Performance inversion of interval Newton narrowing operators

Bartłomiej Jacek Kubica^{1*}

¹ Warsaw University of Technology, Institute of Control and Computation Engineering, ul. Nowowiejska 15/19, 00–665 Warsaw, Poland, email: bkubica@elka.pw.edu.pl

Key words: interval computations, underdetermined systems of equations, Newton operators

Abstract This paper describes a phenomenon of performance inversion of Newton operators – more precise operators might result in longer computation of a branchand-prune method. Examples are presented and possible reasons of this behavior are discussed.

1 Introduction

In previous papers of the author (see [4], [5]) an interval solver of underdetermined equations systems was presented. A prepared reader might notice a strange phenomenon in the numerical results presented there – in some cases the use of more precise narrowing operators leads to slowdown of the algorithm. This phenomenon – we shall call it "performance inversion" was not analyzed or named there. It is going to be considered in this paper in details.

The mechanism the solver is based on are interval methods. They are based on interval arithmetic operations and basic functions operating on intervals instead of real numbers (so that result of an operation on numbers belong to the result of operation on intervals, containing the arguments). We shall not define interval operations here; interested reader is referred to several papers and textbooks, e.g. [1], [2], [7].

The solver was based on the branch-and-prune schema that can be expressed by the following pseudocode:

IBP $(\boldsymbol{x}^{(0)}; \mathbf{f})$ // $\boldsymbol{x}^{(0)}$ is the initial box, $\mathbf{f}(\cdot)$ is the interval extension of the function $f: \mathbb{R}^n \to \mathbb{R}^m$ // L_{ver} is the list of boxes verified to contain a segment of the solution manifold // L_{pos} is the list of boxes that possibly contain a segment of the solution manifold $L = L_{ver} = L_{pos} = \emptyset$; $\boldsymbol{x} = \boldsymbol{x}^{(0)}$; loop

^{*}The research has been supported by the Polish Ministry of Science and Higher Education under grant N N514 416934. The computer on which experiments were performed is shared with the Institute of Computer Science of our University. Thanks to Jacek Błaszczyk for maintaining it.

process the box x, using the rejection/reduction tests ; if (x does not contain solutions) then discard x; else if (x is verified to contain a segment of solution manifold) then push (L_{ver}, x) ; else if (tests subdivided x into $x^{(1)}$ and $x^{(2)}$) then $\boldsymbol{x} = \boldsymbol{x}^{(1)}$; push $(L, x^{(2)})$; cycle loop; else if (\boldsymbol{x} is small enough) then push (L_{pos}, \boldsymbol{x}); if (\boldsymbol{x} was discarded or stored) then $\boldsymbol{x} = \operatorname{pop}(L);$ if (L was empty) then exit loop; else bisect (\boldsymbol{x}) , obtaining $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$; $\boldsymbol{x} = \boldsymbol{x}^{(1)}$; push $(L, x^{(2)})$; end if :

end loop

The paper [4] considered different variants of the "rejection/reduction tests" – these were several variants of interval Newton operators. Let us focus on two of them.

2 Newton operators

Consider a system of m equations in n > m variables:

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ f_m(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

Such system is linearized and an iteration of Gauss-Seidel type is performed on it.

As the system is underdetermined, we can modify only m out of n variables in each step – without the loss of generality let us assume we modify variables with indexes $i = 1, \ldots, m$, treating the remaining variables $(i = m + 1, \ldots, n)$ as parameters.

The iteration can be constructed in a few ways. Let us consider two of them.

$$\begin{aligned} & \operatorname{GS_I_step}(\boldsymbol{x}, \check{\boldsymbol{x}}) \\ & \operatorname{for} i = 1, \dots, m \text{ do} \\ & \operatorname{compute} Y_{i:}, \text{ the } i\text{-th row of the preconditioning matrix } Y ; \\ & \boldsymbol{x}^{\operatorname{new}} = \check{\boldsymbol{x}}_i - \left(Y_{i:} \cdot f(\check{\boldsymbol{x}}_1, \dots, \check{\boldsymbol{x}}_n) + \sum_{j=1, j \neq i}^n Y_{i:} \cdot \boldsymbol{A}_{j:} \cdot (\boldsymbol{x}_j - \check{\boldsymbol{x}}_j)\right) / (Y_{i:} \cdot A_{i:}) ; \\ & \operatorname{if} \left(\boldsymbol{x}^{\operatorname{new}} \cap \boldsymbol{x}_i = \emptyset \right) \text{ then return, signaling no solutions }; \\ & \operatorname{replace} \boldsymbol{x}_i \text{ by } \left(\boldsymbol{x}^{\operatorname{new}} \cap \boldsymbol{x}_i \right) ; \\ & \operatorname{end} \text{ for }; \\ & \operatorname{end} \operatorname{GS_I_step} \end{aligned}$$

