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Abstract. Since few years the Belief Propagation [13, 14, 15] algorithm is re-
ported as a very efficient tool to perform the optimization of systems which can
be topologically transformed to the one of acceptable equivalent forms [9, 7]. The
Ising system is often mentioned in these papers as a good example to present
some basic foundations of BP. It is however rarely used as a tool to solve the Ising
system itself. In this article we are going to present the analysis of critical proper-
ties, connected to the phase transition of magnetic system described by the Ising
hamiltonian and the comparison of results to those obtained using evolutionary
algorithm.

1 Belief Propagation Algorithm and Its Generalization

Consider the well known Ising spin system on the two-dimensional, square lattice. The
spins are numbered with indices i, j and can take one of the two values from the set
{−1, 1}. These values may be understood as an orientation of z-component of spin up or
down. The energy of such a system is given by the formula 1.

H = −J
∑

ij

SiSj − h
∑

i

Si. (1)

The summation in the first part goes only over the nearest neighbours of selected spin.
This part is responsible for the mutual magnetic interaction between spins. In the most
simple model, proposed in 1920 by Lenz and solved later by Ising (for one dimension),
there were the same spins spread over lattice and the exchange integral J is equal for
all pairs. More generally its value can be different for different pairs and then must
be included into summation. The second part is the interaction of single spin with the
external magnetic field. In our attempt we will use the basic model without the external
field.

The search for the minimum of total energy wouldn’t certainly give us the informa-
tion about the optimum state in the arbitrary temperature. In order to perform such
optimization we have to take into account the value of so called Gibbs free energy, given
by the formula:

G = U − TS (2)



The crucial problem during performing calculations according to the presented for-
mula is the determination of entropy. The usual way of doing it is to calculate the
configurational entropy of system. Among the algorithm allowing this one can mention:
well known Boltzmann/Gibbs/Shannon formula; Bukman’s approach based on the clus-
ter expansion [1]; Tsallis extensive entropy [12] or Meirovitch formula [6, 11]. Not all
of these attempts (like Meirovitch one) can be directly used for single sample situation
and the physical as well as algorithmical consequences of using other methods have been
presented in earlier papers [3, 4].

Here we are going to use the other numerical approach which allows to minimize the
Gibbs free energy - the belief propagation technique. Its detailed description, commonly
with some mathematical proofs and derivations, may be found elsewhere [13, 14, 15] so
here let us to present only the short sketch showing basics and main features. The starting
point is the topological equivalence between three different types of structures: Bayesian
Networks (BN), Markov Random Fields (MRF), and Tanner Factor Graphs (FG). Char-
acteristic feature of Bayesian Network [10] is the possibility to pass the message between
different nodes of network. These messages reflect the conditional probability of reach-
ing the assumed final state of the given node. From the other hand, the magnetic Ising
model can be well described by the MRF with the hidden nodes corresponding to the
interaction with external field or by the FG with squares characterizing the spin-spin
interaction.

The analysis we will start from the formula which is directly adapted from the sta-
tistical physics. Let x will be the set of states x1, x2, ..., xn of successively numbered
nodes of system. Notice that we change the notation from si ∈ {−1, 1} to xi ∈ {0, 1} in
order to be consistent with standard notation. The probability that the system will be
in the state {x} is equal to:

p
(

{x}
)

=
1

Z

∏

ij

Ψij(xi, xj)
∏

i

Φi(xi) (3)

This formula is certainly nothing else than Boltzmann probability for canonical system
and Z is the normalization constant called partition function. Formula 3 corresponds
exactly to the distribution for Ising magnet if we assume that:

Φi(xi) = exp(hsi)

Ψij(xi, xj) = exp
(Jsisj

T

)

(4)

In the basic version of belief propagation algorithm we need indeed two equations to
determine the behaviour of sample. The belief that the state of xi variable will be equal
to the one of the possible values may be calculated:

bi(xi) = CnormΦi(xi)
∏

j∈N(i)

mji(xi) (5)

It is obvious that all probabilities should be normalized to 1. In the situations when
the real probabilities are calculated by the final normalization of earlier obtained values
we will use the Cnorm notation. The mij values are the messages from the neighbouring
nodes determined in the way:



mij(xj) = Cnorm

∑

xi

Φi(xi)Ψij(xi, xj)
∏

k∈N(i)\j

mki(xi) (6)

