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Abstract. The paper is devoted to applications of evolutionary algorithms in identification 
of structures being under the uncertain conditions. Uncertainties can occur in boundary 
conditions, in material or geometrical parameters of structures and are modelled by three 
kinds of granularity: interval mathematics, fuzzy sets and theory of probability. In order to 
formulate the optimization problem for such a class of problems by means of evolutionary 
algorithms the chromosomes are considered as interval, fuzzy and random vectors whose 
genes are represented by: (i) interval numbers, (ii) fuzzy numbers and (iii) random 
variables, respectively. Description of evolutionary algorithms with granular representation 
of data is presented in this paper. Various concepts of evolutionary operator such as a 
crossover and a mutation and methods of selections are described. In order to evaluate the 
fitness functions the interval, fuzzy and stochastic finite element methods are applied. 
Several numerical tests and examples of identification of uncertain parameters are 
presented.  

1 Introduction 

In the majority engineering cases it is not possible to determine exactly all parameters of the 
physical systems. It is necessary to introduce some uncertain parameters which describe the 
granular character of data. Representation of uncertain values may have different forms. It 
depends of the physical meaning of the considered problem and the assumed model of 
uncertainty. There are several formal frameworks in which information granules can be built [7] 
among them interval analysis [19], fuzzy sets [21] and random variables [3] can be considered. 
The aim of an optimization problem is to find some unknown parameters of a fitness function.  
In this paper the parameters of the function have the granular character. The fitness function is 
also the granular value. 
The evolutionary algorithms [1], as the global optimization technique for searching uncertain 
values, can be applied in finding the interval parameter [7], fuzzy models [8], fuzzy controllers 
[11], fuzzy rules [2], random parameters and others. In such algorithms, the chromosome consists 
of uncertain genes. Therefore, the evolutionary operators are modified for uncertain types of data.  
This paper describes a new conception of application of the granular evolutionary algorithm in 
optimization problems with uncertain parameters. The following systems are considered as the 
granular models (i) interval numbers, (ii) fuzzy numbers and (iii) random variables. The 



proposed granular evolutionary algorithm is examined for a testing bench-mark, due to the 
optimal parameters of the algorithms (population size, probability of mutation and crossover) are 
found.  

2 Granular Evolutionary Algorithm 

The paper concerns the granular evolutionary algorithm with granular operators and granular 
representation of the data. The chromosomes contain granular genes. Each gene decides about 
the heredity of one or a few characteristics. The individuals can be modified by means of the 
granular operators. The evolutionary operators generate new chromosomes. The next step is the 
operator of the selection. It creates a new generation, which contains better chromosomes. All 
steps are repeated until the stop condition is fulfilled (Fig. 1). 

 
Figure 1. The flow chart of the granular evolutionary algorithm. 

In the granular evolutionary algorithm an individual expresses a granular solution. In each 
generation the granular evolutionary algorithm contains a population of solutions. Each solution 
is evaluated, and as the result a granular value of the fitness function is obtained.   

2.1 The granular representation of chromosomes 

2.1.1 The interval chromosome 

In most cases the evolutionary algorithm has the genes as the real values. The granular algorithm 
works on the granular data, so the gene should be modified to granular data. In the paper the 
following cases are considered: (i) interval genes, (ii) fuzzy genes and (iii) random genes. 
In the interval case the gen [ ] [ , ]x x x=  is described by the central value ([ ]) ( ) / 2cv x x x= +  and 
the radius ([ ]) ( ) / 2r x x x= − . 
Therefore the interval chromosome expressed by: 
 

[ ] [ ] [ ] [ ]1 2, ,..., ,...,i nx x x x                                                         (1) 
 
can be replaced by the real-coded chromosome: 

( ) ( ) ( ) ( )1 1 2 2, , , ,..., , ,..., ,i i n ncv r cv r cv r cv r                                          (2) 

where:  [ ] ( ),
i i i

x cv r= . 



