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Abstract. The problem of atomic structure optimization related to the minimization of its 

total energy is a fundamental physical problem as well as hard computational task. For the 

few last years we have presented some observations concerning the advantages and 

drawbacks of EA used as a  tool to solve such questions. In this paper we would like to 

present some new approaches devoted to improve the general, not problem oriented part of 

algorithm. The results obtained for two techniques: population migration and Opposition-
Based Learning show that the specific operators, designed for the given problem are still 

the most important part of algorithm. 

1 Introduction 

Recently we have presented the results of evolutionary optimization of nanoscopic systems [1-

3]. In these works there were studied atomic structures (model and real) which was described 

by two and three-body potentials. The most important steps during these study can be 

presented as follows:  

- It was created the efficient evolutionary algorithm, performing the optimization of atomic 

cluster geometry by the minimization of total energy for such systems. 

- The implementation of algorithm was tested on the real material samples (monoatomic 

metallic clusters Au, Ag, Al, C) with three-body interaction. 

- The properties of homonuclear argon clusters doped with single potassium ion were 

studied for cluster sizes up to 60. 

- The method of new doped structures searching by means of modification of relative 

interaction coefficients was proposed. 

- There were presented the properties of noble gas clusters doped with two alkali metal ions 

(up to 36 atoms) described by the total energy model proposed in work. 

 Atomic clusters are isolated systems of atoms containing from several to even thousands 

atoms. In the presented papers the size of cluster, understood as a number of atoms was limited 

to about 60 (N������)RU�(N���� the single run was sufficient to obtain correct results however 

the bigger clusters (40<N����� RSWLPL]DWLRQ� ZDV� UHSHDWHG� IHZ� WLPHV�� EHFDXVH� HYROXWLRQDU\�
process gets stuck in some local optimum. Thus there is the necessity to increase  evolutionary 

algorithm efficiency. 

In order to increase the strength our algorithm we tried use two new methods: Migration              

of populations[4] and different schemes of Opposition-Based Learning [5].  



2 Method and tests 

From the theoretical point of view geometrical modeling of atomic clusters consists of finding 

the atoms arrangement with global minimum (GM) of total binding energy which can be found 

on potential energy surface (PES) , an 3N hypersurface in 3N+1 dimensional space, where N is 

the number of atoms. The determination of total energy could be realized by ab initio 

molecular theory (like density functional or Hartree-Fock method), molecular dynamics, or 

analysis of 2 and 3-body potentials describing atomic interactions. 

In this paper we show results of evolutionary optimization of 6-atomic clusters described by 

2-body Lennard-Jones(L-J) potential. The method of determine the minimum energy is described 

in detail in our previous papers [1-3]. 

Because the algorithm is sensitive for the shape of fitness function, its choice is of special 

importance. In our problem we selected fitness function in exponential form [6]:  
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where: V - is binding energy of cluster, Vmin and Vmax are the lowest and the highest total 

energy in population, and parameter b - determines the selectivity of the fitness function (b=1 

in our work). 
In the case of sharp L-J potential the number of candidates for local energy minima on the 

PES grows exponentially with the number of atoms (according to exp(0,36N+0,03N
2
),             

N  is cluster size [7]).  

In this work we tested 6-atoms clusters described by L-J potentials, thus we split PES into 

4 parts: basin of attractions of global, second and third minima. Optimal energy values from 

these basins represents structures of atoms which are shown on the Fig. 2.  Fourth part of the 

PES contains all remaining regions corresponding to the systems with low symmetry.  

 

 
Figure 1. The structures of clusters correspond to global, second and third optimum on the 

PES. 

 
In order to determine the size of these four regions on the PES we combine method of random 

search (Monte Carlo) with local optimization (Steepest Descent). The relative percentage             

of them on the PES shown on the Fig. 3. 
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Figure 2. Distribution of global, second, third minimum and others for the PES of 6-atomic 

clusters. 

 
On the basis of this diagram we can see that the basin of second optimum covers considerable 

area of PES (it is almost 80% of whole Potential Energy Surface). The region of global 

optimum covers only 2%  of PES. This situation leads to premature convergence to local 

optimum in global optimization problem (that means deceptive problem). 

3 Migration of populations method 

In this part of work we used algorithm without crossover. Set of task parameters is 

represented using floating point numbers [8], where each coordinate of the atoms is real 

number from the range (0,1). For 6-atoms cluster genetic algorithm has to optimize 18-

variables function and make evolution process on 20 individuals during 10000 generation.  

In our algorithm the reproduction with selection is classical roulette wheel method.            

