
Clonal Selection Algorithm

With Binary Representation of Solutions

for Non-Stationary Optimization Tasks

Krzysztof Trojanowski1,2 and Grzegorz Matusik1

1 Institute of Computer Science, University of Podlasie, Siedlce, Poland
2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. Non-stationary optimization with the immune based algorithms is
studied in this paper. The algorithm works with a binary representation of solu-
tions. A set of different types of binary mutation is proposed and experimentally
verified. The mutations differ in the way of calculation of the number of bits to be
mutated. Obtained results allow to indicate the leading formulas of calculation.

1 Introduction

Heuristic algorithms inspired by the immune metaphor called clonal selection algorithms
(CSA) have been already applied to non-stationary optimization tasks. The obtained
results showed that they can be competitive with other evolutionary methods [6]. As
in case of other evolutionary approaches CSA also need some additional modifications
specific to non-stationary optimization. Usually these algorithms employ floating point
representation of solutions and a set of perturbation operators specific to this type repre-
sentation. The binary representation is hardly even used. Thus it was interesting to do
some kind of review of binary mutations and evaluate efficiency of different strategies of
such mutation. In this paper we selected one of the versions of clonal selection algorithms
and proposed a suite of binary mutation operators. Two versions of the algorithm were
tested. One is very close to the original while the other one is equipped with a few mech-
anisms selected from a set of typical extensions applied to non-stationary optimization
tasks. As a test benchmark a MPB [3] generator was selected. These two versions of
the clonal selection algorithm as well as a set of mutation operators are experimentally
verified with the MPB benchmark in this paper. The results allow to answer the question
if the binary representation can be successfully used in non-stationary optimization and
what type of mutation operators should be used.

The paper consists of five sections. In Section 2 both versions of the clonal selection
algorithm as well as the mutation operators are described. Section 3 briefly presents
MPB and applied measure of offline error. Section 4 includes results of experiments
while Section 5 – final conclusions.

2 Clonal Selection Algorithm

Our version of the clonal selection algorithm originates from [4]. The pseudo-code of the
algorithm is given in Figure 1. The algorithm starts with a population of solutions ran-
domly generated from the search space and performs the process of iterated improvement
of the solutions by the execution of the main loop (Figure 1).

procedure clonal selection optimization

FFE := 0; Nc := d ∗ c; t := 0;
Initialize P0(d) = {x1,x2, . . .xd}
Evaluate(P0(d))
FFE := FFE + d;
while (FFE < FFEmax) do {

Pt(Nc)=Cloning(Pt(d), c)
PH

t (Nc)=Hypermutation(Pt(Nc))
Evaluate(Pt(Nc)); FFE = FFE + Nc
Aging(Pt(d) ∪ PH

t (Nc), υ)
Pt+1(d′′)=Selection(Pt(d

′) ∪ PH
t (Nc′))

if (d′′ < d) {
Generate(Prand(d− d′′)); Evaluate(Prand(d− d′′)); FFE = FFE + (d− d′′)
Pt+1(d) = Pt+1(d′′) ∪ Prand(d − d′′))

}
t = t + 1;

}

Figure 1. Pseudo-code of the clonal selection algorithm

The algorithm has four control parameters: d – the population size, c – the number of
clones for each of the solutions in P , υ – the maximum life-time of a solution and FFEmax

– the maximum number of fitness function evaluations (FFE) in the experiment.
The main loop consists of five steps. In Cloning for each of the solutions a set of c

clones is generated. Hypermutation mutates clones in Pt(Nc) so a set of new solutions
PH

t (Nc) is created as a result of this step. Then the solutions are evaluated. All the
solutions, i.e. both the original ones stored in Pt(d) and the mutated clones from PH

t (Nc)
are aged. Clearly the algorithm eliminates those of the solutions which age is higher than
υ. Eventually there follows Selection step where a sum of solutions from sets Pt(d) and
PH

t (Nc) undergoes selection procedure. Clearly the best d solutions of the sum build up
a new set Pt+1(d). If the number of available solutions in Pt(d

′)∪PH
t (Nc′) is less than d

a set of additional random solutions Prand is generated and Pt+1 = Pt+1 ∪ Prand. After
the Selection the loop continues from the beginning.