2.1.2 The fuzzy chromosome 

In the fuzzy case the gene x can be considered as a fuzzy set. The fuzzy set is considered as a set 
of pairs of the x and the density function µ(x). When the fuzzy set is convex and normal and the 
density function is continuos, the fuzzy set is the fuzzy number. The concept of α–cuts plays the 
important role in the theory of fuzzy sets. An α-cut of a fuzzy number A is a interval that contains 
all the numbers of A that have the membership value of A greater than or equal to α. In this case 
the fuzzy number can be replaced by a set of the interval values, which are stretched on the 
adequate levels (α–cuts) of the fuzzy value. This approach has some advantages. For each α–cut 
the very good known interval arithmetic operators are used. It is possible to obtain different 
forms of the fuzzy values due to the generation of a few α–cuts and corresponding them interval 
values [ x ; x ]. The forms can be symmetric or not symmetric. They describe some characteristic 
forms of the fuzzy values, and permit to build a new form of the fuzzy value too. Finally, each 
gene x is expressed as the real value: the central value cv(x) and a set of parameters ai(x) and 
b

i(x), (i=1,…,M, where M is a number of α–cuts) which define distances between cv(x) and the 
boundaries of the intervals. It is possible to introduce the constraints on the cv(x) and  
non-symmetric constraints on the widths of the intervals using the parameters ai(x) and bi(x). 
Therefore, the fuzzy chromosome expressed by:  

[ ]1 2, ,..., ,...,i nx x x x                                                         (3) 

can be replaced by the real-coded chromosome (for M=2): 

( ) ( ) ( ) ( )1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1
1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,..., , , , , ,..., , , , ,i i i i i n n n n na a cv b b a a cv b b a a cv b b a a cv b b 

      (4) 

where: ( )1 2 2 1, , , ,i i i i i ia a cv b b=x . 

2.1.3 The stochastic chromosome 

In the theoretical model of random phenomena the basic role is played by the probability space  
(ΓΓΓΓ, F, P). The set ΓΓΓΓ , called the space of elementary events represents all the possible simplest 
outcomes of a trial associated with a given random phenomenon. F  is a σ - algebra of subset of 
ΓΓΓΓ.  The elements of the F  are called random events. P is a probability defined on F  [20]. 
In the random case the gene is represented by a random variable, which is a real function 

( )
i i

X X= γ , ∈γ ΓΓΓΓ , defined on a sample space ΓΓΓΓ  and measurable with respect to P: i.e., for 
every real number 

i
x , the set { }: ( )

i i
X x<γ γ  is an event in F. The chromosome ( )X γ  is  

a function (measurable respect to P) which takes every element ∈γ ΓΓΓΓ  into a point nR∈x  [14].  
The chromosome is expressed as random vector: 

1 2( ) [ ( ), ( ),..., ( ),..., ( )]i nX X X Xγ γ γ γ γ=X                                (5) 

which has an n-dimensional Gaussian distribution of the probability density function, given as 
follows: 

1 2 / 2
, 1

1 1
( , ,..., ,..., ) ( )( )

(2 )

n

i n ij i i j jn
i j

p x x x x K x m x m
=

 
= − − − 

  
∑

KKπ
   (6) 



where 0≠K  is the determinant of the matrix covariances, ijk =  K , i, j = 1,2,…,n, where 
( ) ( )ij i i j j

k X m X m = − − E , ijK is the co-factor of the element 
ij

k the matrix K  and  
( )i im X=   E γ  is the mean value of ( )i

X γ . 
It is assumed that random genes are independent random variables. The joint probability density 
function is expressed by the probability density functions of single random genes as follows: 

1 2 1 1 2 2( , ,..., ,..., ) ( ) ( ).... ( ).... ( )i n i i n np x x x x p x p x p x p x=                        (7) 

where: 

( ) ( ) ( )2
2

1
, exp

22
i i

i i i i

ii

x m
p x N m

 −
= = − 

  
σ

σσ π
                           (8) 

is the probability density function of the random gene ( )
i

X γ , where 
i

σ  denotes the standard 
deviation of ( )

i
X γ . 

It can be seen that if the random genes ( )
i

X γ , i=1,2,…,n, are random independent Gaussian 
variables, two moments describe the probability density function of the random variable ( )

i
X γ . 

The stochastic chromosome (5) can be repleaced by:  

( ) ( ) ( ) ( )1 1 2 2, , , ,..., , ,..., ,i i n nm m m mσ σ σ σ                                (9) 

where: 
i

m  - the mean value and 
i

σ  - standard deviation. 

2.1 The granular mutation 

In the interval case two types of the mutation operators are applied. In both cases the modified 
gene 

j
x  is randomly selected from the chromosome x=[ x1, x2, …, xj , …, xn].  