<code>GS_II_step</code> $\left(oldsymbol{x},\check{x}
ight)$ for $i = 1, \ldots, m$ do compute $Y_{i:}$, the *i*-th row of the preconditioning matrix Y; $\boldsymbol{x}^{\text{new}} = \check{x}_i - \left(Y_{i:} \cdot \mathsf{f}(\check{x}_1, \dots, \check{x}_m, \boldsymbol{x}_{m+1}, \dots, \boldsymbol{x}_n) + \sum_{j=1, j \neq i}^m Y_{i:} \cdot \boldsymbol{A}_{j:} \cdot (\boldsymbol{x}_j - \check{x}_j)\right) / (Y_{i:} \cdot A_{i:});$ if $ig(oldsymbol{x}^{ ext{new}} \cap oldsymbol{x}_i = \emptyset ig)$ then return, signaling no solutions ; replace \boldsymbol{x}_i by $\left(\boldsymbol{x}^{ ext{new}} \cap \boldsymbol{x}_i
ight)$; end for; end GS_II_step

In both cases $A_{ij} = \frac{\partial f_i(\boldsymbol{x})}{\partial x_j}$. What is the difference between two above pseudocodes ? In GS_I we have a nonsquare $(n \times m)$ matrix **A** and "thin" free summand $\boldsymbol{b} = Y_{i:} \cdot h(\tilde{x}_1, \ldots, \tilde{x}_n)$. In GS_II **A** is a square $m \times m$ matrix and the free summand $\boldsymbol{b} = Y_{i:} \cdot \boldsymbol{h}(\check{x}_1, \ldots, \check{x}_m, \boldsymbol{x}_{m+1}, \ldots, \boldsymbol{x}_n)$ is not thin.

It is actually equivalent to using the mean value form and a natural interval extension of a function $f_i(x_{m+1},...,x_n) = f_i(\check{x}_1,...,\check{x}_m;x_{m+1},...,x_n).$

Which of them is better? We shall consider it in Section 4. Now, let us describe test problems that will be used to compare the operators.

3 Test problems

The following problems were considered in numerical experiments.

The Puma problem ([6]) arose in the inverse kinematics of a 3R robot and is one of typical benchmarks for nonlinear system solvers:

$$\begin{aligned} x_1^2 + x_2^2 - 1 &= 0 , \quad x_3^2 + x_4^2 - 1 &= 0 , \quad (1) \\ x_5^2 + x_6^2 - 1 &= 0 , \quad x_7^2 + x_8^2 - 1 &= 0 , \\ 0.004731x_1x_3 - 0.3578x_2x_3 - 0.1238x_1 - 0.001637x_2 - 0.9338x_4 + x_7 &= 0 , \\ 0.2238x_1x_3 + 0.7623x_2x_3 + 0.2638x_1 - 0.07745x_2 - 0.6734x_4 - 0.6022 &= 0 , \\ x_6x_8 + 0.3578x_1 + 0.004731x_2 &= 0 , \\ -0.7623x_1 + 0.2238x_2 + 0.3461 &= 0 , \\ x_1, \dots, x_8 \in [-1, 1] . \end{aligned}$$

In the above form it is a well-determined (8 equations and 8 variables) problem with 16 solutions that are easily found by several solvers. To make it underdetermined the last equation was dropped (as in [4]). The variant with 7 equations was considered in numerical experiments as second test problem. Accuracy $\varepsilon = 10^{-4}$ was set.

The second problem is a single circle on the plane:

$$x_1^2 + x_2^2 - 4 = 0$$
, $x_1, x_2 \in [-3, 5]$. (2)

And another curve on a plane; it is the sum of two concentric circles ([4]):

$$(x_1^2 + x_2^2 - 4) \cdot (x_1^2 + x_2^2 - 1) = 0 , \ x_1, x_2 \in [-3, 5] .$$
(3)

4 Efficiency of the operators

Now, let us discuss the performance of both Newton operators. Tables with computational results are given in next section. This layout might be inconvenient a bit, but – as actual experiments that were done rely on the analysis here – it seems the only natural schema.