Let us now shortly comment the two above equations. First of all, formula 5 makes it
possible to define easy the magnetization of sample. The bi value defined there is indeed
the n-dimensional vector, where n is the number of possible states at selected position. In
our case n = 2 because in the Ising model we have only, mentioned in earlier paragraph,
two states up/down. It is important that due to symmetry of model all positions are
equivalent and in the steady state the beliefs of reaching the same directions are equal
for all positions. Thus, considering beliefs as probabilities, the average magnetization
per site can be written:

m = p(−1) ∗ (−1) + p(1) ∗ 1 = −bi(0) + bi(1) (7)

The variable exchange between the sets characteristic for magnetism and this one for
Belief Propagation, visible in the above formula, was described earlier.
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Figure 1. Scheme of message flows between nodes in Belief Propagation method illustrating
equations 5 and 6

The schematic view of message and belief propagation between nearest neighbours
on the two-dimensional square matrix is presented on figure 1. The node with updated
beliefs is denoted by j. Solid lines correspond to the messages mji from its nearest
neighbours (all numbered with i) as presented in formula 5. These messages are hovewer
affected by the their nearest neighbours (k) and the messages mki ploted with dotted
lines for only one selected i node. It is important to notice that there is no dotted arrow
between nodes i and j, so the message between them doesn’t have an influence on itself.

Equation 6 shows that messages have to be determined self-consistently so it defines
also clearly the message update procedure.

In order to calculate thermodynamical potentials we have to do successive steps. First
of all the two-node beliefs should be calculated:

bij(xi, xj) = CnormΨij(xi, xj)Φi(xi)Φj(xj)
∏

k∈N(i)\j

mki(xi)
∏

l∈N(j)\i

mlj(xj) (8)

and on this basis the entropy and energy of system in the Bethe approximation can
be calculated:



S =
∑

ij

∑

xi,xj

bij(xi, xj)lnbij(xi, xj) +
∑

i

(qi − 1)
∑

xi

bi(xi)lnbi(xi) (9)

where qi is the number of nearest neighbours and energies have their physical meaning:

U =
∑

ij

∑

xi,xj

bij(xi, xj)Eij(xi, xj) +
∑

i

(qi − 1)
∑

xi

bi(xi)Ei(xi) (10)

Ei(xi) = −lnΦi(xi)

Ei(xi, xj) = −T lnΨi(xi, xj) − lnΦi(xi) − lnΦj(xj) (11)

The Gibbs free energy can be calculated form the formula identical with the equation
(2).

G
(

{x}
)

= U
(

{x}
)

− TS
(

{x}
)

(12)

The most important feature of described algorithm is that the steady state of belief
propagation algorithm corresponds to the minimal Gibbs free energy of the system for
which the message model has been created what has been proved by Yedidia et al. [15].
Please, notice also the presence of temperature in formulas (10) and (11). All calculations
in the mentioned earlier Yedidia’s papers were performed for the temperature equal to 1
(in kB units) so this factor was omitted.

As it will be shown the standard BP algorithm doesn’t lead to the sensible results
therefore we enhanced our model with the generalization also proposed by Yedidia and
coworkers. Main idea of this generalization is the use of spin clusters instead of single
spins and the determination of messages on the basis of exchange of information between
whole clusters called also regions. Formally the message between regions r and s is given
by:

mrs =
[
∑

xr/s
Ψr/s(xr/s)

∏

mr′′s′′∈M(r)\M(s) mr′′s′′ ]
∏

mr′s′∈M(r) mr′s′

(13)

2 Results

All the calculations presented in this paragraph have been performed for the two-dimensional
Ising sample. Although there exist simulational results for Ising model in higher dimen-
sions, D=2 is the highest one for which the exact analytical result has been found. Its
author was Lars Onsager [8] who confirmed the existence of spontaneous non-zero mag-
netization in such a sample in low temperatures even without external magnetic field (in
opposition to the solved by Ising 1D model). The exact dependence of magnetization on
the temperature is described by the formula.

m = {1 − [sinh(2βJ)]−4}
1

8 (14)

where the usual substitution β = 1/kBT is made. During the further calculations,
also as usually, the value of Boltzmann constant is for simplicity assumed to be equal



to 1. Finally this assumption means that we express the temperature in the units of
exchange integral J .

The evolution system has been performed in the following way. Initially all message
values were sampled from the uniform [0, 1] distribution with respect to the normaliza-
tion conditions. Then the system undergoes the self-consistent update described by the
formula (6) for BP or (12) for GBP. In this paper we will use the clusterization in GBP
to the two-spin regions. As a unit of update we chose the smallest possible change, ie.
the change of single message between exactly two nodes. Every time when we will refer
to the notion of step we will think about such a single update of randomly selected pair.
The results of magnetization vs. temperature dependence are presented on figure 2.

Figure 2. The comparison of magnetization curves for analytical solution, Belief Propagation
and Generalized Belief Propagation models.

