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Abstract. Selection of the „best” or „optimum” engineering design has always been a 
major concern of designers. In recent years tests have been undertaken to apply genetic 
algorithm (GA) optimisation techniques to design of ship structures. GA is applied to study 
the problem of weight minimization of a high speed craft hull structure with several design 
variables. A computer code has been developed for this purpose. Results of computations 
obtained using the code are presented. The fitness function is based on loads and strength 
criteria  suggested  by  the  classification  society  rules.  The  paper  discusses  of  the  GA 
behaviour on the base of numerical experiments. Results of those experiments show that 
GA can be an efficient optimisation tool for design of topology and sizing high speed craft 
structure simultaneously.

1   Introduction

The goal of ship structural optimization is to find the optimum positions of structural elements, 
also referred to as topological optimization, shapes (shape optimization) and scantlings (sizing 
optimization) of structural elements for an objective function subject to constraints. Formally, the 
selection of structural material can also be treated as a part of the optimization process (material 
optimization). An essential task of the optimization is to reduce the structural weight, therefore 
most  frequently  the  minimum  weight  is  assumed  as  an  objective  function.  Topological 
optimization is  searching for  optimal existence and space localization of  structural  elements 
while shape optimization is searching for optimal shape of ship hull body. This problem is solved 
within computational fluid dynamics methods. Sizing optimization could be also expressed as the 
process of finding optimum scantlings of structural elements with fixed topology and shape. A 
choice of the structural material is usually not an optimization task explicitly but is rather done 
according to experience and capability of a shipyard. Optimization of structure of laminates is an 
example of such an optimization problem.

Thus the process of ship structural design and optimization can be considered in four areas: 
optimisation  of  shape,  material,  topology and  scantling.  Due to  complexity  of  optimization 
problem related to ship structures, only partial optimization tasks are formulated in each of the 
four areas independently. No attempt to unify the optimization problems have been done so far.

Preliminary developments proved the genetic algorithm (GA) can be an efficient tool for ship 
structural  optimization [16,  17,  18,  19,  20,  21,  26,  27].  The  results  of  research on the GA 
application for optimization of high speed craft hull structure topology and sizing optimization is 



presented in  the  paper  while  the  optimization  of  shape  and  material  was not  covered.  The 
computer  code  for  structural  optimization  by  GA  is  described  in  Section  2.  Structural, 
optimization and genetic models of a simplified fast craft hull structure are described in Sections 
3, 4 and 5 respectively. The results of application of the computer code to the optimal design of 
the  analysed  structure  is  given  in  Section  6.  Some  general  conclusions  are  formulated  in 
Section 7.

2   Computer Code for Genetic Optimization of Structures

Applicability of GA for solution of the optimization problems unifying scantling and topology 
optimization of ship structure was verified using computer simulation. The computer code was 
developed as a general software tool for optimal analysis of real structures by adding the modules 
of the pre-processing, scantling analysis and post-processing to the genetic modules (selection, 
mutation, crossover) which form the Simply Genetic Algorithm (SGA). The flowchart of the 
code is shown in Fig. 1.

Figure 1. Flowchart of computer code for structural optimization by genetic algorithm.



In the computer code the optimization problem is solved by creating a random population of 
the trial solutions. All principal operators of the basic evolutionary process [4, 10, 14] are used in 
the code: crossover, mutation and natural selection. Two additional operators: the elitist [14] and 
update operator [23] are introduced for the selection as well.

Each  new  created  variant  of  solution  (an  individual  being  a  candidate  to  the  progeny 
generation) is analyzed by the pre-processor. In the pre-processor binary strings of chromosomes 
are decoded into the corresponding strings of decimal values representing design variables. Then 
for the actual values of the design variables defining spatial layout of the structural elements 
(topology) and their scantlings it is checked whether the actual configuration complies with the 
rules of the classification society. In the next step performance of solution is calculated and it is 
checked whether the variant meets the constraints. At the end the value of the objective function 
is calculated for each variant – weight of the structure, and the value of the fitness function for 
selection. Variants are ordered with respect to this value. Knowing adaptation of each variant the 
random process is restarted to select variants of the successive progeny generation.

After selection, the code determines randomly, with probability equal to pm, which genes of 
these whole population will mutate. After that the mutate pool is created. Then decision is made 
how much information is swapped between the different population members. That is done by 
creating, with probability equal to pc, n_x_site „cutting points”. The genes located between two 
„cuts” are switched. The resulting population member is then referred to as an offspring.

