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Abstract. The paper deals with the identification of material constants in multi-layered 
composites. Simple and hybrid (with laminas made of different materials) laminates are 
considered. Material constants are presented in a stochastic form to model their uncer-
tainty. The Evolutionary Algorithm based on such representation of the data is used as the 
global optimization method. Chromosomes are represented by multidimensional random 
vectors consisting of random genes in the form of independent random variables with the 
Gaussian density probability functions. The stochastic optimization problem is replaced by 
a deterministic one by evolutionary computing of chromosomes having genes consisting of 
mean values and standard deviations. Modal analysis methods are employed to collect 
measurement data necessary for the identification. The Finite Element Method in stochas-
tic version is used to solve the boundary-value problem for laminates. Numerical examples 
showing efficiency of the method are presented. 

1 Introduction 

Composites are materials constructed by joining (at least) two materials together on the macro-
scopic level. They usually consist of the matrix and the reinforcement. The resultant properties 
of composites depend on: i) the properties of phases; ii) the volume fraction of the reinforce-
ment; iii) the distribution of the reinforcement in the matrix; iv) the geometry of the reinforce-
ment. 

The most commonly used group of composites are laminates – fibre-reinforced composites 
made of many layers (plies). The fibres are usually situated directionally in each ply of the 
laminate, but have different directions in particular plies. There are two main reasons of the 
popularity of laminates: i) the high strength/weight (or stiffness/weight) ratio, especially in 
comparison with the conventional, usually isotropic materials;  ii) the possibility of designing 
the material properties according to the requirements by manipulating the components materi-
als, stacking sequence, fibers orientation and layer thicknesses.  

The cost of laminates quickly increases with their strength. To find the balance between cost 
and required properties, the plies in laminates may be composed of more than one material [1]. 
The laminates obtained in such a way are called the hybrid ones.  The interply hybrid laminates 
with plies composed of two different materials are considered in the present paper. The internal 



layers are built of a weaker and cheaper material while the external layers are made of a high-
stiffness but more expensive material.  

The aim of the paper is to identify material constants in multilayered, fibre-reinforced com-
posites (laminates). Simple and hybrid laminates are taken into account. An identification prob-
lem can be formulated as the minimization of some objective functions depending on measured 
and calculated state fields. The identified material constants of laminates are assumed to be non-
deterministic ones due to the manufacturing process. The uncertainties are introduced to decrease 
discrepancies between real structures and their mathematical model. The uncertainties can be 
introduced by using different granularity models, like interval numbers, fuzzy numbers or in the 
stochastic way [3]. The identification of the material constants in laminates with interval and 
fuzzy representation of the design variables was presented in [4, 5].  

In the present paper the stochastic approach to identification is taken into account. The pa-
rameters are modelled by means of random variables characterized by probability density func-
tions. The classical approach to the solution of such problems is based on stochastic program-
ming [6]. In the proposed the evolutionary algorithm with stochastic representation of genes is 
used as the global optimization method.  

2 The Formulation of the Stochastic Identification Problem  

A general non-linear stochastic programming problem can be described as searching for a ran-
dom vector [7]:  

 1 2( ) [ ( ), ( ),..., ( ),..., ( )]i nX X X Xγ γ γ γ γ=X  (1) 

which minimizes the objective function ( ) ( ( ))F Fγ γ= X   and satisfies the constraints: 

 ( ) 0 , 1, 2,...,j jP g p j m⎡ ⎤≥ ≥ =⎣ ⎦X . (2) 

The probability space (Γ, F, P) plays the basic role in the theoretical model of random 
phenomena [10]. The set Γ  is called the space of elementary events and it represents all the 
possible simplest outcomes of a trial associated with a given random phenomenon. F is a σ-
algebra of subset of the set Γ and the elements of the F  are called random events. P denotes the 
probability defined on F.  

If the problem is solved by the evolutionary algorithm, the vector ( )γX  is called a chromo-
some, where ( )γX , i=1,2,…,n, are random genes. Each gene is represented by a random vari-
able, which is a real function ( )i iX X γ= , γ ∈Γ , defined on a sample space Γ and measurable 
with respect to P: i.e., for every real number ix , the set { }: ( )i iX xγ γ <  is an event in F. 

The chromosome ( )γX  is a function (measurable with respect to P) which takes every ele-
ment γ ∈Γ   into a point nR∈x . 

