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Abstract.

We presented the new hp—HGS (hp adaptive FEM, Hierarchical Genetic Strat-
egy) multi-deme, genetic strategy which can be used for solving parametric inverse
problems formulated as the global optimization ones. Its efficiency follows from
the coupled adaptation of accuracy derived from the proper balance between the
accuracy of hp—FEM used for solving direct problem and the accuracy of solving
optimization problem. It is shown, that hAp—HGS can find at least the same set
of local extremes as the Simple Genetic Algorithm (SGA). Moreover, the results
of asymptotic analysis that verify much less computational cost of hp—HGS are
recalled from the previous papers.

1 Introduction

The parametric inverse problems in which we try to find vector of parameters of the
partial differential equation, formulated as the optimal control ones plays a very impor-
tant role in technology. They are often used in the flaw detection, detection of natural
resources and optimal design. Solving such problems is hard, because of their exception-
ally high computational cost. It depends on the number of calls of direct problem solver
performed by the optimization algorithm, while the computational cost of the direct
problem solver depends significantly on the assumed accuracy.

We introduced the new twin adaptive hp—HGS strategy for solving such kind of inverse
problems (see Schaefer, Barabasz, Paszyniski [5]). It uses the hp-adaptive Finite Element
Method (hp-FEM) for solving direct problem, and Hierarchical Genetic Strategy (HGS)
for solving the optimal control one. This strategy properly balances the error of solving
both problems in order to decrease the total computational cost.

Almost all strategies based on the standard genetic mechanisms that try to make the
computation more efficient become risky because of the potential loss of the asymptotic
guarantee of success (see e.g. Guus, Boender, Romeijn [3]). The main target of this
paper is to presented the formal analysis of hp—HGS that proves that this strategy is not
worse in finding global and local extremes than the Simple Genetic Algorithm (SGA).
Next we recall our results that make possible to compare its expected computational cost
to the cost of single population SGA and HGS.



2 Problem formulation

We consider the class of parametric inverse problems for which the energy functional
can be defined. The direct problem is given by the following variational problem: Find
u € ug + V such that

b(d;u,v)=1(v) YoeV (1)

where wug is the shift of the Dirichlet boundary conditions and V is the proper Sobolev
space. The form of functionals b, | depend of the modeled physical phenomena (e.g.
the variational equations of the linear elasticity described in [1]) and of its parameter
d € D, where D is the regular compact in RN, N < +o00. For b symmetric and positively
defined, the energy functional takes a form

E(d;u) = %b(d; u,u) — 1 (u). (2)

The above direct problem can be solved by hp—adaptive Finite Element Method (hp—
FEM) (see Demkowicz [2]). This method creates the sequence of nested meshes, which
are used for solving finite dimensional problems with the increasing accuracy. This
meshes are described by the two parameters: h which is related to the size of elements
and p that stands for the degree of the approximation polynomial. If we have established
the computational mesh at the particular step of this method, then the next-step fine
mesh is constructed by breaking all elements and increasing the order of polynomial.
The problem (1) may be approximated by using hp—FEM with the finite dimensional
subspace V},, C V, then we intend to find uy,, € ug + Vi, p so that

b (d; Uh,p, ’Uh,p) = l(v;m,) VU}MD S Vh,p. (3)

This coarse mesh solution uy, , is computed in each step of this strategy. The fine mesh
solution un 1 € Vi .\, that satisfies the equation similar to (3) in the space Vi py1 38
computed too. Notice that both approximate solution spaces satisfy V}, ,, C V% pr1 C V.
Formally, the solutions to (1), (3) depend also on the parameter d € D. The resulted next-
step mesh is obtained on the base of the relative hp—FEM error analysis (see Demkowicz
[2]) given by

errppnm(d) = Huh,p(d) - u%,p+1(d)HE (4)

where || - |z stands for the energy norm on the space V (see e.g. Ciarlet [1]). The
modifications performed in the fine mesh remains only in elements where the value (4)
is large.

We generally assume, that the energy J(d) = E(d;u) of the exact solution u € V
to (1) in known from the experiment and we are looking for the unknown parameter d.
Assuming that the proper convergence conditions are satisfied (see Demkowicz [2]) the
inverse problem can be formulated as follows

Find § € D such that :
(5)

hmh—>0,p—>+oo Jhp (g) - '](Ci) < hmh—>0,p—>+oo Jh.p (g) - J(Cz)

where g, g € D are the approximate parameters and J, ,(9) = E(g; upp(g)) is the energy
of solution uy, p.



