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Abstract. The paper deals with the application of the global optimization
methods to the multi-objective optimization of laminates. A multi-layered, fibre-
reinforced and hybrid laminates are considered. Different optimization criteria
connected with the laminates’ cost, modal properties and stiffness are taken into
account. As the optimization criteria usually cannot be satisfied simultaneously,
the multi-objective optimization methods are employed. The multi-objective evo-
lutionary algorithm with the Pareto approach is used as the global optimization
method. The Finite Element Method is used to solve a boundary-value problem
for the laminates. The stacking sequence and the number or plies made of dif-
ferent materials are design variables. The discrete as well as continuous fibre ori-
entation angles in particular plies are considered. Numerical example presenting
non-dominated solutions for two contradictory optimization criteria is attached.

1 Introduction

Multi-layered laminates are the fibre-reinforced composites built of a definite number of
stacked and permanently joined plies (laminas). Among different types of composites,
laminates have especially great strength/weight or elasticy/weight ratios with compari-
son to traditional, usually isotropic structural materials (e.g. steel or aluminium alloys
[11]. Multi-layered laminates are typically composed of laminas with different fibres
orientation, while the fibres in particular laminas are placed unidirectionally.

It is possible to influence or to design the laminates’ properties by manipulating
several parameters, like components material, fibres orientation, stacking sequence or
layers thicknesses. As a result laminates are eagerly used in modern industry as high-
efficient materials.

The cost of laminates usually rapidly increases with their strength. In order to find a
balance between the laminate cost and its strength (or other required properties) lami-
nates are composed of laminas made of different materials [2]. Such laminates are called
the hybrid ones. There exist a few main types of hybrid laminates [10]: i) interply hybrid
laminates having stacked two (or more) homogenous reinforcements; ii) intraply hybrid
laminates with tows of constituent fibres mixed in the same ply; iii) intermingled hybrid



laminates in which highly fibers of different kinds are randomly mixed; iv) selective place-
ment hybrid laminates with additional reinforcement located in places, where additional
strength is required; v) superhybrids composed of metal foils or metal composite plies
stacked up in a given sequence and orientation. The interply hybrid laminates with plies
composed of two different materials are considered in the present paper. The internal
layers are built of a less expensive material having worse properties while the external
layers are composed of a material with better properties but more expensive one. It is
also assumed that laminates have a plane of symmetry (symmetrical laminates). As a
result there is no coupling between shield and bending states ([8]) and e.g. there is not
the bending effect during the tension, which is an important feature from the practical
point of view.

The aim of the paper is to find the values of ply angles and the number of external
plies for the interply hybrid laminate in order to satisfy more than one criterion. The
criteria are connected with the laminate cost and other properties of the laminate, like
modal properties and/or laminate stiffness. Such attitude leads to the multi-objective
optimization task. In order to solve it, the global optimization method in a form of the
multi-objective evolutionary algorithm is employed. The Finite Element Method (FEM)
software is employed to solve the boundary-value problem for laminates.

The single-objective optimization problems for hybrid laminates were successfully
solved in prior papers, e.g. [5], [6].

2 The Multi-Objective Optimization

A single-objective optimization task always leads to one optimal solution. In many
practical engineering problems more than one objective function must be satisfied in the
same time. The objectives may have opposing characteristics - decreasing the value of one
of the functions may increase the value of another [9]. There exist many attitudes to the
multi-objective optimization problems ([13]). In the present paper the multi-objective
optimization problem is solved by means of the multi-objective evolutionary algorithm
(MOEA)with the Pareto approach coupled with the FEM software.

The aim of the multi-objective optimization task is to find the optimal set of ply
angles and the number of plies made of particular materials for given criteria. Solution
of the problem is represented by more than one objective function with assumption, that
optimization criteria are (or may be) contradictory. As a result it is not possible to
improve all the criteria simultaneously and the aim of the optimization is to find solution
with the values of all objective functions acceptable to the designer. This attitude leads
to a set of the equal solutions of the problem

A MOO problem can be expressed as searching for the vector x ∈ D, where D is a
set of admissible solutions being a subset of design space X:

x = [x1, x2, ... xn]T (1)

which minimizes the vector of k objective functions:

f(x) = [f1(x), f2(x), ... , fk(x)]T (2)

It is required for the vector x to satisfy the m inequality constrains:

gi(x) ≤ 0 i = 1, 2, ..., m (3)



and the p equality constrains:

hi(x) = 0 i = 1, 2, ..., p (4)

In the present paper the multi-objective optimization utilizes the Pareto optimality
attitude [3]. A point x∗ ∈ X, is called the Pareto-optimal or non-dominated one if and
only if there does not exist another point x ∈ X such that F(x) 6 F(x∗) , with at least
one Fi(x) < Fi(x∗) (for the minimization problems ). The set of Pareto optimal solutions
for an exemplary bi-objective optimization problem is presented in Figure 1 as a solid
line. This set is called a Pareto front.

