
A New Approach to Global Optimization:
Sheep Optimization

Robert Sawko and Grzegorz Skorupa1

1 Wroclaw Univeristy of Technology, Institute of Information Science and Engineering,
Wroclaw, Poland,

email: robert.sawko@student.pwr.wroc.pl, grzegorz.skorupa@student.pwr.wroc.pl

Abstract. The paper presents a new meta-heuristics for solving continuous op-
timization problems of finding a global optimum. The algorithm is based on the
behavior of a specific animal species. The main inspiration for this method was a
flock of sheep, which after consuming the grass in a certain area, starts to search
for new sources of food when the local sources are depleted. A special penalty
function to enforce that kind of behavior is proposed. The penalty function to-
gether with a gradient-based optimization algorithm became a mechanism for
avoiding local maximums and for more thorough exploration of the set of feasible
solutions. The comparison with the basic genetic algorithm is presented.

1 Introduction

Optimization problems are a crucial element of many branches of engineering and science.
Problems of this class can arise in technical and nontechnical applications and include
such tasks like enhancing the performance of a device, enhancing the parameters of a
material, profit maximising or minimizing the time of a job.

Continuous optimization problems become challenging when the number of extreme
points or the number of dimensions grow. The necessity to solve more complex tasks
as well as the lack of efficient general methods resulted in the elaborating of numerous
heuristics for solving optimization problems such as GeneticAlgorithms (GA) [8] and
Evolutionary Algorithms (EA) [1], Ant Colony [3], Particle Swarm (PSO) [6], Tabu
Search (TS) [2], Simulated Annealing [7] or even Harmony Search Optimization [5].
Extensions of classical optimization algorithms such Penalty Methods [10] have been
also developed.

One of the common features of these methods is the ability to adapt to a specific
function by applying certain procedures or tuning the parameters. These mechanisms
allow the avoidance of local extreme points or improve already found solutions e.g. GA
uses mutation operators for obtaining new solutions and fitness based on the selection
operator for the improvement. Optimization algorithms are often characterized by two
important features: the ability to explore and to exploit the space of feasible solutions.

All of the mentioned techniques were inspired by some phenomenon observed in na-
ture. In this paper a new technique inspired by the behavior of a flock of sheep is
presented. The algorithm belongs to a class of penalty methods. The main goal of the
algorithm is to find a global extreme point in the presence of many local extreme points.

The rest of the paper is organised as follows: the definition of the optimization problem
and a gradient ascent method is recalled in Section 2, Section 3 describes the inspiration
more thoroughly and proposes procedures implementing it. Section 4 is devoted to the
algorithm itself and in Section 4 some experimental results and comparisons to GA are
presented. Some general remarks are concluded in Section 5.

2 Basic Definition and Algorithm

The optimization problem is the problem of finding an extreme point i.e. minimum
or maximum of a function in the space of feasible solutions. In the rest of the paper
attention will be focused on maximisation. Formally this problem can be formulated
as followed: let F be a quality function to be optimized. Then the solution of the
optimization problem is defined as:

x∗ = arg max
x∈X

F (x) (1)

where X is a set of feasible solutions and an element of x ∈ X is a d-dimensional vector
x = [x(1), x(2), . . . , x(d)].

One of the basic local optimization algorithms is gradient ascent. In the next sec-
tion, this algorithm will be modified to achieve a better global performance. Although
sheep optimization algorithm will be based on gradient ascent, the proposed methodol-
ogy is much more general and can be applied in conjunction with other gradient and non
gradient methods. For the maximisation problem the formula of the algorithm is the
following:

xn+1 = xn + γ∇F (x)x=xn
(2)

where xn is the solution in the n-th iteration and γ is a constant.

3 Inspirations and Corresponding Mechanisms

A flock of sheep or a swarm of locusts located in a region exploit the available sources of
food. After consuming all of the available resources, it moves to another location leaving
bare ground behind it. Any region after some time becomes unattractive and a flock
moves around, always looking for more fertile lands.

3.1 Gradient Ascent with Implemented Sheep Behavior

Now the sheep behavior will be introduced to gradient ascent method. The idea is to
translate a movement of flock members, which are constantly searching for more food,
into a movement of a set of points in a space of feasible solutions. The movement will be
affected by a modified quality function. This modification considers the already visited
locations.

A position of one sheep represents an acceptable solution, i.e. a point from set X. In
each iteration the sheep moves around the search space and the amount of food in the
sheep neighbourhood is reduced. This reduction is an equivalent of food consumption
and is represented by a penalty function imposed on quality function.

