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Abstract. The paper1 is concerned with global optimization techniques and their parallel 
implementation. We describe an integrated software platform GOOL–PV (Global 
Optimization Object-oriented Library–Parallel Version) that provides the tools for solving 
complex optimization problems on parallel and multi-core computers or computer clusters. 
Finally, we present the comparative study of sequential and parallel global optimization 
algorithms based on numerical results for a standard set of multimodal functions.  

1 Introduction 

Many engineering problems are formulated as the optimization tasks in which the objective 
function is not convex and posses many local minima in the region of interest. In addition, in 
many practical contexts, the optimization problem cannot be described analytically due to the 
natural complexity and uncertainty of the real-life systems. In such cases the simulation 
experiment is usually used to evaluate the expected performance of the system for each set of 
decision variables. It involves of simulation-based optimization (or simulation optimization) that 
is the merging of optimization and simulation techniques. The usage of traditional, local 
optimization methods is usually inefficient for solving multimodal or simulation-based problems. 
Therefore, methods designed for global optimization are important from a practical point of 
view.  

Global optimization is generally complex and usually involves cumbersome calculations, 
especially when consider simulation-optimization case when we have to perform simulation 
experiment in every iteration of the algorithm. The restrictions are caused by demands on 
computer resources – CPU and memory. The directions, which should bring benefits are: 

• hybrid techniques that combines global and local algorithms, to solve the optimization 
problem, 

• parallel computing where the whole task is partitioned between several cores, processors 
or computers.  

Hybrid approaches can speed up the convergence to the solution. Parallel implementation allows 
to reduce the computation time, improve the accuracy of the solution, and to execute large 
program which cannot be put on a single processor.  
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Recently a number of software packages with numerical solvers for global optimization have 
been developed, and can be find in the Internet. They support sequential and parallel 
programming. Publicly available implementations of interval analysis and branch-and-bound 
schemes are discussed in [5, 19]. The goal of the COCONUT project [3], was to integrate the 
currently available techniques from mathematical programming, constraint programming, and 
interval analysis into a single discipline, to get algorithms for global constrained optimization. 
Solvers implementing various types of techniques for global optimization (deterministic and 
stochastic), i.e., interval methods, continuous branch and bound, multistart, genetic and 
evolutionary, tabu search and scatter search are provided in [18]. 

This paper is organized as follows. In the first section we describe organization, 
implementation and usage of our software platform GOOL–PV. Next, the numerical algorithms 
provided in GOOL–PV are presented. The focus is on hybrid techniques and parallel versions of 
the algorithms. Finally, the comparative study of efficiency of sequential and parallel versions of 
selected global optimization methods is presented. 

2 Description of GOOL-PV System 

GOOL–PV (Global Optimization Object-oriented Library – Parallel Version) is an integrated 
software platform that provides tools for solving the following optimization problem: 

)(min xf
nx ℜ∈
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where f and gi are real-valued functions. In general the problem (1) is nonconvex.  
GOOL–PV is developed based on GOOL system (described in [15]) – the library of solvers 

for local and global optimization problems. GOOL–PV is more advanced and has wider range of 
applications. The main objective was to speed up calculations and improve the accuracy of the 
solution, so the focus was on parallel computing. The new extended version of GOOL can be 
used to solve the complex optimization problems on parallel and multi-core machines or 
computer clusters.  

Similarly to the original sequential GOOL system two approaches to user-system 
interactions, i.e. GOOL–PV/COM and GOOL–PV/GUI are offered. In the GOOL–PV/COM 
version batch processing is assumed. This type of user-system operation is dedicated to the 
complex optimization problems, where values of the objective function are calculated based on 
simulation. GOOL–PV/GUI is dedicated mainly to education and research concerned with 
testing various algorithms and tuning their parameters. It supplies the graphical environment for 
optimization problem definition and results presentation. The graphical editor, symbolic 
expression analyzer and tools for dynamic, on-line monitoring of the calculation results are 
provided. The following graphical presentation techniques are available: 2D and 3D graphs, 
leaves of the function values and a table of numbers. In the case of parallel versions of the 
algorithms the solutions calculated by different processors are presented in the same window but 
in different colors. The results presentation is fitted to the optimization method (points, lines, 
grids). The visualization of a multidimension problem is achieved by displaying in the separate 
windows the leaves for each pair of variables, under the assumption that all other variables are 
fixed.   