2.1 Two Versions of the Algorithm

The algorithm described above is quite close to the version presented in [4]. It was
designed to cope with stationary optimization tasks thus it is expected that it will be
outperformed with an ease by recent algorithms devoted to non-stationary optimization.
Therefore we extended our tests and build up a new version of the algorithm by introduc-

tion of two additional modifications typical for non-stationary optimization heuristics.
The first modification is the rule of succession: clearly the original solution has to be
replaced only by its mutated clones. This approach has been tested in e.g. [5] where
it proved its efficiency. The other modification is concerned with the problem of the
convergence of solutions in the population. To uphold the diversity on the level which
allows to react immediately to the changes a mechanism which is very similar to the one
called random immigrants was applied. However there is a difference lying in the rules of
selection of solutions to remove. In our version the population loses those of its solutions
which are to close to each other. If the distance is less than a defined threshold rexcl it is
assumed that both solutions belong to the basin of attraction of the same optimum and
one of them can be safely excluded. The threshold rexcl has to be tuned respectively to
the severity of changes. The excluded solutions are replaced by randomly generated new
ones. Except for introduction of the two modifications the last difference between the
original and the tuned version can be found in the step of Aging. In the tuned version
the step is omitted which means that there is no limit for the lifetime of the solutions.

Finally it is necessary to note that we assumed that the optimization system ”knows”
when its environment has changed. However the algorithm does not start from scratch
but reevaluates its population of solutions and continues the search process.

2.2 Mutation Operator Based on Potential Functions

In our approach a Gray coded binary representation of solutions is in use. The binary
mutation operator works on the idea of flipping randomly selected bits. In our research
we focused of studying efficiency of different strategies of calculation of the number of
bits to be mutated. Therefore ten versions of the operator are proposed that differ in the
way of calculation of that number. The number depends on f ′(xi) which is the fitness
of the solution xi normalized in [0,1]:

f ′(xi) =
f(xi) − fmin

(fmax − fmin)
,

fmax = max
xj ,∀j∈{1,...|P |}

f(xj) and fmin = min
xj ,∀j∈{1,...|P |}

f(xj).

The numbers of mutated bits are defined with the so called potential functions. They
can be divided into two classes: proportional and inverse proportional. In the former
case the number of mutated bits grows as f ′(xi) grows. In the latter case the number is
higher for solutions with lower values of f ′(xi). Besides the two classes are divided into
two types: with positive or negative acceleration. The formulas of the potential functions
for all classes and groups are presented in Table 1. Graphs of the functions are presented
in Figure 2. It is important to note that the final value of the potential function used for
calculation of the number of mutated bits is always increased by a small constant value
ǫ to avoid situation where the potential is set to zero and no mutation is performed at
all. In the case of the least value of potential just one randomly selected bit is mutated.
When the potential reaches to maximum value in the graph it means that the maximum
available number of randomly selected bits is mutated.

The number of mutated bits varied from 1 to l/2 where l is the number of bits granted
to represent all the coordinates of a solution. In the step of mutation the algorithm selects
randomly one of the potential functions and applies it to modify the solution. Each of the

Table 1. Formulas of the potential functions

formula symbol ρ

proportional and positive acc.

1. αi = exp(f ′(xi)
ρ)−exp(0)

exp(1)−exp(0) ↑ α+ exp 2

2. αi = f ′(xi)
ρ ↑ α+pow 2

proportional and negative acc.

3. αi = ln(f ′(xi)
1/ρ+1)−ln(1)

ln(2)−ln(1) ↑ α− ln 2

4. αi = ρ
√

f ′(xi) ↑ α−sqrt 2

inverse prop. and positive acc.