The quality function can be treated as a starting food resources in the environment.
A sheep move around according its to gradient ascent, hence it will always move in

the direction which promises the biggest food amount improvement. For each iteration,
quality function with an imposed penalty is the current food resources of the environment.
The penalty does not have to be imposed in each iteration. One can define special
condition determining whether to consume food or not. Hence sheep has two states:
searching for food and food consumption.

In the outcome every region will become less attractive for the sheep and it will
move to another searching for more resources. Of course a sheep has no mechanism
to distinguish global and local maximum, but remembering the visited places and their
corresponding quality function values (without imposed penalty) will give a good ap-
proximation of the global maximum position.

3.2 Penalty Functions

In the case of maximisation problem, the penalty function should reduce the value of
the quality function in the region. Let p ∈ X be a point where the penalty was imposed
and the form of the penalty function be defined by:

k(x, p) = a exp(−‖x− p‖
2

b
), a > 0, b > 0 (3)

where a and b are constant parameters reflecting the strength and the size of penalty
respectively. The penalty function is increasing as we approach to point p and decreases
to zero otherwise.

Furthermore for a finite sequence of L points P = {pi}Li=1, one can define the total
penalty function as a sum of all penalty functions:

K(x, P) =
L∑

i=1

k(x, pi). (4)

The resultant quality function perceived by a sheep can be defined as:

G(x, P) = g +
F (x)− g

1 +K(x, P)
(5)

where g is so called ground level. Ground level should be a real number such that:

∀x ∈ X F (x) > g. (6)

The definition of the penalty and its imposition fulfil four important properties:
• When x is close to any of the points from P then the value of G will be less than
F .

• When x is far from every point from P then the G(x, P) ≈ F (x).
• Greater values of F result in greater penalties i.e.

F (x1) > F (x2)⇒ (G(x1, {x1})− F (x1)) > (G(x2, {x2})− F (x2)). (7)

• Value of G is always greater than the ground level. Thanks to this property one
can avoid so called ”digging” - the situation in which a sheep imposes a penalty
but does not leave a bounded region.

3.3 Movement of Sheep

As it has been already mentioned, the movement will proceed according to gradient
ascent method. For the purpose of movement the gradient of G function will be used
instead of F . Assuming that the flock consist of M sheep and xm,n is a position of mth
sheep in nth iteration, then position of the same sheep in next iteration is given by:

xm,n+1 = xm,n + ∆m,n (8)

where
∆m,n = γ∇G(x, P)|x=xm,n

(9)

and γ is a constant. Later instead predefined constant a sequence (γn) will be used. The
sequence should fulfil two properties:

lim
n→∞

γn = 0, (10)

∞∑
n=0

γn =∞. (11)

In the paper the sequence of the form:

γn =
1

1 + ηn
(12)

where η is a constant real number is used.

3.4 Building the Set of Penalty Points

Now conditions for placing penalty points will be discussed. In a case where there is no
condition, sheep will consume food in every location that they visit consequently strongly
deforming the observed quality function. To avoid that kind of behaviour penalty point
is placed only when the position change is small, that is ‖∆m,n‖ < ε, where ε is a number
close to zero.

3.5 Leaving Maximums Neighbourhood

The gradient based mechanism and the penalty function without an additional mech-
anism do not ensure leaving the local maximum neighbourhood. The second issue is the
emergence of a new extreme points or shifting the existing ones(!). The only outcome of
using a proposed penalty function is the decrease of function values. On the other hand,
this decrease can impact the gradient mechanism especially where the values are near
the ground level, because the function will become “smoother” .

Hence a necessity to introduce another mechanism arises. Its main task is to allow
a sheep to leave penalised region faster. The simplest method consists in generating a
random vector and move according to it as long as some condition is met (this mechanism
replaces the gradient). Other solution (used later in experiments) is to multiply gradient
by a predefined constant when the length of the replacement is small:

∆m,n = h∇G(x, P)|x=xm,n
(13)

with h > 1. The sheep behaves this way only when the replacement computed by
ordinary gradient is small. It is worth mentioning that in such a case ‖∆m,n‖ is always
less than hε.