In the first type of the mutation (mutation I) the central value cv(
j

x ) of the j-th interval value 
j

x  
is modified. The operator is expressed by the following equation: 

*( ) ( )j j hh x h x G= +                                                         (10) 

where: h=cv for each gene, Gh – random value (with Gaussian distribution), j=1..n  is the number 
of the gene. 
The second type of the mutation operators (mutation II) concentrates/deconcentrates the interval 
value. The mutation changes the radius r(

j
x ) according to the equation (10), where h=r  for each 

gene. Therefore, two types of the mutation operator are introduced, both can work together or 
independently.  
In the fuzzy case two types of the mutation operators are also applied. In both cases the modified 
gene 

j
x  is randomly selected from the chromosome x=[ x1, x2, …, xj , …, xn].  

In the first type of the mutation (mutation I) the central value cv(
j

x ) of the j-th fuzzy value  
j

x  is 
modified. The operator is expressed by the equation (10), where  h=cv. 
The second type of the mutation operators (mutation II) concentrates/deconcentrates the fuzzy 
value

j
x . The mutation changes the distances ai( j

x ) or bi( j
x ) by equation (10) where: h= ai, bi.  

This operator is considered as symmetric (ai(
jx ) and bi(

jx ) are changed by means of the same 
value), and non-symmetric ones. The operator can change only the selected α–cut. Therefore, 
two types of the mutation operator is introduced, both can work together or independently. 



In the random variables case, two types of the mutation operators are also applied. In both cases 
the modified gene jx  is randomly selected from the chromosome x=[ x1, x2, …, jx , …, xn]. The 
first type changes the fisrt normal moment m using formula (10), where: h=m. The second type 
changes the standard deviation of the j-th random variable using formula (10), where: h= σ. 

2.2 The granular crossover 

The granular arithmetic crossover operator is proposed in the granular evolutionary algorithm. 
The crossover creates two offspring individuals * * * * *

1 2, ,..., ,...,j nx x x x x =  
 and 

* * * * *
1 2, ,..., ,...,j ny y y y y =    on the basis of two parent chromosomes 1 2, ,..., ,...,j nx x x x x =    and 

1 2, ,..., ,...,j ny y y y y =   . 
The selected parameters of the j-th genes of the offspring chromosomes are expressed by the 
following equations (interval cases): 

( ) ( ) (1 ) ( )j j jh x h x h yλ λ= + −                                            (11) 

* * *( ) ( ) (1 ) ( )j j jh y h y h xλ λ= + −                                            (12) 

where: h=cv, r, and [0,1]∈λ  is a random value with the uniform distribution. 
In the fuzzy case the selected parameters of the j-th genes of the offspring chromosomes are 
expressed by the equations (11 and 12), where h=cv,ai,bi. 
In the random variables case the offspring chromosomes are expressed by equations (11) and 
(12), where h=m,σ. 

2.3 The granular selection 

The last modified operator for the interval, fuzzy values and random variables is the selection 
operator. This operator is constructed on the basis of a well known tournament selection. In this 
selection the fitness function values f are compared, and the better chromosome wins more often. 
Therefore the special strategy of comparison of two granular values f1 and f2 is proposed.  
In interval and fuzzy cases the special conditions are constructed: 

1 2f fh h<                                                              (13) 

where: h=cv,r. 
In the fuzzy case the condition (13) is checked, where: h=a1, b1 ,r. In the stochastic case the 
condition (13) is checked, where: h=m, σ . 

2.4 The granular fitness function 

One of the most important steps of the evolutionary algorithm is the evaluation of the fitness 
function. If the design variables are deterministic, the fitness function result is also deterministic. 
In the case of solving the granular optimization problems, the problem of evaluating the fitness 
function is much more complicated. A few ways to estimate the results are possible in this case. 
In the case of simple mathematical functions the basic arithmetic operators {+;-;*;/} for granular 
representation are used.  



Unfortunately, in many cases the fitness function can be examinated after solving the 
interval/fuzzy/stochastic boundary-value problem. The boundary-value problems can be solved 
by means of the interval/fuzzy/stochastic boundary element method or the 
interval/fuzzy/stochastic finite element method. 