2.1 System Architecture and Implementation  

The GOOL–PV system is composed of three main components (see Fig. 1):  



• system kernel that provides runtime infrastructure, manages communication between 
calculation processes and user interface, and data repository services, 

• graphical user interface (GUI) that provides a set of tools mainly to support the 
interaction with the user and the runtime monitoring, 

• library of numerical methods that provides a set of numerical algorithms divided into 
two parts: the library of optimization solvers in sequential and parallel versions 
(GOOL–PV/OM) and the library of random generators (GOOL–PV/RG). 
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Figure 1. GOOL-PV architecture 

GOOL–PV is based on C++ and the script language Tcl (Tool Command Language). All 
numerical methods are implemented in uniform form as C++ classes while the higher-level 
activities, i.e., problem definition, parameters setting, results presentation, managing calculations 
and communication between the optimization engine and the user interface are easily achieved 
with Tcl. Hence, two functionalities of GOOL–PV are separated and can be easily modified.  
The optimization algorithms provided in GOOL–PV/OM library built upon GOOL–PV classes 
have hierarchical structure. The hierarchy of classes is natural and well defined. Three 
fundamental classes: Task, inserting the considered optimization problem to be solved, 
Algorithm, the basic class of all optimization methods and Generator, for random numbers 
generation are provided. Available software may be easily adopted, new algorithms can be 
implemented applying classes defined in GOOL–PV. The open design of the system architecture, 
and its extensibility to include other open source modules, was chosen in the hope that the system 
will be a useful platform for researchers and students. The code is currently available for MS-
Windows and Linux operating systems. 

2.2 Library of Numerical Methods  

The numerical library consists of two parts GOOL–PV/OM and GOOL–PV/RG containing, 
respectively a collection of local and global optimization solvers and random numbers 
generators. The following algorithms for random numbers generation have already been 
implemented: uniform, normal (Gaussian), Beta, Cauchy and three quasi-random sequences: 
Halton, Sobol, Fauer [14]. Several techniques for one and multidimensional local and global 
search are provided. The current version of the system offers global optimization solvers from 



two groups: deterministic: chaotic movement [7,16], branch-and-bound and clustering 
techniques [8, 11], and stochastic: random search (pure and population set based direct search 
methods) [1], simulated annealing [4], genetic algorithms [6, 17], evolutionary strategies [2, 9, 
10] and hybrid methods combining stochastic global search with local deterministic search [12, 
20]. All listed algorithms are implemented in a few versions. Most of them can be executed in 
parallel. The algorithms from the GOOL–PV/OM library can be used to solve unconstrained 
and constrained optimization problems. The inequality constraints are accounted for in the 
minimized performance function using simple penalty terms for constraints violation. The 
detailed description of implemented algorithms can be found in [15]. 

3 Hybrid Methods 

Two hybrid techniques combining well known methods for solving local and global minimum 
were added to the GOOL-PV/OM library. The goal was to develop algorithms that outperform 
the simple genetic and simulated annealing algorithms. In this section we provide the short 
description of these mechanisms. 

3.1 Genetic Algorithm with Local Tuning  

The genetic algorithm with local tuning called GOD, developed by Yang and Douglas, and 
presented in [20] integrates the simple genetic algorithm GA described in [6] with the well 
known downhill method NM developed by Nelder and Mead [14]. The goal was to improve 
the performance of GA. GOD speeds up the convergence to the global minimum, reduces the 
demands on the size of the initial population of points, and is more robust w.r.t. the local 
solutions.  

The algorithm operates as follows. In each step a new population is created using both GA 
and NM methods, i.e. a subset of new points is generated by genetic operations, and a subset 
by the downhill method. In order to speed up the convergence, the proportion of points 
generated by both methods varies as the global optimum is approached. The more iterations 
have been executed, the more points are created using the NM method. 

A simple coding is proposed, in which each value is represented by a code value from 
range (0;1). Crossover is based on random selection of parents' genes, whereas during 
mutation each gene may be replaced by a random value. In the selection phase the values of 
fitness calculated for points from old and new population are compared. The points with better 
fitness are selected. 

3.2 Simulated Annealing with Genetic Algorithm 

The method called SA/SOS (Synchronous approach with occasional solution exchanges) is 
described in [12]. It combines the simulated annealing SA with the genetic algorithm GA. 
SA/SOS algorithm operates as follows. Computation is performed on the initial set of points. 
Simulated annealing is used to transform the population. After assumed number of steps, a 
crossover operator as implemented in GA is applied to the selected points. The randomly 
selected coordinates of chosen points are modified. The overall solution quality E is measured 

as a sum of fitness of all points in the population, ∑ =
= P

k kxfE
1

)(  where P denotes the size of 

population of points xk, k=1,…,P, f  the performance function (1) (fitness). The control 
parameter T (temperature) in SA does not change in case when the overall solution E is 



improved. Otherwise, it is changed according to the cooling scheme )/1/( * EETT β+= , 

where ∑ =
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** )( , xk and xk
* points before and after crossover operation (k=1,…,P). 