Figure 1. The Pareto front for the exemplary bi-objective problem

3 The Multi-Objective Evolutionary Algorithm

To increase the possibility of reaching the global optimum the global optimization meth-
ods [4] can be employed instead of local, typically gradient methods. Evolutionary Al-
gorithms (EAs) are especially useful if: i) the information about the objective function
gradient is hard (or even impossible) to obtain, ii) the objective function is multi-modal,
which usually leads the gradient methods to the local optimum.

The only necessary information for the EA to work is the objective (fitness) function
value. EAs process a set (population) of possible solutions and as a consequence the
searching is multidirectional. Each possible solution is represented by a vector (chromo-
some) of design variables (genes).

In order to solve the multi-objective optimization problem the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [7] has been used. NSGA-II is more efficient than NSGA
[12], it makes use of elitism and keeps diversity without specifying any additional pa-
rameters in comparison with the previous implementation. NSGA-II is based on several
layers of classification of the individuals. In the main loop of the algorithm an initial,
parent population (of size N ) is randomly created. The population is sorted on the basis
of the non-domination of individuals. Each solution is being assigned a rank value which
is equal to its non-domination level (front 1 solutions is the best level, 2 is the next-best
level, and so on). This classification of the individuals for minimization problem with
two objective functions is presented in Figure 2.



In the first step of the algorithm the tournament selection, recombination (crossover)
and mutation operators are used to create an offspring population. The tournament
selection is employed as the mating selection method. This selection procedure takes
into account both rank and the crowding distance and subsequently it allows searching
for non-dominated regions and ensures the diversity of the population. To perform the
selection of chromosomes the objective (fitness) function values have to be calculated. In
order to calculate the values of the objective functions the boundary-value problem for
laminates has to be solved. The commercial FEM software MSC.Nastran [1] has been
used to solve the boundary-value problem for hybrid laminates.

Figure 2. Classification of individuals in NSGA-II

Two evolutionary operators are employed. The simple crossover operator creates two
offspring chromosomes from two randomly selected parents. Offsprings are composed
of parts of the parents by cutting them in a random position and interchanging parts
between them. The uniform mutation operator replaces a randomly chosen gene of the
chromosome by the new value, which is the random value from the variable range with
uniform distribution.

Figure 3. NSGA-II diagramm

Next a combined population containing current population and previously found best
non-dominated solutions is formed. This combined population (of size 2N ) guarantees
elitism in consecutive steps of algorithm. Subsequently, the non-dominated sorting proce-
dure is performed on whole population (of size 2N ). Classification of the non-dominated



individuals has the same form as in the initial population. The best solutions in i -th
level are emphasized more than solutions in i+1 level. To choose exactly N population
members crowding distance sorting procedure is applied. Considering two solutions with
differing non-domination ranks the solution with lower (better) rank is preferred. In the
case when both solutions belong to the same front the solution located in a lesser crowded
region is preferred. The NSGA-II diagram is shown in Figure 3.

4 Optimization criteria

A fibre-reinforced hybrid laminates made of two materials are considered. The laminate
is the symmetric one. The total number of laminas and ply thicknesses are assumed
constant. The ply orientations (fibre ply angles) and the number of external plies of the
hybrid laminate are the design variables. The ply orientations of laminates are usually
limited to a small set of discrete angles due to the manufacturing process. There exist tow
placements machines able to produce laminates with arbitrary ply angles, but they are
not very popular due to their cost. In the present paper discrete and continuous variants
of the optimization tasks are taken into considerations. The number of design variables
is equal to a half of the plies number (due to the symmetry) plus one representing the
number of external plies.

The objective functionals for multi-objective optimization of hybrid laminates can be
defined as:

• The minimization of the structure cost.
It is assumed that the thicknesses of laminas hi, the number of plies N and areas
of the plate Ai are fixed. Consequently, the cost of the laminate depends only on
the number of plies made of each of materials and can be treated as varying in a
discrete way. The dimensionless cost C of a laminate can be calculated as follows:

C = [nece + (N − ne)ci] hiAi (5)

where: ne - the number of external plies; ce - the unit cost of the external plies
material [1/m3]; ci - the unit cost of the internal plies material [1/m3].

• The optimization of the modal properties of laminates in two forms:

1. The maximization of the first eigenfrequency:

arg max{ω1(x);x ∈ D} (6)

2. The maximization of the distance between two adjacent eigenfrequencies:

arg max{ωi(x)− ωi−1(x);x ∈ D} (7)

5 Numerical Example

The aim of the multi-objective optimization is to find the optimal number of external
plies and optimum values of ply angles in all laminas to satisfy two contradictory criteria:

a) minimize the cost of the structure - Eq. (5);
b) maximize the gap between 1st and 2nd eigenfrequencies - Eq. (7).



Figure 4. The laminate plate: a) shape and dimensions; b) exemplary materials location.

