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Abstract. The papéris concerned with global optimization techniquad ¢heir parallel
implementation. We describe an integrated softwplaform GOOL-PV (Global
Optimization Object-oriented Library—Parallel Vens) that provides the tools for solving
complex optimization problems on parallel and medtie computers or computer clusters.
Finally, we present the comparative study of setjaleand parallel global optimization
algorithms based on numerical results for a stahskirof multimodal functions.

1 Introduction

Many engineering problems are formulated as thémigdtion tasks in which the objective
function is not convex and posses many local miniimtne region of interest. In addition, in
many practical contexts, the optimization probleamr®ot be described analytically due to the
natural complexity and uncertainty of the real-légstems. In such cases the simulation
experiment is usually used to evaluate the expgmefbrmance of the system for each set of
decision variables. It involves of simulation-basgdimization (or simulation optimization) that
is the merging of optimization and simulation teigoes. The usage of traditional, local
optimization methods is usually inefficient for wolg multimodal or simulation-based problems.
Therefore, methods designed for global optimizatme important from a practical point of
view.

Global optimization is generally complex and uspdtivolves cumbersome calculations,
especially when consider simulation-optimizatiorsecavhen we have to perform simulation
experiment in every iteration of the algorithm. Thestrictions are caused by demands on
computer resources — CPU and memory. The dire¢tignish should bring benefits are:

* hybrid techniques that combines global and locgbrdhms, to solve the optimization
problem,
« parallel computing where the whole task is pariitid between several cores, processors
or computers.
Hybrid approaches can speed up the convergenbe totution. Parallel implementation allows
to reduce the computation time, improve the acguigEcthe solution, and to execute large
program which cannot be put on a single processor.
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Recently a number of software packages with numlesimlvers for global optimization have
been developed, and can be find in the InterneeyThupport sequential and parallel
programming. Publicly available implementationsimtierval analysis and branch-and-bound
schemes are discussed in [5, 19]. The goal of @EQNUT project [3], was to integrate the
currently available techniques from mathematicalgpgmming, constraint programming, and
interval analysis into a single discipline, to gégorithms for global constrained optimization.
Solvers implementing various types of techniquasdiobal optimization (deterministic and
stochastic), i.e., interval methods, continuousntinaand bound, multistart, genetic and
evolutionary, tabu search and scatter search axéded in [18].

This paper is organized as follows. In the firsctim we describe organization,
implementation and usage of our software platfor®@0E—PV. Next, the numerical algorithms
provided in GOOL-PV are presented. The focus iBydmid techniques and parallel versions of
the algorithms. Finally, the comparative study ffitncy of sequential and parallel versions of
selected global optimization methods is presented.

2 Description of GOOL-PV System

GOOL-PV @Global Optimization Object-oriented Library — Palell Versior) is an integrated
software platform that provides tools for solvihg tfollowing optimization problem:

min f (x) subject to: g(x)=<0, i=1..m Q)
xoan

wheref andg; are real-valued functions. In general the prob{&)ris nonconvex.

GOOL-PV is developed based on GOOL system (destitbfl5]) — the library of solvers
for local and global optimization problems. GOOL—B\more advanced and has wider range of
applications. The main objective was to speed Ugulzions and improve the accuracy of the
solution, so the focus was on parallel computinige fiew extended version of GOOL can be
used to solve the complex optimization problems pamallel and multi-core machines or
computer clusters.

Similarly to the original sequential GOOL systemotvapproaches to user-system
interactions, i.e. GOOL-PV/COM and GOOL-PV/GUI aered. In the GOOL-PV/COM
version batch processing is assumed. This typesef-system operation is dedicated to the
complex optimization problems, where values ofdbgective function are calculated based on
simulation. GOOL-PV/GUI is dedicated mainly to eafimn and research concerned with
testing various algorithms and tuning their paramsetlt supplies the graphical environment for
optimization problem definition and results preatioph. The graphical editor, symbolic
expression analyzer and tools for dynamic, on-limenitoring of the calculation results are
provided. The following graphical presentation t@ghes are available: 2D and 3D graphs,
leaves of the function values and a table of numbler the case of parallel versions of the
algorithms the solutions calculated by differerdqassors are presented in the same window but
in different colors. The results presentation fedi to the optimization method (points, lines,
grids). The visualization of a multidimension pmfl is achieved by displaying in the separate
windows the leaves for each pair of variables, uride assumption that all other variables are
fixed.