4 Parallel Algorithms  

The implementation of parallel versions of optimization algorithms provided in GOOL–PV 
numerical library is based on the OpenMP tool. The OpenMP (Open Multi-Processing) [13] is 
an application programming interface (API) that supports multi-platform shared memory 
multiprocessing programming in C/C++ and Fortran on many architectures. It consists of a set 
of compiler directives, library routines, and environment variables that influence run-time 
behavior. An application can run on multiprocessor, multi-core, machines and computer 
clusters.  

The objective of parallel implementations was to speed up the calculations and improve the 
accuracy of the solution. Several ways of methods parallelization were considered, which 
resulted several more and less complicated, and at the same time more and less effective 
variants of each algorithm. In general the hybrid communication model combining master-
slave architecture and peer-to-peer communication was applied. We distinguished two groups 
of threads: 

Master (the main thread) initiated by the GOOL-PV systems, which goal is to read all 
parameters from GOOL-PV/GUI, start the calculations and create slave 
threads. 

Slaves – threads that perform the calculations. 
 
All variants of parallel implementations of given optimization algorithms differ in frequency 
and organization of slave threads/processes intercommunication. Two following variants are 
implemented: 

A. Several independent instances (slave threads) of a given algorithm are executed for 
different sets of input data (in case of GA various initial populations), each on a 
separate processor. The master process is responsible for calculation processes 
initialization and calculations termination. Each slave stops the calculations after 
stopping condition is met and sends its results together with the adequate message to 
the master thread. 

B. Similarly to A several independent instances of a given algorithm are executed, each on 
a separate processor and its own set of input data. The master thread is responsible for 
calculation processes initialization, master-slave communication and calculations 
termination. The master-slave communication during the calculation is performed. 
After each assumed number of iterations each slave sends the message with its local 
best point/points to the master and takes the best point currently available in the master 
thread. The master-slave communication is asynchronous. Each slave stops the 
calculations after stopping condition is met and sends its results together with the 
adequate message to the master thread. 

It should be pointed that different parallel implementation emphasis different aspects, namely a 
compromise is made between efficiency, accuracy an reliability, where reliability refers to the 
probability of obtaining a global minimum. 



5 Numerical Results 

Multiple numerical experiments were performed for four standard multimodal functions 
defined by Ackley (AC), Levy (LE), Rastrigin (RA) and Griewank (GR), and described in the 
Appendix. The tests were carried out on the Sun Fire V440 computer equipped with four 
processors. The objective of the experiments was to compare the performance of the global 
optimization solvers provided in GOOL–PV. The sequential and parallel versions were 
considered. The focus was on benefits of parallel implementation. The results of calculations 
are presented in figures and tables. Three main criteria that determined the performance of the 
compared algorithms: the quality of the final result, running time and number of function 
evaluation were taken into consideration.  

5.1 Hybrid Methods   

The hybrid method GOD was compared with the genetic algorithm GA. The initial population 
consisted of 40 points in GOD and 160 points in GA. The algorithms were terminated when 
the difference of performance values for a few trial points was less than ε=0.1.  

The SA/SOS performance was compared with the simulated annealing SA. The following 
cooling schemes for decreasing the control parameter T (temperature) were implemented: in 
case of SA ii TT )1(1 α−=+ , where α=0.2, in SA/SOS )/1/( *1 EETT ii β+=+ , where β=0.2. 

The initial population in SA/SOS consisted of 10 points.  

Table 1. Comparison of hybrid and traditional methods. 

 
The table 1 shows the average results over series of 5 trials for four methods: GA, GOD, 

SA/SOS and SA. The values collected in the adequate columns denote: fun – test function, n – 
problem dimension,  f_min – average value of the performance function calculated for 5 runs 
of the algorithm, f_eval – number of performance function evaluation needed to find the 
solution with the assumed stop criterion.  

The hybrid method GOD proved to be very fast and robust in testing problems. It is better 
both in terms of speed of convergence to the solution and calculated solution's accuracy than 

 GOD GA SA/SOS SA 

fun n f_min f_eval f_min f_eval f_min f_eval f_min f_eval 

5 0,87 256 7,07 1600160 2,96 130481 3,61 120815 

10 0,93 1654 13,03 1600080 5,18 384525 5,27 362591 

AC 

20 3,34 16973 15,86 1600160 6,74 1270940 9,43 1200570 

5 0,93 32 1,79 1121440 0,79 2704 7,74 2480 

10 0,92 194 1,36 1487796 18,52 3816 41,59 3639 

LE 

20 2,24 18984 32,49 1600160 81,52 12269 178,76 12918 

5 0,87 1700 4,31 1600160 2,87 1317 6,69 121641 

10 1,5 23260 28,84 3200160 23,61 389842 30,98 362186 

RA 

20 17,5 655179 106,15 1600160 91,92 1282865 116,16 1201664 



GA. We can say that proposed modification makes GA far more effective even for smaller size 
of an initial population. Results obtained for simulated annealing methods clearly show that 
the hybrid method SA/SOS achieves better results than simple SA. 