The mean value of the chromosome ( )γX  is given as: 

 [ ]1 2[ ( )] , ,..., ,...,i nm m m mγ= =m E X   (3) 

where: 

 [ ] ( )( ) ( ) ( )i i i i i i im X X dP x p x dxγ γ γ
+∞

−∞
Γ

= = =∫ ∫E  (4) 



is the mean value of the gene ( )iX γ  and ( )i ip x  is the probability density function (PDF) of this 
gene.   

The matrix of covariance is given as: 

 ( ) ( )[ ] ( ) ( )T
ijk ⎡ ⎤= = − −⎣ ⎦K E X m X mγ γ  (5) 

The covariance between ( )iX γ  and ( )jX γ  is defined as: 

 ( ) ( ) ( )( ) ( )( ) ( ) ,ij i i j j i i j j i j i jk X m X m x m x m p x x dx xγ γ
+∞ +∞

−∞ −∞
⎡ ⎤= − − = − −⎣ ⎦ ∫ ∫E  (6) 

where ( ),i jp x x  is the joint PDF of  ( )iX γ  and ( )jX γ . If  i j= , the covariance  is represented 
by a variance.  

In the present paper the random chromosome 1 2( ) [ ( ), ( ),..., ( ),..., ( )]i nX X X Xγ γ γ γ γ=X   
consisting of n genes has a n-dimensional Gaussian distribution function. It is assumed that ran-
dom genes are independent random variables. The joint probability density function is expressed 
by the probability density functions of single random genes: 

 1 2 1 1 2 2( , ,..., ,..., ) ( ) ( ).... ( ).... ( )i n i i n np x x x x p x p x p x p x=   (7) 

where: 
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  (8) 

is the probability density function of the random gene ( )iX γ ,, iσ  denotes  the standard de-
viation of ( )iX γ . 

 If the random genes ( )iX γ , i=1,2,…,n are independent random Gaussian variables, the PDF 
function can by fully described by means of two parameters: the mean value im  and the standard 
deviation iσ . 

Composites are anisotropic materials. Multilayered laminates can be usually treated as thin 
plates made of orthotropic materials. If the plies are distributed symmetrically to the mid-
plane, the laminate is called symmetrical. Main advantage of such laminates is that there does 
not exist a coupling between shield and bending states [8]. The single ply of the laminate, 
being in the plane-stress state, has 4 independent material constants: axial and transverse 
Young's module (E1, E2), axial-transverse shear modulus (G12) and axial-transverse Poisson 
ratio (ν12). It is assumed, that material constants are random variables with Gaussian PDF.  

The identification of the material constants can be treated as the minimization of the objec-
tive function F with respect to the vector of the design variables x: 

( ) ( )2

1

ˆmin , where:
N

j j
j

F F q q
=

= −∑x
.                                       (9) 

The functional F depends on N measured ˆ jq  and N calculated qj values of the state fields. 
It is assumed, that measured and calculated values of the state fields have stochastic character. 

The identification results strongly depend on the number of measurement data. To reduce 
the number of sensors, the dynamic properties of laminates can be taken into account and the 
modal analysis methods can be employed. The eigenfrequencies are used as the measurement 
data  [11]. The numbers of plies, their thicknesses, fibres orientation and the number of layers 
made of each material are assumed to be known.   



3 Evolutionary Algorithm for Stochastic Problems 

The application of evolutionary algorithms to solve stochastic optimization problems requires 
some modifications of the classical evolutionary approaches. The main reason is that chromo-
somes consist of random genes ( )iX γ , i=1, 2,…, n. As the results the genes are described by the 
moments, e.g. by the mean value im  and the standard deviation iσ  (in the case of Gaussian 
independent random genes).  

The mean idea of presented Evolutionary Algorithm is analogous to the deterministic evolu-
tionary algorithm [2], but all steps of the algorithm require some modifications due to the sto-
chastic character of the data. Each individual (chromosome) in employed EA expresses a sto-
chastic solution of the optimization problem. The fitness function value for each individual is 
evaluated and a stochastic value of the fitness function is obtained as the result of calculations. 
To calculate the stochastic fitness function value the Stochastic Finite Element Method (SFEM) 
is employed [9]. 