The mutation is the uniform mutation with Gauss distribution. We carried out series of 100 

independent evolutionary processes for various standard deviations of Gauss function. The 

situation, when after mutation, the point would be removed from the simulation box was 

forbidden and the mutation was simply repeated. The averaged quantities of individuals               

in each optimum basin of attraction during evolutionary process are shown in Fig.3. It means 

the percentage quantities of individuals in whole population size (pop_size) in the function of 

the age of population drawn in logarithmic scale. This manner makes possible to observe the 

distributions change in the beginning of evolutionary process.  



 
Figure 3. Evolutionary process for various mutation rate. 

 

On the basis of Fig. 3 we can see that, as anticipated, second optimum plays dominant role. 

The relative number of second optima still grows during the whole evolutionary process.           

This situation is clearly visible for small range of mutation. For bigger values of deviations 

distributions are uniform. The decrease of second optimum number is for this case connected 

with the increase  of only one of another groups, this one containing all less important minima 

(called "other"). Global optimum in the all cases is on the level 1% pop-size. For all mutation 

rates the average values of total energy in evolutionary process are shown on the Fig. 4.  

 



 
Figure 4. Total energy in evolutionary process for all mutation rates  

 

 
Figure 5. Evolutionary process for the best configuration. 

 

4 Opposition-Based Learning 

In order to accelerate the convergence process to global optimum we used new method, called 

Opposition-Based Learning. This idea was introduced first time as new scheme for machine 

intelligence[5]. Opposition-Based Learning is based on opposite number definition where:  
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In our work we used Opposition-Based Learning on two schemes:  

– Opposition-Based Population Initialisation, where process of coordinates replacement 

with opposite points was carried out only for randomly selected individuals in initial 



population. Two detailed approaches were used. According to the first one (improving 

scheme) the replacement was performed only when it led to the better energy. In the 

second approach (random scheme) energy evaluation wasn’t performed and the change 

was always accepted. 

– Opposition-Based Generation Jumping. The EA was modified in such away that during 

each generation some individuals have the chance to jump to opposite population with 

probability defined by jumping rate(JR). The replacement occurred also in two manner:  

in order to improve energy or with random scheme . 
 

 
Figure 6. Evolutionary process with various jumping rates and Opposition-Based 

Population Initialisation. 

 

In this part we carried out series of 100 independent evolutionary processes for various 

values of jumping rate and for Opposition-Based Population Initialisation. The averaged 

quantities of individuals in each optimum basin of attraction during evolutionary process are 

shown in Fig.6. 

During  the next calculations we tried to determine the percentage factor of reaching the 

GO in pure evolutionary process and enriched with Opposition-Based Learning in 10000 

generations. 
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Figure 7. Percentage number of iteration needs to receive the global optimum in 

evolutionary process and EA with Opposition-Based Learning. 

 

The last section shows how what the Opposition-Based Learning cooperated with 

evolutionary algorithm with local optimization method (hybrid evolutionary algorithm[1]). 

Calculations results are presented on figure 8, where is index of population (which can be 

understood as its age) in which the evolutionary algorithm supported by Steepest Descent[1] 

local optimization found the global optimum for the first time as tg.  
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Figure 8. Average values of generation tg in which the hybrid evolutionary algorithm with 

Opposition-Based Learning found the global optimum for the first time.  

5 Conclusions 

In the present paper we showed the effects of newly proposed evolutionary optimization 

techniques on the computationally hard problem of atomic cluster energy minimization. In our 

previous papers we pointed out that pure computational attempt isn’t efficient tool to solve 

such a problem. However, with the inclusion of some special operators, like z-sorting, 



rotations or mass center shift [1] it used to find very quickly the basin of attraction of global 

minimum. Unfortunately, with the new operators the general remark about the need to use 

some special operators should be sustained.  

With the population migration algorithm, independently on the mutation range value the 

algorithm undergoes premature convergence to the local optimum which spreads over large 

region of PES. For the small mutation ranges the stagnation begins already after about 1000 

generations. For the larger ones the population migrates between the basins of attraction of 

different local minima but the overall influence of this process on the global minimum search 

is negative. The proof of this is visible in fig.4 where the best obtained energy value averaged 

over 100 independent runs is presented in the function of generation index. It may be observed 

that larger mutation range causes the improvement only in the beginning of the diagram and in 

further part the efficiency significantly decreases.  

The similar conclusion should be made when speaking about the Opposition-Based 

Learning. Indeed we choose this method with the hope that it increases the diversity of 

population, what is the crucial factor in atomic modeling. The comparison of figures 5 and 6 

shows almost ideal compatibility between the shape of curves for the same basin of attraction. 

Moreover, independently on the shape of these dependencies which describe the general 

properties of algorithm we can look at the most wanted feature ie. how fast the optimum  can 

be reached. Here, the results are significantly worse especially when the jumping rate 

increases. This results shows the role of worse adapted individuals in the population. Although 

it seems that they have very low significance and the probability of their promotion to the next 

generation is almost negligible, their genetic material is very significant and its worsening 

causes significant decrease of algorithm efficiency.  
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