According to textbooks, e.g. [1], [2], [7] the mean value form is inferior with respect to natural interval extension for large intervals and superior for "sufficiently small" ones. On the other hand, for relatively simple functions and sparse systems of equations one might expect the **GS_II** method to be more precise.

So, let us have a look at the experimental results. Consider the Puma problem (all test problems are described in Section 3). Let us investigate the performance of both methods. For typical parameters of the program (first two columns of Table 1), the "better" variant GS_II requires more than ten times more gradient evaluations than the "worse" one ! What happened ?!

We already said that the mean value form is sometimes more precise than the natural extension. This might explain the observed phenomenon. Maybe we should switch from one interval extension to the another as diameters of the boxes decrease ?

It does not seem to be the case. Let us check a simpler example – Problem (2). Now both variables appear only once in the formula and the natural extension gives us exact bounds; the mean value form cannot be more precise. Again the GS_II is slower – it requires about 50 times more gradient evaluations ! Clearly, we have a situation, where a more precise operator results in a worse efficiency of the algorithm – as declared in Section 1, we shall call it the *performance inversion* of the operators.

The third example – Problem (3) behaves in the same way. To make things even less understandable, the idea of switching the interval extension actually gives us much improvements – even for Problem (2). So, what is the reason of this surprising behavior ?

Other possible reasons

Let us consider other hypotheses.

Newton operator vs. bisection. One of the explanations might be the interference between the Newton operator and bisection. As Newton operators cut parts of boxes that do not contain solutions, solutions are quite likely to lie near the center of the resulting box. The better Specific operator is, the more likely the solution will be in the midpoint.

But after the Newton step bisection is usually done, splitting the box in the middle. Hence solutions will lie on boundaries on the considered boxes, making it more difficult to verify them.

If this is the reason of observed performance inversion, replacing bisection with e.g. trisection should help.

As can be seen in corresponding columns of Tables 1-3 this variant has been tested. Results have been surprising – the phenomenon disappeared for Problem (3), but not for other two examples. Moreover for Problems (1) and (3) results of algorithms based on trisection were worse than switching the operators with bisection.

So, such interference cannot be the only reason of performance inversion.

Selecting verified boxes. Using the Newton operators, the algorithm tries to verify if a box contains a segment of the solution manifold. If it does, such box is not processed further, but is stored as a verified solution. This way relatively large boxes can sometimes be removed from further processing.

This feature also seems likely to cause the performance inversion – some operators might reduce the boxes less efficiently, but instead verify them to contain solutions.

Results in Tables 4-6 falsify this hypothesis, too. They present results for the variant of our algorithms that do not verify boxes to contain the solution, but only discard infeasible boxes and store small ones. Differences between operators GS_I and GS_II are definitely smaller than in Tables 1-3, but the performance inversion phenomenon is still clearly observed.

5 Numerical experiments

Numerical experiments were performed on a computer with 16 cores, i. e. 8 Dual-Core AMD Opterons 8218 with 2.6GHz clock. The machine ran under control of a Fedora 10 Linux operating system. The solver was implemented in C++, using C-XSC 2.2.3 library for interval computations. The GCC 4.3.2 compiler was used.

Computations were done in parallel, using TBB library (see [9] and [5]). All runs of the program were done with 8 threads – numbers of objective evaluations, gradient evaluations, bisections, etc. do not rely on the number of threads, so the number giving higher observed efficiency (see [5]) has been chosen.

Tables 1-6 contain basic computational results for all three test problems. The numbers after method's name mean the number of boxes on which a box is subdivided; 2 means bisection, 3 – trisection. The annotation NVB means "no verified boxes", i. e. the variant of the algorithm that does not select boxes that are verified to contain solutions.

method	$GS_I, 2$	$GS_{II}, 2$	switching, 2	$GS_I, 3$	$GS_{II}, 3$	switching, 3
fun.evals	3539627	39040127	3078915	3254272	45806362	3005674
grad.evals	4022004	47802356	3492916	4028066	65069242	3700200
bisecs	279139	3410079	242415	171276	3071724	154590
bis.Newt.	274	270	262	398	518	484
del.Newt.	72988	900076	63652	98174	2121032	89096
pos.boxes	116076	1245564	101936	98704	1218112	85708
verif.boxes	21440	12964	17948	35532	52984	35644
Leb.pos.	4e-32	2e-29	2e-32	1e-32	7e-30	1e-32
Leb.verif.	3e-11	6e-12	1e-11	2e-11	3e-10	3e-13
time (sec.)	28	428	26	29	546	26