The original stochastic problem can be reduced to the deterministic one. Random chromo-
some ( )iX γ  can be replaced  by a deterministic chromosome chj(x) in which each gene xi is  
a stochastic variable represented by 2 values: mean value and standard deviation: =( , )i i ix m σ , 
i=1,2,…,n corresponding to the random variable ( )iX γ :     
 [ ] [ ]1 2 1 1 2 2( ) ; ;... ;...; ( , );( , );...;( , );...;( , )j

i n i i n nch x x x x m m m mσ σ σ σ= =x  (10) 

Two kinds of constraints are imposed for each chromosome =( , )i i ix m σ ,  i=1,2,…,n,: 

  min max
i i im m m≤ ≤  (11)  

 min max
i i iσ σ σ≤ ≤  (12) 

where: min and max indices denote the maximum and minimum values of m and σ. 
The selection method is based on the classical tournament selection. The minimization prob-

lem is taken into account.  Consider the fitness functions for two different random chromosomes: 
( )1 1( ) ( )F Fγ γ= X  and ( )2 2( ) ( )F Fγ γ= X . The random values 1( )F γ  and 2 ( )F γ  are described 

by the moments: 1 1 1( ) ( , )F FF mγ σ→  and 2 2 2( ) ( , )F FF mγ σ→ , respectively. The parameters 1β  
and 2β , which decide about the probability of the survival of chromosomes: 1( )γX  and 2 ( )γX , 
respectively, are introduced. At the beginning the parameters 1β  and 2β  are equal to 0β  (in 
considered case 0β =0.1). In the next step, the conditions: 
 1 2F Fm m<  (13) 
 1 2F Fσ σ<  (14) 
are checked. If the conditions (12) and (13) are fulfilled, the probability of the survival of the first 
chromosome is increased by mβΔ  and σβΔ , respectively (in present paper mβΔ =0.7, σβΔ =0.3). 
In the contrary cases the probability of the survival of the second chromosome is increased by 

mβΔ  and σβΔ , respectively. If the both stochastic values of the fitness functions are identical, 
the probabilities of the survival of both individuals are the same. Finally, the survived individual 
is sampled with respect to the survival parameters 1β and 2β .  

The dedicated stochastic versions of mutation and crossover operators are also applied.  Two 
types of the Gaussian mutation are introduced. In the first type of mutation the mean value im of 
the random gene ( )iX γ  is modified. In the second type of the mutation the standard deviation 

iσ of the random gene ( )iX γ  is modified. A dedicated arithmetic crossover operator creating 
two offspring chromosomes from two parents is proposed for the stochastic evolutionary algo-



rithm. The evolutionary operators applied in presented EA are more comprehensively described 
in [7]. 

In considered case chromosomes have one of the following forms (the densities of materi-
als also have to be identified in the case of hybrid laminates): 
1. For simple laminates:  
 chj(x) = (E1, E2, G12, ν12) (15) 

2. For hybrid laminates (superscripts specify the material number): 

chj(x) =  (E1
1, E1

2, G1
12, ν1

12, ρ1, E2
1, E2

2, G2
12, ν2

12, ρ2)        (16) 

where ρ i - the density of the i-th material. 

4 Numerical Examples 

4.1 Identification of the simple laminate 

 
A rectangular simple laminate plate made of the glass-epoxy is considered (Figure 2a). Each ply 
of the symmetrical laminate has the same thickness hi=0.002m. The stacking sequence of the 
laminate is: (0/45/90/-45/0/90/0/90)s. To solve the direct problem the plate is divided into 200  
4-node plane finite elements. The first 10 eigenfrequencies ωi of the plate are taken into account 
as the measurement data.  

It is assumed, that measurement are random variables with the Gaussian distribution. The 
measurements were repeated 200 times to collect data. Each chromosome chj(x) in population 
consists of 4 genes. Each gene xi in chromosome chj(x) is a random number represented by 2 
moments: mean value mi and standard deviation σi.  
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Figure 2. a) The laminate plate a) shape and dimensions; b) materials location in hybrid laminate. 

The parameters of the EA (experimentally selected) are:  
- the number of chromosomes pop size = 200;  
- the number of generations gen_num = 400;  
- the arithmetic crossover probability pac = 0.2;  
- the gaussian mutation probability: pgm = 0.4. 
The variable ranges, actual values and identification results are collected in Table 1. 
 



Table 1. Identification results for the simple laminate. 

