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Abstract. This paper is devoted to the application of an Evolutionary Algorithm
to the design of Finite Impulse Response filters (FIR). A hybrid algorithm is
proposed, which consists of a robust global optimization method (Evolutionary
Algorithm — EA) and a good local optimization method (Quasi-Newton — QN).
An experimental comparison of the hybrid algorithm against EA and QN alone
indicates that EA yields filters with the better amplitude characteristics than
QN. Furthermore the hybrid method yields filters with even better amplitude
characteristics and in some times, it needs significantly less time than EA alone
to reach good solutions.

1 Introduction

Problem of matching numerical optimization methods to problems to be solved occurs in
many engineering applications. In this paper we concentrate on two different numerical
optimization methods: robust global optimization method (Evolutionary Algorithm -
EA) and a well-known local optimization method (Quasi-Newton - QN). Then we propose
to use a hybrid method [8, 11] which applies both EA and QN at one run. The hybrid
method make good synergy of exploration and exploitation abilities (introduced by the
EA and QN respectively).

The research was focused on a real engineering optimization problem: designing of
digital FIR filters, which occurs in a processing line of a radar signal [6, 16]. Those digital
filters are a part of a filter bank, which is needed for dividing signal into sub-bands which
correspond to different velocities of detected object. The problem of designing filter bank
which consists of k filters may be decomposed into k subproblems of designing a single
filter with certain requirements. The basic one is that each filter’s pass-band is separated
from the pass-band of every other filter. Requirements for each filter in the bank are
generally dependent on the function the filter should provide, e.g. passing or stopping
signals of required frequencies.

Digital FIR filter yields its output as a linear combination of the delayed input signal.
Therefore, the filter is completely characterized by the set of parameters — coefficient
of this linear combination. In the digital signal processing domain, it is customary to
analyze filter properties using the frequency characteristic H(z)|z=ejθ and, in particular,
the amplitude part of that characteristic A(z) = |H(z)|. Typically [1], requirements for



the filter characteristics are provided in a form of limits on the amplitude characteristic
A(z) values for different values od z. In contrast to the basic design method, where only
a single attenuation level in the stop-band is specified, we consider several different values
of the attenuation level in different parts of the stop-band. This requirement is needed to
eliminate clutter[6] — objects we do not want do detect, like tree leafs, clouds, sea waves,
etc. In radar problems we additionally need to perform in real time all computations
necessary for signal processing, and thus the filter order should not exceed a certain value
L. The value L comes from the time of observing one azimuth by the radar with the
assumed sampling frequency.

When we consider the aforementioned assumptions in the filter design process, a L-
dimensional, multimodal objective function is obtained. In this case we observed (see
results in Section 4) that both EA and QN method alone are insufficient to obtain
acceptable solutions in acceptable time.

This paper is aimed at testing the improvement comes from using the hybrid method
in contrast to the global and local optimization separately in the FIR filter design task.
The hybrid method is compared to different optimization methods whose representatives
are evolutionary method [2, 13] and Quasi-Newton method [15, 4, 9].

The paper is organized in the following way. The optimization methods are described
in Section 2. In Section 3 we describe filter design problem as an optimization task. In
Section 4 we define the objective function and we give detailed assumption for filters
parameters. Then, we present results of numerical experiment. Summary and outlook
are provided in Section 5.

2 Optimization methods

2.1 Evolutionary algorithm

Evolutionary algorithm (EA) [2, 13] is a stochastic optimization method. In each
iteration t, the algorithm maintains a population Pt that contains µ points from the
search space. EA usually starts from randomly generated solutions, then it changes this
proposed solutions in consecutive iterations. The changes depend on the quality of solu-
tions in previous iteration. In the selection procedure candidates for the next generation
are chosen. Probability of choosing a candidate is depends on its objective function value
(”better” candidates are selected with higher probability), and the selection process is
repeated to compute the next population. All selected points are changed using oper-
ations of mutation and crossover, which are named by biological evolution. Then the
changed point become the population for the next iteration. More details on EAs can be
found e.g. in [2, 13].

2.2 Quasi-Newton method

Quasi-Newton or, in the other words, variable metric method [4] is a local minimiza-
tion method of a differentiable objective function. The method state is a single point xt

in search space. In each iteration, a direction dt is established:

dt = −Ht
−1 · ∇f(xt) (1)



where ∇f(xt) is a gradient of the objective function, and Ht is the approximation of the
Hessian matrix. Then, a new point xt is computed as a result of the line search, i.e.:

xt = arg min
ξ

f(xt + ξdt) (2)

After that, a new approximation of the Hessian is computed according to the formula
[3, 5, 7, 15]:

Ht+1 = Ht +
ηtη
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where st = xt+1 − xt and ηt = ∇f(xt+1)−∇f(xt)
The method terminates if the gradient norm falls below a certain level. The QN

method is designed for finding local minima only, but still it is a fast optimization method.