5. αi = 1/ρ ∗ exp(−f ′(xi)) ↓ α+org2 25

6. αi = (−f ′(xi) + 1)ρ ↓ α+pow 2

7. αi = exp(−ρ ∗ f ′(xi)) ↓ α+org1 5

8. αi = exp(−f ′(xi)
1/ρ)−exp(−1)

exp(0)−exp(−1) ↓ α+ exp 2

inverse prop. and negative acc.

9. αi = ln(−f ′(xi)
ρ+2)−ln(1)

ln(2)−ln(1) ↓ α− ln 2

10. αi = ρ
√

−f ′(xi) + 1 ↓ α−sqrt 2

potential functions has a counter which is incremented every time the mutated solution
is better than the original one. Probability of selection of the operator is proportional to
the value of the counter. This way the potential functions that give more improvements
in the solutions have more chances to be used in the future.

3 The Benchmark and Applied Measure

Moving Peaks Benchmark generator [3] was selected as a test-bed for experiments. Its
description, parameters settings and a source code are available at the web page [2]. The
parameters of MPB are set exactly the same as specified in scenario 2 of this benchmark.
The fitness landscape consists of 10 moving peaks and it is defined for the 5-dimensional
search space with boundaries for each of dimensions set to [0; 100]. Moving peaks vary
their height randomly within the interval [30; 70], width within [1; 12] and position by a
distance of 1.

To evaluate the results, an offline error [3] measure was used. The measure represents
the average deviation of the best solution from the optimum evaluated since the last
change of the fitness landscape. Every experiment was repeated 50 times.

We also need to mention that in our experiments the offline error is not evaluated

1 2 3 4 5

6 7 8 9 10

Figure 2. Graphs of the potential functions (the first and the second row) and respective average
numbers of mutated bits for different values of the normalized fitness of solution varying from 0
to 1 (the third and the fourth row)

from the beginning of the experiment but the evaluation starts form the 30th change in
the fitness landscape. It is important to stress because as it was shown in [7] the influence
of the evaluations of the offline error in the initial phase of the experiment significantly
increases its final value.

4 Results of Experiments

For the testing environment a set of tests was performed where the influence of the
mutation operator on the offline error was observed. All the tests were performed for
16-bit representation of each of the coordinates of a solution and for 10 solutions in the
population.

For the experiments with original version of the algorithm the maximum life-time υ
was tested for two values: 3 and 4. Number of clones c was set to 2 or 4. The mutation
operator worked in two modes. In the 1st mode one randomly selected coordinate of the
five always remains untouched. In the 2nd mode all the five coordinates are modified.
It gave four versions of the algorithm: two solutions management strategies for the 1st
mode: [υ = 3, c = 2] and [υ = 4, c = 4] and the same two strategies for the 2nd mode.

The tuned version of the algorithm has the number of clones c = 2. Besides this

version was also tested with the two modes of mutation mentioned above. For both
algorithms maximum number of fitness function calls FFEmax was set to 300000.

Two types of information were gathered during experiments. The first one is a current
value of offline error. The second one is represented by the final values of counters of
successful executions (i.e. the executions where the mutated solution is better than the
original one) for each of the potential functions used in the mutation operator. Mean of
the current value of offline error is presented in Figure 3. Graphs with box-and-whisker
diagrams of numbers of successful mutations for each of the ten tested potential functions
including all five quartiles are presented in Figure 4.

 1

 5

 25

 0 500 1000 1500 2000 2500 3000 3500

1st mode: [υ=3, c=2]
1st mode: [υ=4, c=4]

2nd mode: [υ=3, c=2]
2nd mode: [υ=4, c=4]
1st mode tuned: [c=2]

2nd mode tuned: [c=2]

Figure 3. Current value of offline error for different values of algorithm parameters settings

5 Conclusions

There are three main conclusions arising from the presented results. The first one is about
the mutation modes: 1st and 2nd. The second one is about the strategies of management
of the solutions. The last one is about the potential functions in the mutation.