 E1 [Pa] E2 [Pa] ν12 G12 [Pa] 
 m σ m σ m σ m σ 

Min 2.00E10 0.00E9 4.00E9 0.00E9 0.00 0.00 2.00E9 0.10E8 
Max 6.00E10 0.30E9 9.00E9 0.30E9 0.50 0.10 6.00E9 0.70E8 

Actual 3.86E10 0.12E9 8.28E9 0.20E9 0.26 0.02 4.14E9 0.50E8 
Found 3.92E10 0.11E9 8.14E9 0.17E9 0.27 0.04 4.07E9 0.22E8 

All material parameters, represented by mean value and standard deviation, have been found 
with satisfactory precision.  

4.2 Identification of the hybrid laminate 

A rectangular hybrid laminate plate of shape and dimensions presented in Figure 2a) is consid-
ered. Each ply of the laminate has thickness hi = 0.002m. The symmetrical laminate plate con-
sists of 10 plies of the stacking sequence: (0/15/-15/45/-45)s. The external plies of the laminate 
are made of material M1, the internal laminas are made of the material M2 (Figure 2b). The plate 
FEM model consists of 200 4-node plane finite elements. The first 10 eigenfrequencies of the 
plate are considered. 

It is assumed, that measurement data have stochastic nature and they are described by the 
normal distribution. The measurements were repeated 200 times to collect data.  Each of 10 ge-
nes xi in chromosome chj(x) is a random number represented by 2 moments: mean value mi and 
standard deviation σi.  

The parameters of the EA (experimentally selected) are:  
- the number of chromosomes pop size = 400;  
- the number of generations gen_num = 1200;  
- the arithmetic crossover probability pac = 0.2;  
- the gaussian mutation probability: pgm = 0.4. 
The variable ranges, actual values and identification results are collected in Table 2 for mate-

rial M1 and in Table 3 for material M2. 

Table 2. Identification results for the hybrid laminate – material M1. 

 E1 [Pa] E2 [Pa] ν12 G12 [Pa] ρ [kg/m3] 
 m σ m σ m σ m σ m σ 

Min 2.00E10 0.00E9 4.00E9 0.00E9 0.00 0.00 2.00E9 0.10E8 1.00E3 0.00E2 
Max 6.00E10 0.30E9 9.00E9 0.30E9 0.50 0.10 6.00E9 0.70E8 3.00E3 0.50E2 

Actual 3.86E10 0.12E9 8.28E9 0.20E9 0.26 0.02 4.14E9 0.50E8 1.80E3 0.20E2 
Found 3.75E10 0.04E9 8.12E9 0.28E9 0.25 0.04 4.21E9 0.61E8 1.81E3 0.17E2 

 



Table 3. Identification results for the hybrid laminate – material M2. 

 E1 [Pa] E2 [Pa] ν12 G12 [Pa] ρ [kg/m3] 
 m σ m σ m σ m σ m σ 

Min 1.20E11 0.00E10 0.80E10 0.00E10 0.00 0.00 2.00E9 0.10E8 1.00E3 0.00E2 
Max 2.50E11 0.30E10 2.00E10 0.30E10 0.50 0.10 9.00E9 0.70E8 3.00E3 0.50E2 

Actual 1.80E11 0.12E10 1.00E10 0.20E10 0.28 0.02 7.10E9 0.50E8 1.60E3 0.20E2 
Found 2.01E11 0.18E10 0.89E10 0.18E10 0.31 0.01 6.89E9 0.52E8 1.63E3 0.19E2 

All material parameters for both materials (M1 and M2) of hybrid laminate have been found 
with acceptable precision.  

5 Final Conclusions 

An efficient identification method based on the stochastic representation of the identified 
parameters has been presented. A global optimization method in the form of the Evolutionary 
Algorithm has been employed to solve the identification task for simple and hybrid laminates. 
Presented EA works on the stochastic genes converted to deterministic ones by representing 
stochastic variables by two moments: the mean value and the standard deviation. Positive 
identification results have been obtained for simple as well as for hybrid laminates.  

The future work is to combine global optimization methods with local ones. To reduce 
inconveniences connected with the necessity of the fitness function gradient calculations, it is 
possible to employ Artificial Neural Network (ANN). This attitude was successfully tested on 
the fuzzy and interval representation of the identified parameters [5]. The EA is used in the 
first step; afterwards the local optimization method supported by ANN is employed to finish 
the computations. The ANN is used to approximate the fitness function and the fitness 
function gradient. 
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