical parameters of the program (first two columns of Table 1), the
“better” variant GS_II requires more than ten times more gradient evaluations than the
“worse” one ! What happened ?!

We already said that the mean value form is sometimes more precise than the natural
extension. This might explain the observed phenomenon. Maybe we should switch from
one interval extension to the another as diameters of the boxes decrease ?

It does not seem to be the case. Let us check a simpler example – Problem (2). Now
both variables appear only once in the formula and the natural extension gives us exact
bounds; the mean value form cannot be more precise. Again the GS_II is slower – it
requires about 50 times more gradient evaluations ! Clearly, we have a situation, where
a more precise operator results in a worse efficiency of the algorithm – as declared in
Section 1, we shall call it the performance inversion of the operators.

The third example – Problem (3) behaves in the same way. To make things even
less understandable, the idea of switching the interval extension actually gives us much
improvements – even for Problem (2). So, what is the reason of this surprising behavior ?

Other possible reasons

Let us consider other hypotheses.

Newton operator vs. bisection. One of the explanations might be the interference
between the Newton operator and bisection. As Newton operators cut parts of boxes that
do not contain solutions, solutions are quite likely to lie near the center of the resulting
box. The better Specific operator is, the more likely the solution will be in the midpoint.

But after the Newton step bisection is usually done, splitting the box in the middle.
Hence solutions will lie on boundaries on the considered boxes, making it more difficult
to verify them.

If this is the reason of observed performance inversion, replacing bisection with e.g.
trisection should help.

As can be seen in corresponding columns of Tables 1-3 this variant has been tested.
Results have been surprising – the phenomenon disappeared for Problem (3), but not for
other two examples. Moreover for Problems (1) and (3) results of algorithms based on
trisection were worse than switching the operators with bisection.

So, such interference cannot be the only reason of performance inversion.



Selecting verified boxes. Using the Newton operators, the algorithm tries to verify
if a box contains a segment of the solution manifold. If it does, such box is not processed
further, but is stored as a verified solution. This way relatively large boxes can sometimes
be removed from further processing.

This feature also seems likely to cause the performance inversion – some operators
might reduce the boxes less efficiently, but instead verify them to contain solutions.

Results in Tables 4-6 falsify this hypothesis, too. They present results for the variant
of our algorithms that do not verify boxes to contain the solution, but only discard
infeasible boxes and store small ones. Differences between operators GS_I and GS_II are
definitely smaller than in Tables 1-3, but the performance inversion phenomenon is still
clearly observed.

5 Numerical experiments

Numerical experiments were performed on a computer with 16 cores, i. e. 8 Dual-Core
AMD Opterons 8218 with 2.6GHz clock. The machine ran under control of a Fedora
10 Linux operating system. The solver was implemented in C++, using C-XSC 2.2.3
library for interval computations. The GCC 4.3.2 compiler was used.

Computations were done in parallel, using TBB library (see [9] and [5]). All runs
of the program were done with 8 threads – numbers of objective evaluations, gradient
evaluations, bisections, etc. do not rely on the number of threads, so the number giving
higher observed efficiency (see [5]) has been chosen.

Tables 1-6 contain basic computational results for all three test problems. The num-
bers after method’s name mean the number of boxes on which a box is subdivided; 2
means bisection, 3 – trisection. The annotation NVB means “no verified boxes”, i. e. the
variant of the algorithm that does not select boxes that are verified to contain solutions.

Table 1. Computational results for Problem (1) without the last equation, ε = 10−4.

method GS_I, 2 GS_II, 2 switching, 2 GS_I, 3 GS_II, 3 switching, 3
fun.evals 3539627 39040127 3078915 3254272 45806362 3005674
grad.evals 4022004 47802356 3492916 4028066 65069242 3700200
bisecs 279139 3410079 242415 171276 3071724 154590
bis.Newt. 274 270 262 398 518 484
del.Newt. 72988 900076 63652 98174 2121032 89096
pos.boxes 116076 1245564 101936 98704 1218112 85708
verif.boxes 21440 12964 17948 35532 52984 35644
Leb.pos. 4e-32 2e-29 2e-32 1e-32 7e-30 1e-32
Leb.verif. 3e-11 6e-12 1e-11 2e-11 3e-10 3e-13
time (sec.) 28 428 26 29 546 26