Algorithm 1: Pseudo-code of the j-th order deme P in the Ap-HGS tree.

1: if (j =1) then

2: initialize the root deme;

3: end if

4: t «— 0

5. repeat

6:  if (global_stop_condition received) then

7 STOP;

8: end if

9: for (i € P') do

10: solve the direct problem for g = code(i) on the coarse and fine FEM meshes;
11: compute errpg(g) according to the formula (4);

12: while (errpga(g) > Ratio* d;) do

13: execute one step of hp adaptivity;

14: solve the problem on the new coarse and fine FEM meshes;
15: compute errpgp(g) according to the formula (4);

16: end while;

17: compute fitness f;(7) using the FEM mesh finally established,;
18: end for

19:  if (j > 1) then
20: compute the phenotypes’ average and send it to the parental deme;
21: if (branch_stop_condition(P")) then
22: STOP;
23: end if
24: end if

25:  if (((tmod K) = 0) A (j < m)) then

26: distinguish the best fitted individual = from deme P?;

27: if (= children_comparison(z)) then

28: sprout;

29: end if

30: end if

31: perform proportional selection, obtaining multiset of parents;

32: perform SGA genetic operations on the multiset of parents;

33: t—t+1;
34: until (false)

3 hp—HGS definition

The idea of hp—HGS is based on the economic HGS strategy introduced by Kolodziej
and Schaefer [4], [7], [6]. Its main idea is running a set of dependent evolutionary demes
in parallel. The dependency relation has a tree structure with a restricted number of
levels m. The demes of lower order (close to the root of the structure) perform more
chaotic search with the lower accuracy. They only detect the promising regions of the
optimization landscape, in which more accurate demes of higher order are activated. The
different precision in demes of each level is obtained by the binary genotypes of different
length. There is a coherency in search between demes of different order in Ap-HGS tree,



thanks to the special kind of hierarchical, nested encoding that forms the sequence of
nested phenotype’s grids. The maximum diameter of the phenotype’s grid d;, associated
with the demes of the order j determines the search accuracy at this level in hp—HGS
tree. Of course §; > ... > d,,.

Each deme works as SGA and after constant number of genetic epochs K (called
metaepoch) each of them, excepting demes of m order (called leaf), sprouts new child-
deme in the surrounding of the best fitted individual. The children_comparison function
protects to sprout the new deme in the landscape region which is occupied by another
deme that has the same parent.

The fitness function f;(i) for demes of j-th order is computed by the hp—-FEM and

is based on the energy error ey, ,(g) = ‘Jh,p(g) - J(cf)‘, where J(d) is the known, real

energy and ¢ represent the parameter decoded from the genotype ¢ appears in deme of
the level j in hp-HGS tree. The adaptation of errors is made using the formula (see
formula (8) in [10])

€4 p11(9) < g in(9) = unp(@IE + lule) — unp(@)IE + Lo —d  (©)

2

where e%7p+1(g) = J%m_‘_l(g) — J(d)|, L stands for the Lipshitz constants of the func-
tionals J and |g — c2| is the error of the inverse problem solution that characterizes the
individuals belonging to the HGS demes of the j-th order. It is easy to observe, that
lg — ci| corresponds to §;. Error of solution over the fine Ap~FEM mesh is depending on
the relative hp—FEM error plus the total Ap—FEM error over the coarse mesh plus the
accuracy of the proper deme in hAp—HGS tree.

In order to decrease the computational complexity of the algorithm we try to balance
the components of the error giving by the right side of the formula (6). Two first com-

ponents vanishes when h — 0 and p — oo so the third component L ’ g— cf‘ dominates

asymptotically. We perform the hp adaptation of the FEM solution of the direct prob-
lem while the quantity ”’"f% is greater then the assumed Ratio, which stands for the
parameter of the hp—HGS strategy and corresponds to the Lipshits constant L of the
energy functional.

Because all hp-HGS demes work asynchronously on the base of the similar roles, it
is enough to present the pseudo-code for the one deme P of the arbitrary j-th level in
order to define the whole hp-HGS strategy (see Algorithm 2). The global_stop_condition
appears if the satisfactory set of solutions is found by leafs while the branch_stop_condition
function detects the lack of progress in the evolution of the particular deme. We refer to
[5], [10], [9] for more details.