2.3 Hybrid method

According to [8, 11, 12] a significant improvement to the quality of solutions generated
by the global optimization methods can be attained by making a hybrid algorithm in
which a solution in finally tuned by local optimization methods. In this paper we consider
the hybrid method which uses the QN method to improve solution obtained by EA when
it reached the stopping criteria. Thus two algorithm are started one by another. It is
expected that the global method (EA) reaches the neighborhood of the global extremum.
Than the local method (QN) for exploiting this neighborhood is started. It is important
to properly choose the stopping criteria for the global method. In this paper this assume
is investigated in more details, and the result is presented in Table 3.

3 FIR Filter Design as an optimization problem

Well known filter design techniques [1, 14] are: the window method, the impulse response
based method, and the equiripple design. In this paper FIR filter design task is described
as an optimization problem.

In the formulation of the digital FIR filter design as an optimization task we search
for a set b of complex filter parameters, so that a certain objective function, being the
error of approximating Hs(z) by Hb(z), is minimized. The frequency function of the
designed filter Hb(z)|z=ejθ is given by the formula:

Hb(ejθ) =
L∑

m=0

b[m] · e−jmθ (4)

Hb(z) can be also written in a polynomial form with coefficients bm for m = 0, 1, 2, . . . , L:

Hb(z) = b0 + b1z
−1 + b2z

−2 + . . . + bLz−(L) (5)

Then the equation (5) can be transformed into:

Hb(z) = bL(z−1 − z0)(z−1 − z1) . . . (z−1 − zL−1) (6)

where zm for m = 0, 1, 2, . . . , L− 1 are the zeros of the polynomial (5).



Each zm is a complex number, and in our case we assume that all zeros zm are
located lied on the unit circle. This assumption provides maximum attenuation for each
frequency where the filter’s zero exist. Therefore, modulus of each zm equals 1 and each
zm value can be identified with an angle φm in the Re/Im plane. Thus, the parameters
to be optimized are real numbers from the range (0 . . . 2π), and their number equals the
filter order L. We also assumed that maxθ |H(ejθ)|dB = 0[dB], so the parameter bL in
(6) can be set to satisfy this requirement.

In the filter design we are interested in the amplitude of the frequency function only:
A(ejθ) = |H(ejθ)|. We assumed a linear phase characteristic, which is guaranteed by the
placement of all zeros of the filter on the unit circle.

The objective function is the difference between the amplitude characteristic As(ejθ)
(the goal characteristic) and Aφ(ejθ) (filter characteristic defined by the vector φ). We
compute the error:

e(φ) =
∥∥As(ejθ)−Aφ(ejθ)

∥∥
k

(7)

where ‖·‖k is the norm of the function which can be defined by:

∥∥A(ejθ)
∥∥

k
=

[∫ 2π

0
|A(ejθ)|kdθ

]1/k

for 0 < k < ∞

or

∥∥A(ejθ)
∥∥
∞ = maxθ∈[0,2π] |A(ejθ)|

(8)

In practice we estimate (8) by an approximate sum, getting:

∥∥A(ejθ)
∥∥

k
=

[
1
N

∑N
n=1 |A(ejθn)|k

]1/k

for 0 < k < ∞

or

∥∥A(ejθ)
∥∥
∞ = maxn=1...N |A(ejθn)|

(9)

where {θ1, . . . , θN} is the set of the frequencies dependent on the filter design criteria
which is discussed in more details in Section 4.

Note that we are dealing with an unconstrained optimization problem, as the function
(4) is a periodical one, since e(φ) = e(2πk +φ), where k is a vector of L integer numbers.
Additionally, for φ ∈ [0, 2π]L, the function (4) has many local maxima with respect to
φ.

4 Numerical example

In Section 3 the FIR filter design is defined as a task of optimizing a specific objective
function. In the numerical experiments, several further assumptions were made, which
are discussed in following subsections.

4.1 Objective function and filter parameters

The definition of the objective function (9) requires the set of frequencies to compute
the error. These frequencies were chosen in the following way (see also the discussion of



Fig. 1). θ1 and θ2 define the range of the pass-band. θ0 and 2π−θ0 are frequencies which
limit the strong attenuation sub-band surrounding the θ = 0. The remaining frequencies
θn are defined as frequencies where Aφ(ejθ) has maxima in the stop-band outside of the
pass-band and the range [0, θ0] and [2π − θ0, 2π].