5.2 Parallel Methods   

Parallel versions of GA and SA were tested for various numbers of threads. Final quality of result 
and computational effort measured by number of function evaluations were compared. The goal 
of the tests was to calculate the solution with high level of accuracy. In sequential version of 
population set based methods like GA the calculations were performed for the initial population 
consisting of P points (P was different for different algorithms). In case of parallel versions 
executed on m processors, m instances of the considered algorithm were executed, each on a 
separate processor. Each processor transformed the population of P points. The stop criterion was 
the assumed number of iterations (10 000 for GA and 10 000∗n for SA). The results of numerical 
experiments are presented in table 2 and figure 2. The values collected in the table denote: n – 
problem dimension, nt – number of executed threads, f_min – average value of the performance 
over a serie of 5 trials, f_best and f_worst, respectively the best and worst solution. 

In general, the results of calculations show that usage of parallel methods results in better 
accuracy, achieved in similar number of function evaluations. The improvement of final results 
for multiple threads was observed. In most cases the accuracy of the solution increased in 10-
20%. However, parallel genetic algorithm found results even 50% better than its sequential 
version. Parallel simulated annealing method with synchronous communication scheme, which 
turned out to be the most effective version of SA-type algorithms implemented in GOOL-PV, 
achieved improvement of up to 65% for selected test functions. 

Table 2. Comparison of sequential and parallel versions of GA and SA methods. 

method Genetic Algorithm Simulated Annealing 

function GR RA GR RA 

n nt f_best f_min f_worst f_best f_min f_worst f_best f_min f_worst f_best f_min f_worst 

1 1,5 1,64 1,87 3,76 4,31 4,8 3,31 4,66 5,89 13,52 17,95 21,91 

2 0,95 1,55 1,93 0,58 0,91 1,08 2,81 3,75 4,46 16,06 17,78 21,50 

3 0,94 1,25 1,44 0,31 0,71 1,38 2,24 3,44 5,27 14,21 17,38 24,12 

5 

4 0,74 1,19 1,48 0,33 0,51 0,74 2,22 3,40 4,38 8,36 13,96 18,41 

1 5,29 5,98 6,24 26,99 28,84 31,33 22,32 27,18 30,96 66,51 71,93 73,70 

2 5,39 5,71 6,29 10,74 14,47 16,46 18,21 24,19 26,84 58,73 68,55 79,20 

3 4,98 5,62 6,23 11,04 12,55 13,71 15,53 23,05 33,51 51,8 65,43 74,73 

10 

4 4,37 5,18 5,78 10,59 12,54 16,71 17,16 20,18 24,13 44,13 59,75 72,71 

1 26,68 28,26 29,37 101,42 106,15 111,05 83,97 90,12 100,3 171,36 186,28 190,10 

2 20,62 24,63 29,33 77,57 83,47 92,62 63,91 81,66 90,25 165,73 178,57 193,73 

3 13,07 22,41 30,32 67,49 72,71 77,2 76,71 79,48 87,78 175,64 178,28 191,26 

20 

4 12,75 16,98 23,35 62,1 64,9 72,53 65,71 79,51 90,04 156,24 171,25 185,82 
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Figure 2. Solutions calculated by Genetic Algorithm a) Griewank function, b) Rastrigin function 

6 Summary and Conclusions 

In this paper a brief description of the software platform GOOL–PV for complex systems 
sequential and parallel optimization was done. We can say that presented software system can 
be successfully used for solving complex global optimization problems. The open design of 
the system architecture and extensibility to include new numerical methods make it be a useful 
tool for researchers and students. Our comparative study of sequential and parallel 
implementations of the selected global techniques shows that the parallel calculations can 
improve the results, and that effectiveness of a given global method strongly depends on its 
computer implementation and assumed attempt to its parallelization. 

  
Appendix: test functions 

 

Ackley function:  
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The search domain: -30≤ xi ≤30, the global minimum fmin=0 for xi = 0, i = 1,…,n. 
 
Levy function:  
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where yi = 1+ (xi – 1)/4. The search domain: -10≤ xi ≤10, the global minimum fmin=0 for xi = 0, 
i = 1,…,n. 
 



Rastrigin function: ( )∑
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The search domain: -5.12≤ xi ≤5.12, the global minimum fmin=0 for xi = 0, i = 1,…,n. 
 

Griewank function:  ∑ ∏
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The search domain: -40≤ xi ≤40, the global minimum fmin=0 for xi = 0, i = 1,…,n. 
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