4 Asymptotic behavior

The main goal of the asymptotic analysis presented below is to compare hp—HGS with
two other strategies of solving inverse problem (5). The first strategy is the coupling
of HGS with the same SGA engines in each branch as in hp—HGS, but with the fitness
function f,, computed as in hp—HGS leafs (e.g. by solving the direct problem with the
maximum accuracy) and then induced to all branches of lower order. Notice, that such
induction is well defined because of the nested HGS encoding (all phenotypes in branches



of the order j are also phenotypes in branches of the j + 1 order). The second strategy
is the single population SGA with the same fitness f,, as previously. The size of the
SGA population ensures the same initial local coverage of the admissible domain D by
the SGA individuals as by individuals of each hp—HGS leaf.

We will intensively use the theory of the SGA heuristic (genetic operator) and its
fixed points developed by Vose [12] as well as the convergence results of SGA sampling
measures (see Schaefer [6], Chapter 4). Let us denote by €2; the SGA genetic universum of
binary codes and by G; : A"t — A"i~! the genetic operator (heuristic) of all branches
(SGA demes) of the order j. It depends only on the number of genotypes r;, fitness
function f; and the genetic operations applied in branches of the order j. Moreover the
unit simplex A”~! C R" stands for the set of frequency vectors of all possible demes of
the order j. We assume that each genetic operator G; has the unique fixed point z; in
A"~ that represent the limit population (i.e. the infinite cardinality population after
the infinite number of genetic epochs). Moreover z; stands for the global attractor of G;
on A (e, Vo € A im0 (G)) (2) = 2j).

Each deme 2 € A" ! of the order j may induce the probabilistic measure ©(z) on D
given by the formula ©(z)(A) =3, .,4e(i)ea i Where A C D is an arbitrary measurable
set (see Section 4.1.2 in [6] for details). Let denote ©(z;) by ©; for the sake of simplicity.
Moreover we denote by p; the cardinality of an arbitrary deme of the order j in hp-HGS
and HGS. We assume that SGA governing the evolution of the hp—HGS branches of j-th
order j € {1,...,m} are well tunned (see Schaefer [6], Definition 4.63). The analogous
assumptions are made for the strategy in which the fitness f,, is implemented in all HGS
branches and for the single population SGA.

The course of verifying the asymptotic guarantee of success for hp-HGS exactly follows
the method introduced by Kolodziej [4] and Schaefer [7] for HGS. It consists in proving
the compliance of the limit sampling measure of analyzed strategy with the limit sampling
measure of the genetic algorithm for which the asymptotic guarantee of success is already
checked. The single population SGA with the f,, fitness was selected as the reference
algorithm that posses the desirable feature (see Vose [12] and Schaefer [6]). Another
words, we are only obligated to prove, that both Ap—HGS and SGA can found the same
set of local minimizers.

Theorem 4.1. Let ty be the number of genetic epochs after which hp—HGS has b branches
of maximal degree m and no new branches are sprouted. Then

Ve >0, Vnp >0, 3N € N, IW(N) > to,
so that for the arbitrary measurable set A C D

Vit > N, V> W(N) Pr{lx} . (A) = On(4) < e} > 1 -1,

where
t 1 ¢ ¢
Xb,um = g( e(pl,pm) + LA + e(pb,um) )
stands for the mean sampling measure on D, induced by all hp—HGS leafs. O

Sketch of the proof: The method of verifying above thesis is analogous to the proof of
the Theorem 1 in [7]. First we can observed, that for b = 1 it follows immediately from
the Theorem 2 in [8].



Now let b > 1 and {pﬁ L7 ,pi’ um} be a frequency vector of populations evolving
in demes of level m in hp-HGS tree after ¢t > ¢ty metaepoch. Let us fix e > 0 and n > 0.
Because this theorem is true for b = 1 and operator G,,, has the unique fixed point z,,,
then for every deme we have

Pr{|©(p] ., )(4) = Om(A)| <€} > 11

where N; € N and W(N;) e N, I =1,...,b. Because VI O, (A) < +oo there exist Iy
such that )
6,

Pry,um

(A) = Om(A)| = [0y (A) = Om(A)]. (7)

pl#
Let | # lp, N = max{Ny,...,Np}, W(N) = max{W(N1),...,W(Np)}, ttmn > N and
t > W(N), then

Oy,

p’roy/ﬁm

b
(4) - %Z b (4) = 0,,(4)] >

b
1 1
25 218, () = bOm(A)] = 7B, (4) = Om(A)] =

= Xt (A) — O (A)].