A symmetric rectangular hybrid laminate plate made up of 18 plies (Figure 4a) is
considered. All plies have the same thickness h=0.0002m. To solve the boundary-value
problem for the plate it is divided into 200 4-node (QUAD4) plane finite elements.

The external plies of the laminate are made of material M1, the core plies are made
of the material M2 (Figure 4b). The number of the external plies is one of the design
variables and can vary from 0 (simple laminate made of weaker material) to half times the
number of the plies (simple laminate made of stronger material) due to symmetry. The
material properties and unit costs are collected in Table 1. The parameters of the multi-
objective EA are: the population size: ps = 50; the number of genes in each chromosome:
ng = 10; the uniform mutation probability: pum = 0.1; the simple crossover probability:
psc = 0.8; the number of generations, gen = 100.

Table 1. The hybrid laminate - material parameters

Material E1 [GPa] E2 [GPa] ν12 G12 [GPa] ρ [kg/m3] unit cost [1/(m3)]
M1 181 10.3 0.28 7.17 1600 6.0
M2 38.6 8.27 0.26 4.14 1800 1.0

Figure 5. Numerical example - optimization results.



Each ply angle could vary in the range of < −90o; 90o > in a discrete way (every 4o,
15o or 45o) or continuously, depending on the optimization variant. The results of the
optimization are shown in the form of Pareto front in Figure 5. The values of design
variables in form of the ply angles and the number of external plies for the optimal results
are presented in Table 2. As the laminate is symmetrical, all results are referred to one
half of it.

Table 2. Numerical example - design variables values for optimal solutions

case solution stacking no of ω2 − ω1 cost
no. sequence ext. plies [Hz] [ ]

cont. 1 (45/-43/29/-39/-29/42/-32/-17/53)s 8 80.716 49
2 (41/-43/28/-30/-25/-17/29/-45/52)s 7 79.871 44
3 (41/-44/28/-29/-26/-14/33/-73/48)s 6 78.518 39
4 (-37/40/24/-37/-15/-24/-31/-19/54)s 4 73.539 29
5 (-35/41/27/-29/-25/-19/-35/-74/-24)s 3 69.179 24
6 (-37/30/51/-28/53/42/28/-8/53)s 2 62.741 19
7 (-40/32/27/24/47/30/25/-9/43)s 1 49.980 14
8 (45/-43/29/-39/-29/42/-32/-17/53)s 0 38.679 9

5o 1 (-35/30/50/-25/15/-35/15/0/40)s 6 78.08 39
2 (-35/25/45/-25/55/-20/15/-20/55)s 4 73.304 29
3 (-35/25/45/-25/20/-35/15/-15/45)s 3 66.578 24

15o 1 (-30/30/45/-15/0/45/0/0/60)s 9 80.627 54
2 (-30/30/45/15/0/45/0/0/60)s 8 80.021 49
3 (-30/30/45/-15/0/45/0/0/75)s 7 79.028 44
4 (-30/30/45/-15/0/30/0/0/75)s 6 77.142 39
5 (-30/30/45/-15/0/15/0/0/60)s 5 75.654 34
6 (-30/30/45/-15/0/0/-30/-15/45)s 4 74.955 29
7 (-15/30/45/-45/-15/30/-30/-30/45)s 3 67.120 24
8 (-15/30/45/-45/45/45/-30/0/45)s 2 59.928 19
9 (-30/30/45/15/0/30/0/0/30)s 1 48.716 14
10 (-30/45/45/-15/0/30/-30/-30/30)s 0 38.118 9

45o 1 (0/45/45/90/0/90/0/0/45)s 8 79.580 54
2 (0/45/45/90/0/45/0/0/45)s 7 77.824 44
3 (-45/45/45/90/0/0/0/0/45)s 6 75.858 39
4 (0/45/45/45/0/90/0/0/45)s 3 74.678 29
5 (0/45/45/45/90/90/0/0/45)s 1 66.496 24
6 (-45/45/45/45/0/0/0/0/45)s 1 57.279 19
7 (45/45/-45/0/0/0/0/0/45)s 1 46.791 14
8 (0/90/90/0/0/90/0/0/45)s 1 38.037 9

6 Final Conclusions

Hybrid laminates are typically used to find a balance between cost and another properties
of the structure. The stacking sequence optimization gives the possibility to obtain the
required properties of the laminates. To satisfy different and contradictory criteria the
multi-objective optimization has been used.

To avoid problems with calculation of the fitness function gradient the multi-objective
evolutionary algorithm (NSGA-II) has been employed as the optimization method.To
solve the boundary-value problem for laminates the finite element method has been
employed. As the total number of laminas and their thicknesses was assumed to be
constant, the cost of the hybrid laminate was discrete. The plies orientation angles



were considered as continuous as well as discrete variables. Optimization results were
presented in the form of non-dominated solutions (Pareto front).
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