All genetic parameters are specified by the user before the start of calculations. This option is 
very important; the control of the parameter permits to perform search in the direction expected 
by the designer and in some cases it allows to find the solution much faster. The population size, 
number  of  variables  and  number  of  bits  per  variable,  the  total  genome length,  number  of 
individuals in the population are limited by the available computer memory.

3   Structural Model

For the optimisation study a model based on the Austal Auto Express 82 design developed by 
Austal [7, 8, 9]. Main dimensions of the vessel are shown in Fig. 2. For the analysis a midship 
block-section (17.5 x 23.0 x 11.7 m) was taken. The vessel and its corresponding cross section 
are shown in Fig. 3. Bulkheads form boundaries of the block in the longitudinal direction. In the 
block 9 structural  regions can be distinguished. All regions are longitudinally stiffened with 
longitudinal stiffeners with spacing different in each structural region. The transverse web frame 
spacing is common for all structural regions.

Figure 2. High speed vehicle-passenger catamaran, type Auto Express 82 – main dimensions.



The structural  material  is  aluminium alloy having following properties:  (1)  yield stress, 
R0,2 = 125 N/mm2 (5083 aluminium alloy for plates) or R0,2 = 250 N/mm2 (6082 aluminium alloy 
for extruded bulbs), (2) Young modulus,  E = 70,000 N/mm2, (3) Poisson ratio,  ν = 0.33, (4) 
density, ρ = 26.1 kN/m3. The plate thickness and the bulb and T-bulb extruded stiffener and web 
frame sections are assumed according to the commercial standards and given in Tables 2-4. The 
formulae for scantling calculation of plate thicknesses and section moduli of stiffeners and web 
frames are taken in accordance to the classification rules [25].

Figure 3. Assumed model of craft – midship block-section, frame system and structural regions.

A minimum structural weight (volume of structure) was taken as the criterion in the study and 
was introduced in the definition of the objective function and constraints defined on the base of 
classification rules. The assumed optimization task is rather simple one but the main objective of 
the study was building and testing the computer code and proving its application for unified 
topology-sizing structural optimization of a ship hull.



Table 2. Thickness of plates.

No. Thickness t, mm No. Thickness t, mm
1 3.00 8 12.00
2 4.00 9 15.00
3 5.00 10 20.00
4 6.00 11 30.00
5 7.00 12 40.00
6 8.00 13 50.00
7 10.00 14 60.00

Table 3. Dimensions of aluminium bulb extrusions.

No. Dimensions (h, b, s, s1)1), mm Cross-sectional area, cm2

1 80 x 19 x 5 x 7.5 5.05
2 100 x 20.5 x 5 x 7.5 6.16
3 120 x 25 x 8 x 12 11.64
4 140 x 27 x 8 x 12 13.64
5 150 x 25 x 6 x 9 10.71
6 160 x 29 x 7 x 10.5 13.51
7 200 x 38 x 10 x 15 24.20

1) h – cross-section height; b - flange width; s - web thickness; s1 - flange thickness.

Table 4. Dimensions of aluminium T-bulb extrusions.

No. Dimensions (h, b, s, s1)2), mm Cross-sectional area, cm2

1 200 x 100 x 8 x 15 29.80
2 200 x 140 x 8 x 5 35.80
3 200 x 60 x 10 x 12 22.50
4 200 x 50 x 8 x 9.5 21.04
5 210 x 50 x 5 x 16 14.78
6 216 x 140 x 7.6 x 8 37.60
7 220 x 80 x 5 x 8 17.00
8 230 x 80 x 10 x 8 28.60
9 230 x 80 x 5.8 x 8 19.28

10 235 x 170 x 8 x 10 35.00
11 240 x 140 x 6 x 10 27.80
12 260 x 90 x 5 x 9.5 21.08
13 275 x 150 x 9 x 12 41.67
14 280 x 100 x 5 x 8 21.60
15 280 x 100 x 8 x 10 31.60
16 300 x 60 x 15 x 15 51.75
17 310 x 100 x 7 x 16 36.58
18 310 x 123 x 5 x 8 24.94
19 350 x 100 x 8 x 10 37.20
20 350 x 100 x 5 x 8 25.10

2) h – cross-section height; b - flange width; s - web thickness; s1 - flange thickness.