In figures below, the amplitude characteristic Aφ(ejθ) of solutions to the FIR design
filter is drawn in the logarithmic scale (decibel).

In Fig. 1, an example filter amplitude characteristic for L = 8 is shown. The filter
pass-band is defined as a range of frequencies [θ1, θ2] where the amplitude characteristic
value A12 = Aφ(ejθ1) = Aφ(ejθ2) is 2dB smaller than at the maximum of Aφ(ejθ) (depend
on the design requirements). The value A12 for both θ1 θ2 is depicted as triangles. Two
attenuation levels in the stop-band can be observed. The first group of frequencies θn

(corresponding to the first attenuation level Ap) is shown as stars, and they are defined
as maxima of each stop-bands ripple. In simulations, an approximation θ̂n to frequencies
θn is used. This approximation equals θ̂n = φn−1−φn

2 , where φn−1 and φn are two values
which are closest to zero. The second attenuation level for frequencies from the range
[0, θ0] and [2π − θ0, 2π] is defined by the A0 value and in Fig. 1 Ap = −30[dB].
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Figure 1. The amplitude characteristic Aφ(ejθ) of example filter.

Before the filter design process starts, it is necessary to specify the following require-
ments: L, θ0, θ1, θ2, A12, Ap, A0. Additionally, for the purpose of optimization we define
the value of k, that is the norm coefficient used for computing (9). After the design pro-
cess terminates we get the solution — the L frequency values corresponding to zeros zm

of the designed filter.

In some cases, it is possible to fix 1 up to 3 zeros in certain positions to force maximum
possible attenuation in these frequencies. Thus, it is possible to reduce the number of
variables by 1 up to 3.



4.2 Optimization methods

All simulations was performed under Matlab 7.0 (R14) environment. We used the
following toolboxes: Genetic Algorithm Direct Search Toolbox (ver. 1.0.1), Optimization
Toolbox (ver. 3.0) and Signal Processing Toolbox (ver. 6.2).

Quasi-Newton line search fminunc() function was used from Optimization Toolbox
with the following options: LargeScale=’off’, HessUpdate=’bfgs’.

Evolutionary Algorithm ga() function was used from Genetic Algorithm Direct
Search Toolbox. We performed tests using EA with mutation and crossover in RL

space. The population size was µ = 20. The mutation operator has the symmetrical
gaussian distribution with the variance 1.0. The crossover operator implements the uni-
form crossover. It creates a random binary vector of an length L. Then it selects genes
where the vector is a 1 from the first parent, and the genes where the vector is a 0 from
the second parent, and combines the genes to form the child. EA uses the tournament
selection (with size 4) and elitist reproduction (with elite count η = 2). The next gener-
ation consists of η individuals from previous generation (according to elite scheme) and
0.5(µ − η) individuals produced by mutation and also the same number of individuals
produced by crossover.

Hybrid method In this case we combine both global and local optimization method.
First we start EA for certain numbers of generations to find the neighborhood of the
global minimum, and next we perform the local method to find this minimum with
better accuracy.

4.3 Example of filter design

In this paper we consider the design of a FIR filter defined by the requirements
given in Tab. 1. An example amplitude characteristic of a filter which meets the design
specification is given in Fig. 1.

Table 1. Filter design criteria

Parameter
name L θ0 θ1 θ2 A12 Ap A0 k

Unit - DEG DEG DEG dB dB dB -

Value 8 9 140 180 −2 −30 −50 4

The filter has two attenuation levels outside of the pass-band (θ ∈ [140, 180]). The
first attenuation value is −30[dB] and it is required that all ripples should have similar
amplitude. The second attenuation value is −50 [dB] it is required to stop signal at
frequencies θ ∈ [0, 9] and θ ∈ [351, 360].



4.4 Simulation details

Several types of simulations were performed. The aim was to compare solutions (the
objective function value) and the performance (the number of the objective function
evaluations) for different optimizations methods. Both: solutions and performance were
computed as mean value and standard deviation obtained from 100 independent runs of
each method.

Window method This is a well known design technique [1, 14], which produces pass-
band filter with one attenuation level at −30[dB]. This method is deterministic method
only so a single run of the algorithm was performed.

Random method Vector filter’s zeros are generated randomly with uniform distribu-
tion from the range [0, 2π]. 500 independent vectors are generated, and the best result
is chosen as the solution. Note that the number of the objective function evaluations is
also equal 500.