3.6 Algorithm Pseudo-code

Let us denote x̂ as a solution returned by an algorithm. Let M be a number of sheep
in a flock. Then the sheep optimization algorithm can be formulated as follows:

1. Initialization
1) n:=0, P := ∅
2) generate starting points of sheep: x1,0, x2,0, . . . , xM,0

3) set starting indices of γkm sequence ki := 1, i = 1, 2, . . . ,M
4) x̂ := x1,0

5) m := 1 (index of a sheep)
2. F (xm,n) > F (x̂) then x̂ := xm,n

3. Compute: ∆m,n := γkm
∇G(x, P)|x=xm,n

4. If ∆m,n < ε then go to 5, else go to 8.
5. Increase move ∆m,n := h∆m,n

6. km := 1
7. Add new penalty in a current position P := P ∪ {xm,n}
8. m := m+ 1, km := km + 1
9. if m 6 M then go to 2. (loop for each sheep)

10. n =: n+ 1, m := 1
11. If n 6 N then return to 2. (loop for each iteration)
12. return x̂ as a result. FINISH.

3.7 Similarities to Other Optimization Methods

This approach is one of the penalty methods used together with multistart algorithms
to avoid multiple determinations of local minima [10]. These methods are applied to find
a starting point for a local optimization algorithm. The obtained starting point should
belong to a region of attraction of a better local extreme point. Repeating this procedure
should lead to finding a global extreme point. Hence the aim of using penalty functions
is the same but they are used in a different way.

The form of the penalty function in sheep optimization is most similar to the one
presented in Filled Function method [4]. The impact of the penalty function in the sheep
optimization is strongly local i.e. the effect is negligible in places that are far away from
penalty points. Filled Function method on the contrary flattens the function in a far way
regions and therefore strongly deforms it.

This approach may seam similar to PSO where the social mechanism is used to avoid
local extreme points. However the interaction between flock members is not direct and
places already visited by the flock member become less attractive instead of drawing
attention of other flock members. On the other hand, the sheep based approach may
resemble TS where some solutions become not acceptable. A distinctive feature to TS
is that proposed solution introduces levels of attractiveness being in consequence more
general mechanism than TS, where the level is plus infinity for unacceptable solutions.

4 Experimental Performance Evaluation

The performance of the proposed algorithm has been tested on two functions from de-
Jong’s test suit [9] namely General Rastrigin Function and Shekel-Foxholes Function.
Two variants of the sheep algorithm were utilised M = 1 and M = 20.

GA has two tunable parameters: pc and pm which are crossover and mutation proba-
bilities. To represent a solution, which is real number vector, a standard binary encoding
of real numbers was used. Each coordinate was encoded with 16 bits which gave a pre-
cision of the order 10−4. Standard two-point crossover and a roulette wheel for selection
are used. Mutation operator is a one known from the literature: a change of each bit
with probability pm. The size of the population was 20.

For each setup 20 numerical experiments were conducted. Parameters of the algo-
rithms were set to equalise the algorithms operating time, hence each algorithm had the
same time to find a solution. Obviously such approach is implementation dependent
but allows performance comparison. Both algorithms were implemented in MATLAB
environment. No built in toolbox or external library was used to minimise the impact
of implementation. The experiments were preceded by calibration process. Results pre-
sented in tables are an average of: distances of solutions found to optimum and quality
loss. Additionally the distance of closest(min) and furthest(max) obtained solutions are
also presented.

4.1 General Rastrigin Function

General Rastrigin Function can be described by a following formula:

f(x) = −10d−
d∑

i=1

((x(i))2 − 10 cos(2πx(i))) (14)

Two cases: d = 2 and d = 20 were considered. In both cases the optimal solution and
its quality function value are:

x∗ = ~0, f(x∗) = 0. (15)

and the region of optimization:

x ∈ [−20, 20]d (16)

After calibration process parameters of the sheep algorithm were set for d = 2 problem
as follows: a = 0.3, b = 0.7, ε = 0.01, h = 500, η = 0.1, g = −60. After calibrating GA
pc = 0.8, pm = 0.2 were chosen. The results of this experiment are presented in Table 1.

In the case of d = 20 the parameters were set to: a = 1, b = 0.55, ε = 0.01, h = 200,
η = 0.1, g = −60 and the parameters of GA were: pc = 0.7, pm = 0.05. The results are
presented in Table 2.