Table 4. Dimensions of aluminium T-bulb extrusions, cont.

No. Dimensions (h, b, s, s1)2), mm Cross-sectional area, cm2

21 390 x 150 x 6 x 8 34.92
22 390 x 150 x 6 x 12 40.68
23 400 x 140 x 5 x 8 30.80
24 410 x 100 x 6 x 8 32.12
25 420 x 15 x 5 x 10 35.10
26 420 x 15 x 8 x 10 47.80
27 450 x 100 x 9 x 10 49.60
28 450 x 150 x 10 x 12 61.80

2) h – cross-section height; b - flange width; s - web thickness; s1 - flange thickness.

4   Formulation of Optimization Model

The set of the design variables for the 3D hull structural model in the present formulation is as 
following (Table 5., Fig. 4):

 xi = (x1, x2, ..., xN),   N = 37 (1)

where N - number of design variables.
Introducing a design variable representing the number of transversal frames in the considered 

section: x4, and numbers of longitudinal stiffeners in the regions: x5, x9, x13, x17, x21, x25, x29, x33, x37 

enables  simultaneous  optimization  of  both  topology  and  scantlings  within  the  presented 
optimization model.

Table 5. Simplified specification of bit representation of design variables.

No. Symbol Item Substring 
length (no of 

bits)

Value

Lower 
limit

Upper 
limit

Discrete 
step

1 x1 serial No. of mezzanine deck plate 4 1 10 0.60
2 x2 serial No. of mezzanine deck bulb 3 1 7 0.86
3 x3 serial No. of mezzanine deck T-bulb 4 42 52 0.67
4 x4 number of web frames 3 10 16 0.86
5 x5 number of mezzanine deck stiffeners 4 25 40 1.00
6 x6 serial No. of superstructure I plate 4 1 10 0.60
7 x7 serial No. of superstructure I bulb 3 1 7 0.86
8 x8 serial No. of superstructure I T-bulb 4 42 52 0.67
9 x9 number of superstructure I stiffeners 3 4 11 1.00

10 x10 serial No. of inner side plate 4 1 10 1
11 x11 serial No. of inner side bulb 3 1 7 1
12 x12 serial No. of inner side T-bulb 4 42 52 1
13 x13 number of inner side stiffeners 3 18 25 1
14 x14 serial No. of bottom plate 4 1 12 1
15 x15 serial No. of bottom bulb 3 1 7 1
16 x16 serial No. of bottom T-bulb 4 42 52 1



Table 5. Simplified specification of bit representation of design variables, cont.

No. Symbol Item Substring 
length (no of 

bits)

Value

Lower 
limit

Upper 
limit

Discrete 
step

17 x17 number of bottom stiffeners 4 15 25 1
18 x18 serial No. of outer side plate 4 1 12 1
19 x19 serial No. of outer side bulb 3 1 7 1
20 x20 serial No. of outer side T-bulb 4 42 52 1
21 x21 number of outer side stiffeners 4 18 33 1
22 x22 serial No. of wet deck plate 4 1 12 1
23 x23 serial No. of wet deck bulb 3 1 7 1
24 x24 serial No. of wet deck T-bulb 4 42 52 1
25 x25 number of wet deck stiffeners 4 25 40 1
26 x26 serial No. of main deck plate 4 2 12 1
27 x27 serial No. of main deck bulb 3 1 7 1
28 x28 serial No. of main deck T-bulb 4 42 52 1
29 x29 number of main deck stiffeners 4 25 40 1
30 x30 serial No. of superstructure II plate 4 1 10 1
31 x31 serial No. of superstructure II bulb 3 1 7 1
32 x32 serial No. of superstructure II T-bulb 4 42 52 1
33 x33 number of superstructure II 

stiffeners
3 4 11 1

34 x34 serial No. of upper deck plate 4 1 10 1
35 x35 serial No. of upper deck bulb 3 1 7 1
36 x36 serial No. of upper deck T-bulb 4 42 52 1
37 x37 number of upper deck stiffeners 4 25 40 1

Multivariable string length
(chromosome 
length)

135

Objective function f(xi) for optimisation of the hull structure weight is written in the following 
form:

(2)

where xi - i-th design variable; R - number of structural regions; SWj - structural weight of the j-th 
structural region;  wj - relative weight coefficient (relative importance of structural weight) of 
regions varying in the range [0,1].