Quasi-Newton The QN method is applied to a randomly generated starting point.
The starting point is generated with the uniform distribution from the range [0, 2π]

EA (25) The evolutionary algorithm is used, and the initial population contains points
generated with an uniform distribution from the range [0, 2π0]. In this case, 25 iteration
were performed, so the number of the objective function evaluations is equals 500. Note
that this numbers equals the mean number of the objective function evaluations in the
Quasi-Newton method (Tab. 2).

EA (500) In this case, 500 iterations of EA were performed (10, 000 objective function
evaluations).

EA (∞) In this case EA was terminated after getting a solution with the objective
function value no greater than 0.5, so we measured the number of iterations when EA
reaches the required objective function value.

Hybrid(i) = EA (i) + Quasi-Newton In this case, i iterations of EA were per-
formed, and then QN method was used to improve the best solution found by the EA.

4.5 Results

In Tab. 2 the results are presented. We provide the objective function of the solutions,
the number of objective function evaluations, and the time of the optimization process.
For the window method, only the mean value of the solution is reported, because this
method is deterministic and it yields always the same result. This method needs less than
1 second to compute result. The random method which generates 500 random points
yields better result than the window method.

In our experiments the random solution (obtained form 1 runs) was used as the start
point of optimization for both QN and EA.



Table 2. Results for different methods of optimization

solution
numbers of

function evaluation time

mean std mean std mean std

window 39.30 n/a n/a < 1s n/a

random (500) 26.49 5.12 500 0.00 1.03s 0.01

QN 20.24 15.41 508 231 1.51s 0.58s.

EA (25) 19.52 4.95 500 0.00 1.19s. 0.02s.

EA (500) 10.51 2.99 10, 000 0.00 24.0s. 0.33s.

EA (∞) 0.51 n/a 2, 142, 740 n/a 3− 5h n/a

Hybrid (500) 3.99 3.38 10, 342 136 24.86s. 0.44s.

The Quasi-Newton method provides better mean solutions than both the window
method and the random method. On average, QN needs about 500 objective function
evaluations. EA with the stop criterion at 25 iterations (500 numbers of function evalua-
tions) yields solutions similar to QN, but the optimization time is shorter by 0.3 seconds.

The EA(500) needs 24 seconds to yield solutions of the average objective function
value equal to 10.51.

Further increasing of the iteration number in EA leads to unacceptable optimization
time. EA(∞) needs more than 2, 000, 000 iterations and a couple of hours to reach the
solution with the objective function value equal 0.5.

Based on the previous results we proposed a hybrid method based on EA(500) and
the QN. Although the computation time increases from 24 second up to 24.86 seconds,
but when comparing to EA(500), the objective function value decreases from 10.51 down
to 3.99. The best solution was 0.31. We observe that the distribution of solutions is
a multimodal function (see histograms of solution in Fig. 2). This indicates that the
objective function has at least two local minima, with large attraction basins.

We performed tests to verify the influence of the number of EA iterations on the
quality of solutions yielded by the hybrid (EA + QN) approach. The result are given in
Tab. 3.

From the results it evidences that there is a tradeoff between the computation time
and the quality of results. Anyway, it is always much more adviceable to use the hybrid
approach instead of any other methods used in this comparison.

5 Conclusions

In this paper we study the hybrid method based on evolutionary algorithm joined with an
efficient local optimization method to improve solutions obtained by the global optimiza-
tion method alone. In the considered optimization problem, due to many local minima of
the objective function, it is necessary to apply EA, but the efficiency of EA (measured as
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Figure 2. Histogram of generated solutions - Hybrid (500)

Table 3. Results for different iteration number of the EA

EA Hybrid method

solution time solution time
number of

EA iterations mean std mean mean std mean

5 26.62 5.19 0.24s. 8.30 4.69 1.21s.

10 21.98 5.32 0.48s. 8.16 5.32 1.54s.

20 20.12 4.56 0.96s. 7.12 3.59 1.98s.

50 17.55 3.73 2.41s. 6.62 3.67 3.35s.

100 16.18 3.43 4.81s. 6.60 3.67 5.75s.

200 12.94 3.37 9.95s. 5.18 3.93 10.94s.

500 10.51 2.99 24.00s. 3.99 3.38 24.86s.

1000 7.82 2.74 49.43s. 3.38 3.46 50.45s.



time, but assuming the same value of the mean solution) may be significantly improved
using the presented hybrid method.
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