Table 2. Computational results for Problem (2), ε = 10−5.

method GS_I, 2 GS_II, 2 switching, 2 GS_I, 3 GS_II, 3 switching, 3
fun.evals 1126 66335 621 575 1514 1024
grad.evals 1336 66426 698 722 1688 1198
bisecs 465 32862 249 148 248 199
bis.Newt. 1 1 1 0 0 0
del.Newt. 0 0 0 0 0 0
pos.boxes 34 31660 13 12 22 16
verif.boxes 224 1114 162 139 302 210
Leb.pos. 8e-10 1e-6 2e-10 2e-10 4e-10 2e-10
Leb.verif. 3.6512 2.2074 2.2108 2.2713 1.8462 1.8712
time (sec.) 0.02 0.4 0.02 0.02 0.03 0.02

Table 3. Computational results for Problem (3), ε = 10−5.

method GS_I, 2 GS_II, 2 switching, 2 GS_I, 3 GS_II, 3 switching, 3
fun.evals 6784 140979 5442 10165 6909 9752
grad.evals 8006 141922 6438 12034 8338 11509
bisecs 2576 69909 2234 1921 1691 1834
bis.Newt. 4 27 27 2 21 21
del.Newt. 0 0 0 0 0 0
pos.boxes 160 65605 146 200 196 192
verif.boxes 1200 3390 1121 1777 1780 1742
Leb.pos. 3e-9 2e-6 3e-9 2e-9 4e-9 3e-9
Leb.verif. 0.6039 0.5789 0.5788 0.7075 0.6077 0.6616
time (sec.) 0.08 1.29 0.08 0.10 0.09 0.1

6 Analysis and further research

For all three investigated test problems the phenomenon of performance inversion has
been observed. Changing bisection to trisection allowed to prevent it only in one case.
On the other hand switching between both Newton operators gave us improvement in
all three cases – it resulted in an algorithm quicker than both GS_I and GS_II always.

Tables 7-9 showed that the phenomenon also disappears for larger values of the accu-
racy ε, i. e. for larger diameters of considered boxes.

We have not found a satisfying explanation of the phenomenon of observed perfor-
mance inversion, yet. Please note that in [4] a similar behavior occurred also in compar-
ison between the componentwise and traditional Newton operators for problem (3), so
the occurrence is not uncommon.

Also several other questions have to be answered. In particular: is the observed
phenomenon specific to underdetermined problems or it can be encountered also for
well-determined ones ? And how to choose interval tools to optimize performance of the



Table 4. Computational results for Problem (1) without the last equation, ε = 10−4, NVB.

method GS_I, 2 GS_II, 2 switching, 2 GS_I, 3 GS_II, 3 switching, 3
fun.evals 15253875 45827803 14981015 18236848 64106490 18275978
grad.evals 16176580 54923540 15851444 20286546 86037042 20357932
bisecs 1155195 3922839 1131983 965760 4096656 969102
bis.Newt. 274 270 262 398 518 484
del.Newt. 143716 943340 135588 274022 2615000 272492
pos.boxes 879940 1680380 872312 1365084 2445896 1368776
verif.boxes 0 0 0 0 0 0
Leb.pos. 2e-31 2e-29 2e-31 2e-31 9e-30 7e-32
Leb.verif. 0 0 0 0 0 0
time (sec.) 110 484 106 133 703 139

Table 5. Computational results for Problem (2), ε = 10−5, NVB.

method GS_I, 2 GS_II, 2 switching, 2 GS_I, 3 GS_II, 3 switching, 3
fun.evals 2954862 3132347 3130697 3355390 3363966 3364030
grad.evals 2955318 3132522 3130958 3356021 3364493 3364700
bisecs 1477657 1566259 1565477 1118673 1121497 1121566
bis.Newt. 1 1 1 0 0 0
del.Newt. 0 0 0 0 0 0
pos.boxes 1477204 1566087 1565219 2236717 2242469 2242464
verif.boxes 0 0 0 0 0 0
Leb.pos. 4e-5 3e-5 3e-5 2e-5 2e-5 2e-5
Leb.verif. 0 0 0 0 0 0
time (sec.) 11 14 12 14 12 14

overall algorithm ?