The behaviour constraints, formulated according to the classification rules [25], prevent to 
structural model to fall in the region prohibited considering its strength.

Side constraints for design variables are given in Table 5. They correspond to the limitations 
of the range of the profile set. Some of them are pointed according to the author’ experiences for 
improving the calculation convergence.

The additional geometrical constraints were introduced due to fabrication and standardization 
reasons, for eg. assumed relation between the plate thickness and web frame thickness.

f  xi=∑
j

R

w j SW j , R=9



Figure 4. Assumed model of craft – specification of design variables.

5   Description of Genetic Model

5.1   General
Solution of the optimisation problem by GA calls for formulation of an appropriate optimisation 
model. The model described in Sections 3 and 4 was reformulated into an optimisation model 
according  to  requirements  of  the  GA and that  model  was  further  used  to  develop  suitable 
procedures and define search parameters to be used in the computer code.

The genetic type model should cover:
– definition of chromosome structure;
– definition of fitness function;
– definition  of  genetic  operators  suitable  for  the  defined  chromosome  structures  and 
optimization task;
– list of the searching control parameters.

5.2   Chromosome Structure
The space of possible solutions is a space of structural variants of the assumed model. The hull 
structural model is identified by the set of 37 design variables, xi. Each variable is represented by 
a string of bits used as chromosome substring in GA. The simple binary code was applied. In the 
Table 5 a simplified specification for bit representation on all design variables is shown. A variant 
of solution is represented as a bit string. Chromosome length is equal to the sum of all substrings. 
Number of possible solutions is equal to the product of values of all variables. In the present 



work the chromosome length is equal to 135 bits, making the number of possible approximately 
equal to 1038.

5.3   Fitness Function
The design problem defined in this paper is to find the minimum weight of a hull structure 
without  violating  the  constraints.  In  order  to  transform  the  constrained  problem  into 
unconstrained one and due to the fact that GA does not depend on continuity and existence of the 
derivatives, so called “penalty method” have been used. In the method the augmented objective 
function of unconstrained minimisation problem is expressed as:

 
(3)

where  Φ(xi)  -  augmented objective function of  unconstrained minimisation;  f(xi)  -  objective 
function given by Eq. (2);  Pk - penalty term to violation of the  k-th constraint;  wk - weight 
coefficients for penalty terms; nc - number of constraints. Weight coefficients wk are adjusted by 
trial.

Additionally  a  simple  transformation  of  minimization  problem  (in  which  the  objective 
function is formulated for the minimization) into the maximization is necessary for the GAs 
procedures (searching of the best individuals). It can be done multiplying the objective function 
by (-1). In that way, the minimization of the augmented objective function was transformed into a 
maximization search using:

Fj = Φmax - Φj(xi) (4)

where  Fj = fitness function for  j-th solution;  Φj(xi)  = augmented objective function for  j-th 
solution; Φmax = maximum value of the augmented function from all solutions in the simulation. 
The value of parameter Φmax has to be arbitrary chosen by a user of the software to avoid negative 
fitness  values.  Its  value  should  be  greater  than  the  expected  largest  value  of  Φj(xi)  in  the 
simulation. In the presented approach the value Φmax = 100000 was assumed.

5.4   Genetic Operators
The basic genetic algorithm (SGA) produces variants of the new population using the operators 
of selection, mutation and crossover. The algorithm was extended by introduction of elitism and 
updating.

Many  authors  described  the  selection  operators,  which  are  responsible  on  chromosome 
selection due to their fitness function value [1, 2, 3, 6, 11, 12, 16, 15]. After the analysis of the 
selection operators, there was a roulette concept applied for proportional selection.

The mutation operator which introduces a random changes of the chromosome was also 
described [3,  15,  16].  This  allows to  bring a new information to  the population genes  and 
diversify “parents”. This operator supports exploration of the global search space.