The solid line is the Onsager solution, the dashed one corresponds to the standard Be-
lief Propagation algorithm, while the dashed-dotted is made for the Generalized BP. The
plots confirm the observation made in other calculations using cluster-based approaches.
BP as well as GBP overestimates the temperature of phase transition. For Ising model
the phase transition temperature (Tc) is this one when the spontaneous magnetization
vanishes (m = 0). However, besides of Tc comparison we have to look at the shape of
m(T ) curves. It is obvious that for standard BP it is unacceptable. This simplified model
doesn’t reflect sufficiently the correlations between different nodes and leads to such an
awkward course of magnetization dependence. For the GBP the curve looks closer to the
correct one. As well the critical temperature is closer as convexity estimates it better.

The idea to use GBP with pair clusters allowed to compare its results with those
obtained from the Evolutionary Algorithm with entropy calculated using pair approx-
imation [6]. The strict theoretical basis is the fact that both approaches are inspired
by the seminal paper by Kikuchi [5] in which he proposed such clusterization. The re-
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Figure 3. The comparison of magnetization, Gibbs free energy and entropy per one spin for
Generalized Belief Propagation models and Evolutionary Algorithm with entropy pair approxi-
mation.

sults of comparison for three quantities: magnetization, entropy and Gibbs free energy
(all normalized to single spin) are presented on figure 3. The plots can be compared
in two ways: qualitatively and quantitatively. From one point of view the results are
different, the relative difference between critical temperatures is of order of about 10%
with the GBP approximation better than EA. Also the absolute values of entropy differ
one from another. Certainly, the course of Gibbs free energy should reflect the entropy
differences because it is calculated with formula 12 and the energy values are for both



models strongly connected with total magnetization and similar.
Considering the critical properties of system we cannot limit ourselves to the analysis

of TC . There are important factors which allow to classify the membership of model in
the given universality class called critical exponents. Here we will point out only one of
them, which is connected to the observed m(T ) dependence. This is so called β exponent
calculated from the formula

m =
( |T − TC |

TC

)β

(15)

The possibility of defining such an exponents come from the fact that in the vicinity
of critical temperature many quantities like magnetization, heat capacity , correlation
factor behaves according to the power-law dependence.

TC β
analytical 2.269 0.125

EA with pair approximation 2.85 0.63
GBP with two spin clusters 2.607 1.32

Table 1. Critical properties of two-dimensional Ising system using different approaches.

It may be observed that using GBP improves critical temperature when compared
with global optimization however makes worse the β coefficient.

Finally let us to pay attention to the efficiency of GBP algorithm. On the figure
4 there are presented the dependences of stabilization times on the temperature and
sample size. The stabilization time is expressed in steps and understood as a time when
the standard deviation of values of messages leading to the chosen state is smaller than
some initially assumed value. In our simulation we accepted the value of 10−3. The
interesting observation is that the hardest cases are those close to the critical point. It is
in opposition to the classical EA where it was most difficult to obtain correct values for
the low temperatures when configuration doesn’t differ strongly from the ferromagnetic
ordering. The dependence on the size of sample has visible power-law character with the
exponent about 3 different for various temperatures.

3 Conclusions

In their paper Yedidia et al. wrote ”The success of BP and GBP algorithms is exciting
because it means that many different kinds of problems that seemed so difficult to handle
can actually be handled using efficient and systematically correctable algorithms.”. The
results presented in this paper confirm in my opinion this statement. Although Ising
model is frequently indicated as an example for GBP algorithm we didn’t meet any
comprehensive (except of some quite new, initial works [2]) analysis of it as a method of
determining the critical properties. Among the advantages one has especially to enlist the
time of calculations. From the figure 3 we can easily read that even for computationally
hardest region of phase transition the stabilization occurs after on average few millions
steps. What is important but not shown here it is the lack of finite size effect. In all
simulations or EA optimizations on the lattice with the given edge size the result depends



Figure 4. The efficiency of steady state calculation in GBP.

on this size. It can be eg. noticed by comparison of figure 3 and table 2. In the table
there is TC value equal to 2.85 which is the extrapolation to the infinite lattice size while
on the plot there is 2.89 obtained directly for L = 100.

Certainly GBP has some limitations. The main is that it cannot be used to obtain
the ground state of a lot of systems, ie. in zero temperature, The convergence is also the
problem of algorithm. The steady state can either be not reached in simulation or the
simulation can stopin the state which doesn’t correspond to the minimum Gibbs energy
and needs the repetition of procedure.

We hope that further improvement of algorithm, especially using larger clusters can
significantly change the results and make it possible to use it in real systems analysis.
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