Table 1. Computational results for Problem (1) without the last equation, $\varepsilon = 10^{-4}$.

method	$GS_I, 2$	$GS_{II}, 2$	switching, 2	$GS_I, 3$	$GS_{II}, 3$	switching, 3
fun.evals	1126	66335	621	575	1514	1024
grad.evals	1336	66426	698	722	1688	1198
bisecs	465	32862	249	148	248	199
bis.Newt.	1	1	1	0	0	0
del.Newt.	0	0	0	0	0	0
pos.boxes	34	31660	13	12	22	16
verif.boxes	224	1114	162	139	302	210
Leb.pos.	8e-10	1e-6	2e-10	2e-10	4e-10	2e-10
Leb.verif.	3.6512	2.2074	2.2108	2.2713	1.8462	1.8712
time (sec.)	0.02	0.4	0.02	0.02	0.03	0.02

Table 2. Computational results for Problem (2), $\varepsilon = 10^{-5}$.

Table 3. Computational results for Problem (3), $\varepsilon = 10^{-5}$.

method	$GS_I, 2$	$GS_{II}, 2$	switching, 2	$GS_I, 3$	$GS_{II}, 3$	switching, 3
fun.evals	6784	140979	5442	10165	6909	9752
grad.evals	8006	141922	6438	12034	8338	11509
bisecs	2576	69909	2234	1921	1691	1834
bis.Newt.	4	27	27	2	21	21
del.Newt.	0	0	0	0	0	0
pos.boxes	160	65605	146	200	196	192
verif.boxes	1200	3390	1121	1777	1780	1742
Leb.pos.	3e-9	2e-6	3e-9	2e-9	4e-9	3e-9
Leb.verif.	0.6039	0.5789	0.5788	0.7075	0.6077	0.6616
time (sec.)	0.08	1.29	0.08	0.10	0.09	0.1

6 Analysis and further research

For all three investigated test problems the phenomenon of performance inversion has been observed. Changing bisection to trisection allowed to prevent it only in one case. On the other hand switching between both Newton operators gave us improvement in all three cases – it resulted in an algorithm quicker than both GS_I and GS_II always.

Tables 7-9 showed that the phenomenon also disappears for larger values of the accuracy ε , i. e. for larger diameters of considered boxes.

We have not found a satisfying explanation of the phenomenon of observed performance inversion, yet. Please note that in [4] a similar behavior occurred also in comparison between the componentwise and traditional Newton operators for problem (3), so the occurrence is not uncommon.

Also several other questions have to be answered. In particular: is the observed phenomenon specific to underdetermined problems or it can be encountered also for well-determined ones ? And how to choose interval tools to optimize performance of the

method	GS_I, 2	$GS_{II}, 2$	switching, 2	GS_I, 3	$GS_{II}, 3$	switching, 3
fun.evals	15253875	45827803	14981015	18236848	64106490	18275978
grad.evals	16176580	54923540	15851444	20286546	86037042	20357932
bisecs	1155195	3922839	1131983	965760	4096656	969102
bis.Newt.	274	270	262	398	518	484
del.Newt.	143716	943340	135588	274022	2615000	272492
pos.boxes	879940	1680380	872312	1365084	2445896	1368776
verif.boxes	0	0	0	0	0	0
Leb.pos.	2e-31	2e-29	2e-31	2e-31	9e-30	7e-32
Leb.verif.	0	0	0	0	0	0
time (sec.)	110	484	106	133	703	139

Table 4. Computational results for Problem (1) without the last equation, $\varepsilon = 10^{-4}$, NVB.

Table 5. Computational results for Problem (2), $\varepsilon = 10^{-5}$, NVB.

method	GS_I, 2	$GS_{II}, 2$	switching, 2	$GS_I, 3$	$GS_{II}, 3$	switching, 3
fun.evals	2954862	3132347	3130697	3355390	3363966	3364030
grad.evals	2955318	3132522	3130958	3356021	3364493	3364700
bisecs	1477657	1566259	1565477	1118673	1121497	1121566
bis.Newt.	1	1	1	0	0	0
del.Newt.	0	0	0	0	0	0
pos.boxes	1477204	1566087	1565219	2236717	2242469	2242464
verif.boxes	0	0	0	0	0	0
Leb.pos.	4e-5	3e-5	3e-5	2e-5	2e-5	2e-5
Leb.verif.	0	0	0	0	0	0
time (sec.)	11	14	12	14	12	14

overall algorithm ?