Crossover operator is responsible for modifications of parts of the parent chromosomes. The 
crossover allows to explore a local area in the solution space. Analysis of the features of the 

 x i= f  xi−∑
k=1

nc

wk Pk



described operators [3, 11, 16, 22, 24] led to elaboration of own,  n-point, random  crossover 
operator. The crossover parameters in this case are: the lowest  n_x_site_min and the greatest 
n_x_site_max number of the  crossover  points and the crossover probability  pc.  The operator 
works automatically and independently for each pair being intersected (with probability pc), and 
it sets the number of crossover points n_x_site. The number of points is a random variable inside 
the set range [n_x_site_min, n_x_site_max]. The test calculations proved high effectiveness and 
quicker  convergence  of  the  algorithm  in  comparison  to  algorithm  realizing  single-point 
crossover. Concurrently, it was found that the number of crossover points n_x_site_max greater 
than 7 does not improve convergence of the algorithm. Therefore, the lowest and greatest values 
of the crossover points were set as following: n_x_site_min = 1, n_x_site_max = 7.

5.5   Control Parameters
Single program run with the defined genetic model is characterized by values of ten control 
parameters (Table 6). For selection of values of control parameters it is not possible to formulate 
quantitative premises there is not exist appriopriate mathematical models for analysis of GA 
convergency in relation to control parameters. They were set due to test calculations results to 
achieve a required algorithm convergence at established number of generations and population 
size. The values are presented in Table 6.

Table 6. Genetic model and values of control parameters.

No. Symbol Description Value
1 ng

Number of generations 
5000

2 ni Size of population 2000
3 np Number of pretenders 3
4 pm Mutation probability 0.066
5 pc Crossover probability 0.80
6 c_strategy Denotation of crossover strategy (0 for set -, 1 for random 

number of crossover points)
1

7 n_x_site_min The lowest number of crossover points 1
8 n_x_site_max The greatest number of crossover points 7
9 pu Update probability 0.33
10 elitism Logical variable to switch on (elitism = yes) and off (elitism = 

no) the pretender selection strategy
yes

6   Optimization calculations

To verify the correctness of the optimisation procedure several test cases have been carried out 
using the model described in Sections 3-5. Each experiment is characterised by 10 parameters 
given in Table 6. In Table 7 and Fig. 5 results of typical trial are presented. The set of experiment 
parameters are as follows (ng, ni, np, pm, pc, c_strategy, n_x_site_min, n_x_site_max, pu, elitism) = 
(5000, 2000, 3, 0.066, 0.8, 1, 1, 7, 0.033, true). There were 106 tested individuals in the whole 
simulation. The lowest value of the objective function,  f(xi) = 4,876.37 kN, was found in the 
868th generation. The corresponding values of design variables are given in Table 7.



All values of the hull structural weight for feasible individuals searched in the simulation are 
presented in Fig. 6. The solid line represents the front of optimal solutions. It is composed of 
minimal  (optimal)  values  of  the  structural  weight  received  in  the  following  simulation.  All 
variants situated above the front of optimal solutions line are feasible but structural weight of 
these variants is greater than those situated on the front line.

Table 7. Optimal values of design variables.

No. Symbol Description Optimal value
1 x1 serial No. of mezzanine deck plate 5
2 x2 serial No. of mezzanine deck bulb 1
3 x3 serial No. of mezzanine deck T-bulb 49
4 x4 number of web frames 12
5 x5 number of mezzanine deck stiffeners 30
6 x6 serial No. of superstructure I plate 2
7 x7 serial No. of superstructure I bulb 4
8 x8 serial No. of superstructure I T-bulb 47
9 x9 number of superstructure I stiffeners 4
10 x10 serial No. of inner side plate 8
11 x11 serial No. of inner side bulb 4
12 x12 serial No. of inner side T-bulb 44
13 x13 number of inner side stiffeners 23
14 x14 serial No. of bottom plate 8
15 x15 serial No. of bottom bulb 6
16 x16 serial No. of bottom T-bulb 50
17 x17 number of bottom stiffeners 18
18 x18 serial No. of outer side plate 5
19 x19 serial No. of outer side bulb 1
20 x20 serial No. of outer side T-bulb 50
21 x21 number of outer side stiffeners 31
22 x22 serial No. of wet deck plate 5
23 x23 serial No. of wet deck bulb 1
24 x24 serial No. of wet deck T-bulb 50
25 x25 number of wet deck stiffeners 29
26 x26 serial No. of main deck plate 10
27 x27 serial No. of main deck bulb 3
28 x28 serial No. of main deck T-bulb 48
29 x29 number of main deck stiffeners 33
30 x30 serial No. of superstructure II plate 2
31 x31 serial No. of superstructure II bulb 4
32 x32 serial No. of superstructure II T-bulb 47
33 x33 number of superstructure II stiffeners 4
34 x34 serial No. of upper deck plate 2
35 x35 serial No. of upper deck bulb 3
36 x36 serial No. of upper deck T-bulb 43
37 x37 number of upper deck stiffeners 31

The graphs of the maximum, average, minimum and variance values of fitness across 5,000 
generations for simulation are presented in Fig. 7. The saturation was nearly achieved in this 



simulation. The maximum normalised fitness value is nearly 0.645. The standard deviation value 
is approximately constant and equal to 0.075 for all generations what means that heredity of 
generations is approximately constant over simulation.