These topics should be investigated in the future.

7 Conclusions

A phenomenon of efficiency inversion of some Newton operators was considered. A few
possible explanations were considered, specifically:

• properties of natural and mean value interval extensions – their different precision
on boxes of different diameters,

• interference between the Newton operator and bisection,

• influence of the procedure of verifying relatively large boxes to contain a segment
of the solution manifold.



Table 6. Computational results for Problem (3), ε = 10−5, NVB.

method GS_I, 2 GS_II, 2 switching, 2 GS_I, 3 GS_II, 3 switching, 3
fun.evals 4464956 4506800 4507378 5019094 4632018 4632368
grad.evals 4467642 4508470 4509926 5025150 4636031 4637963
bisecs 2233816 2254207 2254935 1675048 1545329 1545973
bis.Newt. 4 27 27 2 21 21
del.Newt. 0 0 0 0 0 0
pos.boxes 2231136 2252566 2252416 3344044 3086668 3086374
verif.boxes 0 0 0 0 0 0
Leb.pos. 5e-5 5e-5 5e-5 4e-5 4e-5 4e-5
Leb.verif. 0 0 0 0 0 0
time (sec.) 23 25 19 27 26 22

Table 7. Number of gradient evaluations for Problem (1) for different values of ε.

method \ ε 10−4 10−3 10−2 0.1 1.0
GS_I 4022004 821744 318808 167748 26796
GS_II 47802356 4851420 686924 195580 25060

GS_I, NVB 16176580 1543892 359604 167804 26796
GS_II, NVB 54923540 5314148 712124 195580 25060

Table 8. Number of gradient evaluations for Problem (2) for different values of ε.

method \ ε 10−5 10−4 10−3 10−2 0.1 1.0
GS_I 1336 1044 750 566 320 76
GS_II 66426 8632 1192 405 154 34

GS_I, NVB 2955318 370006 24478 3154 494 86
GS_II, NVB 3132522 358552 25534 3160 390 50

Table 9. Number of gradient evaluations for Problem (3) for different values of ε.

method \ ε 10−5 10−4 10−3 10−2 0.1 1.0
GS_I 8006 6738 5046 3482 922 178
GS_II 141922 22412 4516 2051 793 162

GS_I, NVB 4467642 558458 37538 5546 1010 178
GS_II, NVB 4508470 559242 36948 5298 940 162



It was shown that the phenomenon of performance inversion cannot be fully explained
by any of the above features. As all of them seem to accelerate it, eliminating any of
them does not remove the phenomenon.

As performance of the algorithm varies quite significantly (even 50 times), it seems
necessary to elaborate useful heuristics to choose interval tools (variant of Newton oper-
ator, variant of bisection/multisection, etc.) suitable for a specific problem.

Bibliography

[1] E. Hansen, G. W. Walster, “Global Optimization Using Interval Analysis, Second

Edition: Revised and Expanded”, Marcel Dekker, New York, 2004.

[2] R. B. Kearfott, “Rigorous Global Search: Continuous Problems”, Kluwer Academic
Publishers, Dordrecht, 1996.

[3] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, P. van Henten-
ryck, “Standardized notation in interval analysis”, available on the web at http://
www.mat.univie.ac.at/~neum/software/int/notation.ps.gz .

[4] B. J. Kubica, “Interval methods for solving underdetermined nonlinear equations

systems”, presented at SCAN 2008, El Paso, Texas, 2008.

[5] B. J. Kubica, “Shared-Memory Parallelization of an Interval Equations Systems

Solver – Comparison of Tools”, 2009, this volume.

[6] A. Neumaier, “The Enclosure of Solutions of Parameter-Dependent Systems of

Equations”, in Reliability in Computing (ed. Moore, R), Academic Press, 1988.

[7] A. Neumaier, “Interval methods for systems of equations”, Cambridge University
Press, Cambridge, 1990.

[8] C-XSC interval library, http://www.xsc.de .

[9] Intel Threading Building Blocks http://www.threadingbuildingblocks.org .