Table 1. Results for General Rastrigin function for d = 2

Algorithm N f(x∗)− f(x̂) |x∗ − x̂| min |x∗ − x̂| max |x∗ − x̂|
S1 15000 0.043 0.043 0.00002 0.994

S20 1000 0.033 0.011 0.001 0.037

GA 800 1.715 0.883 0.011 1.449

Table 2. Results for General Rastrigin function for d = 20

Algorithm N f(x∗)− f(x̂) |x∗ − x̂| min |x∗ − x̂| max |x∗ − x̂|
S1 20000 0.85 0.76 0.0005 1.41

S20 1500 66.26 0.96 0.44 1.84

GA 2900 35.84 2.91 0.2 5.05

4.2 Shekel-Foxholes Function

Shekel-Foxholes Function for d = 2 is defined by:

f(x) = 0.002 +
25∑

i=1

1

i+
∑d

j=1(x(j) − aij)2
(17)

where

a =
(
−32 −16 0 16 32 −32 −16 0 . . .
−32 −32 −32 −32 −32 −16 −16 −16 . . .

)
. (18)

For a function defined this way the optimal solution and a corresponding value of a
quality function are:

x∗ = [−32,−32]T , f(x∗) = 1.0178. (19)

with the optimization region:
x ∈ [−35, 0]d (20)

The calibration process resulted in the following parameters for sheep optimization algo-
rithms a = 0.6, b = 0.1, ε = 0.1, h = 200, η = 0.1, g = −0.2. The parameters of GA were
set to pc = 0.7, pm = 0.3. The Table 3 presents the result of numerical experiments.

Table 3. Results for Shekel-Foxholes function d = 2

Algorithm N f(x∗)− f(x̂) |x∗ − x̂| min |x∗ − x̂| max |x∗ − x̂|
S1 2500 0.002 0.040 0.004 0.102

S20 130 0.03 0.045 0.001 0.117

GA 800 0.07 0.256 0.058 0.512

Table 4. Results for Shekel-Foxholes function d = 5

Algorithm N f(x∗)− f(x̂) |x∗ − x̂| min |x∗ − x̂| max |x∗ − x̂|
S1 6600 1.164 0.110 0.037 0.181

S20 300 1.750 0.141 0.029 0.289

GA 800 7.927 4.370 0.258 10.913

The last test was made on five dimensional Shekel-Foxhole’s function. The parameters
of proposed algorithm were set to: a = 0.7, b = 1.3, ε = 0.05, h = 200, η = 0.05, g = −0.2
and the parameters of GA were pc = 0.6, pm = 0.2. Results are shown in Table 4.

Presented experiments show that sheep optimization approach can be competitive to
GA. In fact most of the obtained results suggest that sheep algorithm performed better
and achieved values one order of magnitude closer to maximum point. On the other hand
sheep algorithm is described by much more parameters than its simple GA equivalent

hence it is more difficult to calibrate them. Moreover GA is an inefficient algorithm thus
a good result in comparison does not prove the efficiency of the sheep optimization. A
more thorough comparison should use one of the more sophisticated versions of GA or
other algorithms with proved efficiency e.g. the ones using information about gradient.
Also a comparison to penalty methods would be valuable.

The results obtained by S20 were slightly worse than the results of S1. This may
suggest that using many sheep simultaneously does not have to improve the performance
or quality. However this loss may be caused by a smaller number of steps performed by
each sheep.

5 Conclusions

The benefit of using sheep optimization is the ability to avoid any local extreme point.
That is why this approach can be useful when dealing with a strongly varying function.
Sheep optimization can become the first estimation of a global extreme giving a set of
positions which can be further exploited by different algorithms, especially when used as
part of a hybrid algorithms

In a future work, we plan to develop a mechanism for leaving the neighbourhood of
local optimum. A more thorough comparison with different meta-heuristics is needed.
We also plan to use sheep optimization in problems related to game theory, namely
searching for the Nash equilibrium.

Bibliography

[1] D. Ashlock. Evolutionary Algorithms for Modeling and Optimization. Springer,
2006.

[2] D. Cvijovic and J. Klinowski. Taboo search - an approach to the multiple minima
problem. Science, 267:664–666, 1995.

[3] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics Part B,
26(1):2941, 1996.

[4] R.P. Ge. A filled function method for finding a global minimizer. In Dundee Biennial
Conference on Numerical Analysis, 1983.

[5] Z.W. Geem, J. H. Kim, and G.V. Loganathan. A new heuristic optimization algo-
rithm: Harmony search. Simulation, 76(2):60–68, 2001.

[6] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufman Publishers,
2001.

[7] S. Kirpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[8] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1998.
[9] D. Nikos. The function testbed. Website, 2007. http://www.it.lut.fi/ip/evo/

functions/functions.html.
[10] A. Torn and A. Zilinskas. Global optimization. Springer-Verlag New York, Inc., New

York, NY, USA, 1989.