Figure 5. Result of optimization calculation - optimal topology and sizing of vessel structure.

Figure 6. Evolution of structural weight values over 5000 generations; solid line for absolutely minimal 
structural weight found during simulation; only feasible solutions are shown.



Evolution of the fitness function values and the minimum values of structural weight are 
shown in Fig. 8. A correspondence of the diagrams can be seen. The increase of the fitness 
function values in successive generations is accompanied by the decrease of structural weight 
values.

Figure 7. Evolution of maximum, average, minimum and standard deviation values of the fitness over 
5,000 generations; fitness function values are dimensionless and normalised to produce extreme value 

equal to 1.0.

Figure 8. Evolution of maximal fitness value and absolutely minimal structural weight over 5,000 
generations; absolutely minimal structural weight for simulation only for feasible solutions.



7   Conclusions

The application of the genetic algorithm concept to solve the practical design problem of the 
optimisation  of  hull  structures  of  high  speed  craft  was  presented.  The  problem  of  weight 
minimisation for a three dimensional full midship block-section of the high speed catamaran hull 
was described.

Simultaneous optimisation of topology and scantlings is possible using the present approach. 
Enhancement  of  the  sizing  optimization  (the  standard  task  of  the  structural  optimization) 
allowing for the topology optimization requires disproportional computational effort.  It is an 
effect of both the increase of the search space by introducing design variables referring to the 
structural topology as well as the increase of number of generations and number of individuals to 
ensure satisfactory convergence of the optimization process.

Additionally the GA realisation described in the paper is also under continuous development 
directed towards implementation of other genetic operators, genetic encoding, multi-objective 
optimisation etc. as well as including some other constraints.

The present paper is a successful attempt of unification of problems of topology and sizing 
optimization of ship structures and their solution using the GA. It was proven that the GA can be 
considered  as  a  good method for  the  solution  of  the  unified  shape-material-topology-sizing 
optimization problems.

8   Acknowledgement

This  work  was  partially  developed  in  the  frame  of  the  research  project  financed  by 
MARSTRUCT Network of Excellence, contract No. TNE3-CT-2003-506141.

Bibliography

[1] Back, T. Extended Selection Mechanisms in Genetic Algorithms. In Belew, R.K. and 
Booker, L.B., ed., Proceedings of the Fourth International Conference on Genetic  
Algorithms. University of California, San Diego, 13-16 July 1991, Morgan Kaufmann 
Publishers, San Mateo, 92-99, 1991.

[2] Back, T. Generalized Convergence Models for Tournament – and (,) - Selection. In 
Eshelman, L.J., ed., Proceedings of the Sixth International Conference on Genetic  
Algorithms. University of Pittsburgh, 15-19 July 1995, Morgan Kaufmann Publishers, 
San Francisco, 2-8, 1995.

[3] Back, T. Evolutionary Algorithms in Theory and Practice, Oxford University Press, New 
York, 1996.

[4] Davis, L. Handbook of Genetic Algorithms, New York: Van Nostrand, 1991.
[5] De Jong, K.A. An analysis of the behavior of a class of genetic adaptive systems, Ph.D. 

Thesis, University of Michigan, 1975.
[6] De Jong, K. On Decentralizing Selection Algorithms. In Eshelman, L.J., ed., Proceedings 

of the Sixth International Conference on Genetic Algorithms. University of Pittsburgh, 
15-19 July 1995, Morgan Kaufmann Publishers, San Francisco, 17-23, 1995.

[7] Fast Ferry International Auto Express 82 delivered for Scandinavian service. December, 
35-36, 1996.

[8] Fast Ferry International Third Auto Express 82 arrives in Northern Europe. June, 35-36, 
1997.



[9] Fast Ferry International Star Cruises introduces Auto Express 82 catamaran. January-
February, 19-25, 1998.

[10] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning, 
Addison-Wesley Publishing Company, Inc., 1989.