3 Testing the granular evolutionary algorithm 

The aim of the test is to find the granular vector x which minimizes the function: 

3 3

1

1
( ) 0.7 cos 2 0.7

2

n

i i

i

f f x p x
=

   = = − − −   
   

∑x
π ππ

π
π

                   (14) 

where: n – the number of granular design decision variables 
i

x , p – the number of the optimum. 
In the first step of examination, the best (optimal) probabilities of mutation (pm) and crossover 
(pc) operators were searched. In the second stage the best population size (ps) was searched. For 
each combination (n=1..5, p=1..5) the 10000 independend experiments were run. The optimal 
probabilities and population size of granular evolutionary algorithms (interval, fuzzy and 
stochastic) are included in Tables 1-4. 

Table 1. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm  
(interval case) 

n  p 
1 2 3 4 5 

pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.2 4 0.4 0.2 3 0.3 0.1 3 0.3 0.1 4 0.3 0.1 3 
2 0.4 0.1 4 0.4 0.1 4 0.4 0.1 4 0.3 0.1 4 0.3 0.1 4 
3 0.3 0.1 4 0.3 0.1 5 0.3 0.1 4 0.2 0.1 4 0.2 0.1 5 
4 0.3 0.1 5 0.2 0.1 4 0.2 0.1 4 0.2 0.1 4 0.2 0.1 4 
5 0.3 0.1 5 0.2 0.1 5 0.2 0.1 4 0.3 0.1 4 0.2 0.1 5 

Table 2.  The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm 
(fuzzy case, 2 alfa-cuts) 

n  p 
1 2 3 4 5 

pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.1 5 0.4 0.1 4 0.3 0.1 5 0.3 0.1 5 0.3 0.1 6 
2 0.4 0.1 4 0.4 0.1 5 0.4 0.1 5 0.4 0.1 7 0.4 0.1 8 
3 0.5 0.2 11 0.5 0.2 15 0.5 0.2 15 0.5 0.2 18 0.5 0.2 19 
4 0.5 0.2 10 0.5 0.2 15 0.5 0.2 18 0.5 0.2 18 0.5 0.2 20 
5 0.5 0.2 11 0.5 0.2 16 0.5 0.2 19 0.5 0.2 21 0.5 0.2 23 

 



Table 3. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm 
(fuzzy case, 3 alfa-cuts) 

n  p 
1 2 3 4 5 

pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.1 4 0.3 0.1 6 0.3 0.1 8 0.3 0.1 9 0.3 0.1 11 
2 0.4 0.1 4 0.4 0.1 6 0.4 0.1 6 0.4 0.1 9 0.4 0.1 11 
3 0.4 0.2 8 0.4 0.2 14 0.4 0.2 13 0.4 0.2 13 0.4 0.2 15 
4 0.5 0.2 10 0.5 0.2 19 0.4 0.2 17 0.4 0.2 21 0.5 0.2 22 
5 0.5 0.2 11 0.5 0.2 16 0.5 0.2 19 0.5 0.2 24 0.5 0.2 27 

Table 4. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm  
(stochastic case) 

n  p 
1 2 3 4 5 

pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.1 4 0.4 0.1 5 0.3 0.1 4 0.3 0.1 9 0.3 0.1 11 
2 0.3 0.1 4 0.3 0.1 6 0.3 0.1 9 0.4 0.1 9 0.4 0.1 11 
3 0.2 0.1 4 0.2 0.1 5 0.2 0.1 5 0.4 0.2 13 0.4 0.2 15 
4 0.2 0.1 4 0.2 0.1 5 0.2 0.1 5 0.4 0.2 21 0.5 0.2 22 
5 0.2 0.1 4 0.2 0.1 5 0.2 0.1 4 0.5 0.2 24 0.5 0.2 27 

4 Conclusions 

An effective intelligent technique based on the granular evolutionary algorithm has been 
presented. This approach can be applied in the optimization and the identification of systems that 
are in the uncertain conditions. This approach is very promising for reliability optimization in 
which the safety of a system is estimated and represented by the probability of its failure, i.e. the 
occurrence of an ultimate limit state manifesting itself. 
The more general approaches will be developed in future. The other types of probability density 
function (PDF) with a greater number of moments will be examined. The dependences between 
random numbers will be also examined. 
The presented algorithm for uncertain identification problems in mechanical structures was used. 
The results will be presented on the conference. 
In the general case uncertain conditions have the granular form [3]. The models based on the 
interval and fuzzy numbers were used instead of stochastic approach presented in this paper. The 
models based on the perturbation numbers will be presented in the future. 
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