Finally, applying (7) for ©,, we have

Lo 1m

Pr{{Xpu,, (A) — Om(A)| < e} = Pr{|0,  (A) —Onm(A)] <€} >1-n

plu

which completes the proof. O

Next we briefly report some others advantageous asymptotic features of hp—HGS that
are presented and proved in detail in [9]. The Corollary 1 in [9] delivers the formula for
the computational cost of the single genetic epoch in all Ap—-HGS branches

Hn1ar + Z ﬁQj_l K’ h aj (8)
j=2

where a; stands for the average cost of solving direct problem for individuals of the hp—
HGS deme of j-th order. It it obvious, that a; > a; if 7 > 4. In particular, when we
assume the particular linear regression of the inverse problem error §; the average cost
a; is O ((9 Gj-1) +ﬁ)37) where the constants # > 0, 5 > 0 and v > 1 depend on the
inverse problem under consideration (see Corollary 4 in [9]). For typical 3D problems
associated with the linear elasticity v = 3 so the mean computational cost grows nine
degree for each level in the hp-HGS tree. The coefficient k7 < 1 stands for the expected

ratio of alive branches of the order j. The computational cost of the single HGS epoch
applied to the same inverse problem

m

B G + Z ﬁQj—l K Hj Am (9)
=2



is much greater then the one given by the formula (8). Both HGS and hp-HGS costs
are less then the single deme SGA cost that may be approximated by #€2,,,—1 ftm @ (see
Corollaries 2 and 3 in [9]).

5 Simple computational example

In order to illustrate the impact of the twin adaptive strategies in solving paramet-
ric inverse problems we briefly quote the simple computational example related to the
modeling of the Step-and-flash Imprint Lithography (SFIL). This modern process is a
patterning by utilizing photopolymerization to replicate the topography of the template
into the substrate. The main goal of this example was to find the proper value of the
thermal expansion coefficient (CTE) parameter of the pattern body. The other parame-
ters, like the Young modulus and Poisson ratio were assumed to be equal to 10° and 0.3
respectively. The initial value of the CTE parameter was set —0.4. We refer to [11] for
more detail description of this experiment.

Because the hp—HGS algorithm is not fully implemented yet, we used the Hook-
Jeeves method as the optimization procedure and hp—FEM for solving direct problem.
The above strategy needs three hp—FEM calls for each Hook-Jeeves iteration. The rule
of accuracy balancing similar to described in section 3 was utilized. The results was
compared with the algorithm that solves the same inverse problem with the constant,
maximum accuracy of hp—-FEM.

In the first case we take the initial hp-FEM mesh with 15% relative error of the FEM
solution. When the inverse problem was solved up to this accuracy, one step of hp—
adaptation was executed. We obtain the second hp-FEM mesh with 8% accuracy, and
then the thrid one with 5% accuracy. We needed to perform 43 iterations of algorithm
on the first hp—FEM mesh, 39 on the second mesh and 35 on the third. The time of one
iteration equals 0.1s, 1s, 10s respectively. The total execution time was 43 x 3 x 0.1 +
39 x3x1+435x3x10=1179 seconds. In the second case we used the finest hp-FEM
mesh with the 5% accuracy of direct problem solution and we needed 91 iterations to get
the same value of CTE. The total execution time equals 91 x 3 x 10 = 2730 seconds in
this case.

6 Conclusions

The proposed hp—HGS seems to be the advantageous strategy for solving parametric
inverse problems for which the energy functional can be defined. Such problems are
formulated as the global optimization ones (or optimal control ones) where the objective
takes a value of discrepancy between the real energy of the system and its approximated
value computed by the algorithm. This class of problems includes important cases of
heat flow in solid bodies, fluid flow in porous media and the linear elasticity problems.

In spite of the lower computational cost hp—HGS offers the same possibility of finding
global and local minimizers as HGS and the single population SGA (see Theorem 4.1).
The computational cost reduction is resulted from the proper balance between the accu-
racy of hp—FEM used for solving direct problem and the accuracy of solving optimization
problem.
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