[11] Goldberg, D.E., and Deb, K. A Comparative Analysis of Selection Schemes Used in 
Genetic Algorithms. In Rawlins, G.J.E., ed., Foundations of Genetic Algorithms. Morgan 
Kaufmann Publishers, San Mateo, 69-93, 1991.

[12] Harik, G.R. Finding Multimodal Solutions Using Restricted Tournament Selection. In 
Eshelman, L.J., ed., Proceedings of the Sixth International Conference on Genetic  
Algorithms. University of Pittsburgh, 15-19 July 1995, Morgan Kaufmann Publishers, 
San Francisco, 24-30, 1995.

[13] Haupt, R.L., and Haupt, S.E. Practical Genetic Algorithms, John Wiley & Sons, Inc., 
New York, 1998.

[14] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, Springer-
Berlin-Heidelberg: Springer-Verlag, 1996.

[15] Neri, F., and Saitta, L. Analysis of Genetic Algorithms Evolution under Pure Selection. In 
Eshelman, L.J., ed., Proceedings of the Sixth International Conference on Genetic  
Algorithms. University of Pittsburgh, 15-19 July 1995, Morgan Kaufmann Publishers, 
San Francisco, 32-39, 1995.

[16] Nobukawa, H., and Zhou, G. Discrete optimization of ship structures with genetic 
algorithm. Journal of The Society of Naval Architects of Japan 179:293-301, 1996.

[17] Nobukawa, H., Kitamura, M., Yang, F., and Zhou, G. Optimization of Engine Room 
Structure under Static and Dynamic Constraints Using Genetic Algorithms. Journal of  
The Society of Naval Architects of Japan 183:315-322, 1998.

[18] Okada, T., and Neki, I. Utilization of genetic algorithm for optimizing the design of ship 
hull structures. Journal of The Society of Naval Architects of Japan 171:71-83, 1992.

[19] Sekulski, Z., and Jastrzebski, T. Optimisation of the fast craft deck structure by the 
genetic algorithms. Marine Technology Transactions 9:155-188, 1998.

[20] Sekulski, Z., and Jastrzebski, T. Optimisation of the fast craft structure by the genetic 
algorithm. In Graczyk, T., Jastrzebski, T. and Brebbia, C.A., ed., Third International 
Conference on Marine Technology ODRA ‘99, pp. 51-60, 1999.

[21] Sekulski, Z., and Jastrzebski, T. 3D optimisation problem of the ship hull structure by the 
Genetic Algorithm. Marine Technology Transactions, 10:247-264, 1999.

[22] Spears, W.M., and De Jong, K.A. An Analysis of Multi-Point Crossover. In Rawlins, 
G.J.E., ed., Foundations of Genetic Algorithms. Morgan Kaufmann Publishers, San 
Mateo, 301-315, 1991.

[23] Stoffa, P.L., Sen, M.K. Nonlinear multiparameter optimization using genetic algorithms: 
Inversion of plane-wave seismograms. Geophysics, 56(11):1794-1810, 1991.

[24] Syswerda, G. Uniform Crossover in Genetic Algorithms. In Schaffer, J.D., ed., 
Proceedings of the Third International Conference on Genetic Algorithms, George Mason 
University, 4-7 June 1989, Morgan Kaufmann Publishers, 2-9, 1989.

[25] UNITAS Rules for the Construction and Classification of High Speed Craft, 1995.
[26] Zhou, G., Nobukawa, H., and Yang, F. Discrete optimization of cargo ship with large 

hatch opening by genetic algorithms. In ICCAS’97, Proceedings of the 9th International 
Conference on Computer Applications in Shipbuilding. Yokohama, Japan, 1997.

[27] Zhou, G., Yang, F., and Nobukawa, H. Discrete Optimization of Ship Structures from the 
Viewpoint of Practical Design. Journal of The Society of Naval Architects of Japan 
182:551-559, 1997.


	1   Introduction
	2   Computer Code for Genetic Optimization of Structures
	3   Structural Model
	4   Formulation of Optimization Model
	5   Description of Genetic Model
	5.1   General
	5.2   Chromosome Structure
	5.3   Fitness Function
	5.4   Genetic Operators
	5.5   Control Parameters
	Size of population
	Crossover probability 
	elitism



	6   Optimization calculations
	7   Conclusions
	8   Acknowledgement