When we compare the values of offline error for the modes 1st and 2nd in Figure 3 it
is not so easy to indicate the leader. In the first stage of the search process the 2nd mode
outperforms the 1st one. However after some time when the search process is getting
stabilized the 1st mode is the one which give slightly lower value of offline error. So
eventually the 1st mode could be the winner however it must be stressed that it depends

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10

Figure 4. Box-and-whisker diagrams of numbers of successful mutations for each of the ten
tested potential functions: 1st row – 1st mode, 2nd row – 2nd mode

of the time we have for searching. If the optimization has to be done for a short time
and for a small number of changes the 2nd mode should rather be selected.

When we compare the two strategies of the solutions management in the original
version of CSA in Figure 3 the more aggressive search is performed with [υ = 4, c =
4]. However this strategy cannot manage with the changes regularly appearing in the
environment and quickly loses its advantage. Strategy [υ = 3, c = 2] needs more time
to reach as good level of offline error as the competitor can but also in this case loss of
quality of the returned results can be observed in the further part of the search process.
Eventually in the last part of the search process results returned by both strategies are
quite similar to each other. The tuned version of CSA outperforms the original version
with an ease which is not very surprising. What is more interesting, even this algorithm
after the first successes slightly looses quite good level of offline error. This loss of quality
can be interpreted as problems with flexibility of reaction to changes. It is caused most
probably by lack of appropriate diversity in the set of solutions in further stages of the
process of search. The diversity is present in the beginning of the search but disappears
after some time and cannot be quickly obtained with the given mutation operator. But

anyway in spite of this disadvantage the results of the tuned CSA are comparable to the
results presented in the recent publications (see e.g. [1]).

Figure 4 allows to compare efficiency of potential functions tested in the mutation
operator. Definitely the function No 5 is the most successful. It mutates very gently
all the solutions in the population. This high number of successes confirms well known
opinion about restrained application of bit flipping in the mutation. The numbers of
successes gained by the remaining functions are more interesting. In case of the original
version of the algorithm one can observe more successes for the functions with the positive
acceleration than with the negative one. In case of application of the 1st mode of mutation
the functions with the inverse proportional and positive acceleration seem to have a bit
more successes than those with just the proportional and positive acceleration. This
advantage is much more evident in case of the tuned version of CSA. Here the functions
No 5 and 7 have the largest number of successes which means that the best strategy for
mutation is to do it moderately except for the worst solutions in the population where
intensive mutation could be desirable from time to time.

Bibliography

[1] T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation, 10(4):459 – 472,
Aug. 2006.

[2] J. Branke. The moving peaks benchmark. URL: http://www.aifb.uni-karlsruhe.de/
∼jbr/MovPeaks/movpeaks/.

[3] J. Branke. Memory enhanced evolutionary algorithm for changing optimization prob-
lems. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and
Ali Zalzala, editors, Proc. of the Congress on Evolutionary Computation, volume 3,
pages 1875–1882. IEEE Press, Piscataway, NJ, 1999.

[4] Pavone M. Cutello V., Nicosia G. A hybrid immune algorithm with information
gain for the graph colouring problem. In Genetic and Evolutionary Computation –
GECCO-2003, volume 2723 of LNCS, pages 171–182. Springer-Verlag, 2003.

[5] K. Trojanowski and S. T. Wierzchoń. Studying properties of multipopulation heuristic
approach to non-stationary optimisation tasks. In M. A. K lopotek, S. T. Wierzchoń,
and K. Trojanowski, editors, IIS 2003:Intelligent Information Processing and Web
Mining, Advances in Soft Computing, pages 23–32. Springer Verlag, 2003.

[6] Krzysztof Trojanowski. Clonal selection principle based approach to non-stationary
optimization tasks. In Evolutionary Computation and Global Optimization 2006,
number 156 in Prace Naukowe, Elektronika, z.156, pages 375–384. Warsaw Univ. of
Technology Publishing House, 2006.

[7] Krzysztof Trojanowski. B-cell algorithm as a parallel approach to optimization of
moving peaks benchmark tasks. In Sixth International Conference on Computer
Information Systems and Industrial Management Applications (CISIM 2007), pages
143–148. IEEE Computer Society Conference Publishing Services, 2007.