These topics should be investigated in the future.

7 Conclusions

A phenomenon of efficiency inversion of some Newton operators was considered. A few possible explanations were considered, specifically:

- properties of natural and mean value interval extensions their different precision on boxes of different diameters,
- interference between the Newton operator and bisection,
- influence of the procedure of verifying relatively large boxes to contain a segment of the solution manifold.

method	GS_I, 2	$GS_{II}, 2$	switching, 2	GS_I, 3	$GS_{II}, 3$	switching, 3
fun.evals	4464956	4506800	4507378	5019094	4632018	4632368
grad.evals	4467642	4508470	4509926	5025150	4636031	4637963
bisecs	2233816	2254207	2254935	1675048	1545329	1545973
bis.Newt.	4	27	27	2	21	21
del.Newt.	0	0	0	0	0	0
pos.boxes	2231136	2252566	2252416	3344044	3086668	3086374
verif.boxes	0	0	0	0	0	0
Leb.pos.	5e-5	5e-5	5e-5	4e-5	4e-5	4e-5
Leb.verif.	0	0	0	0	0	0
time (sec.)	23	25	19	27	26	22

Table 6. Computational results for Problem (3), $\varepsilon = 10^{-5}$, NVB.

Table 7. Number of gradient evaluations for Problem (1) for different values of ε .

method $\setminus \varepsilon$	10^{-4}	10^{-3}	10^{-2}	0.1	1.0
GS_I	4022004	821744	318808	167748	26796
GS_II	47802356	4851420	686924	195580	25060
GS_I, NVB	16176580	1543892	359604	167804	26796
GS_II, NVB	54923540	5314148	712124	195580	25060

Table 8. Number of gradient evaluations for Problem (2) for different values of ε .

method $\setminus \varepsilon$	10^{-5}	10^{-4}	10^{-3}	10^{-2}	0.1	1.0
GS_I	1336	1044	750	566	320	76
GS_II	66426	8632	1192	405	154	34
GS_I, NVB	2955318	370006	24478	3154	494	86
GS_II, NVB	3132522	358552	25534	3160	390	50

Table 9. Number of gradient evaluations for Problem (3) for different values of ε .

method $\setminus \varepsilon$	10^{-5}	10^{-4}	10^{-3}	10^{-2}	0.1	1.0
GS_I	8006	6738	5046	3482	922	178
GS_II	141922	22412	4516	2051	793	162
GS_I, NVB	4467642	558458	37538	5546	1010	178
GS_II, NVB	4508470	559242	36948	5298	940	162

It was shown that the phenomenon of performance inversion cannot be fully explained by any of the above features. As all of them seem to accelerate it, eliminating any of them does not remove the phenomenon.

As performance of the algorithm varies quite significantly (even 50 times), it seems necessary to elaborate useful heuristics to choose interval tools (variant of Newton operator, variant of bisection/multisection, etc.) suitable for a specific problem.

Bibliography

- [1] E. Hansen, G. W. Walster, "Global Optimization Using Interval Analysis, Second Edition: Revised and Expanded", Marcel Dekker, New York, 2004.
- [2] R. B. Kearfott, "Rigorous Global Search: Continuous Problems", Kluwer Academic Publishers, Dordrecht, 1996.
- [3] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, P. van Hentenryck, "Standardized notation in interval analysis", available on the web at http:// www.mat.univie.ac.at/~neum/software/int/notation.ps.gz.
- [4] B. J. Kubica, "Interval methods for solving underdetermined nonlinear equations systems", presented at SCAN 2008, El Paso, Texas, 2008.
- [5] B. J. Kubica, "Shared-Memory Parallelization of an Interval Equations Systems Solver - Comparison of Tools", 2009, this volume.
- [6] A. Neumaier, "The Enclosure of Solutions of Parameter-Dependent Systems of Equations", in Reliability in Computing (ed. Moore, R), Academic Press, 1988.
- [7] A. Neumaier, "Interval methods for systems of equations", Cambridge University Press, Cambridge, 1990.
- [8] C-XSC interval library, http://www.xsc.de.
- [9] Intel Threading Building Blocks http://www.threadingbuildingblocks.org.