2.1 System Architecture and I mplementation
The GOOL-PV system is composed of three main comsr{see Fig. 1):



» system kernethat provides runtime infrastructure, manages camaation between
calculation processes and user interface, andejabsitory services,

e graphical user interfacg GUI) that provides a set of tools mainly to suppihe
interaction with the user and the runtime monitgyin

* library of numerical methodthat provides a set of numerical algorithms diglidieto
two parts: the library of optimization solvers iegsiential and parallel versions
(GOOL-PV/OM) and the library of random generat@®QOL—PV/RG).

GOOL-PV/OM GOOL-PV/IRG
C++ C++

bjective functi
N\njde;;zgmuqury new point
SYSTEM KERNEL
Tcl

problem formulation h
and experiment setup

User Interface (GUI)
Tcl

new point

results of calculations

Figurel. GOOL-PV architecture

GOOL-PV is based on C++ and the script language (Tebl Command Language). All
numerical methods are implemented in uniform forsnGa+ classes while the higher-level
activities, i.e., problem definition, parametertisg, results presentation, managing calculations
and communication between the optimization engimek the user interface are easily achieved
with Tcl. Hence, two functionalities of GOOL—PV aeparated and can be easily modified.

The optimization algorithms provided in GOOL-PV/Qidrary built upon GOOL-PV classes
have hierarchical structure. The hierarchy of @asss natural and well defined. Three
fundamental classesTask inserting the considered optimization problem ke solved,
Algorithm, the basic class of all optimization methods &@uwherator for random numbers
generation are provided. Available software mayebsily adopted, new algorithms can be
implemented applying classes defined in GOOL—P\¢& djpen design of the system architecture,
and its extensibility to include other open soureslules, was chosen in the hope that the system
will be a useful platform for researchers and stisleThe code is currently available for MS-
Windows and Linux operating systems.

2.2 Library of Numerical M ethods

The numerical library consists of two parts GOOL4®BM and GOOL-PV/RG containing,
respectively a collection of local and global optation solvers and random numbers
generators. The following algorithms for random ibems generation have already been
implemented: uniform, normal (Gaussian), Beta, @guand three quasi-random sequences:
Halton, Sobol, Fauer [14]. Several techniques foe and multidimensional local and global
search are provided. The current version of théesy®ffers global optimization solvers from



two groups: deterministic: chaotic movement [7,16fanch-and-bound and clustering
techniques [8, 11], and stochastic: random segrate(and population set based direct search
methods) [1], simulated annealing [4], genetic dthms [6, 17], evolutionary strategies [2, 9,
10] and hybrid methods combining stochastic glaealrch with local deterministic search [12,
20]. All listed algorithms are implemented in a fewrsions. Most of them can be executed in
parallel. The algorithms from the GOOL-PV/OM libyazan be used to solve unconstrained
and constrained optimization problems. The inetyalonstraints are accounted for in the
minimized performance function using simple penakyms for constraints violation. The
detailed description of implemented algorithms barfound in [15].

3 Hybrid Methods

Two hybrid techniques combining well known methdéaissolving local and global minimum
were added to the GOOL-PV/OM library. The goal wadevelop algorithms that outperform
the simple genetic and simulated annealing algmsthin this section we provide the short
description of these mechanisms.

3.1 Genetic Algorithm with Local Tuning

The genetic algorithm with local tuning called GOdieveloped by Yang and Douglas, and
presented in [20] integrates the simple genetiordlyn GA described in [6] with the well
known downhill method NM developed by Nelder andaddg14]. The goal was to improve
the performance of GA. GOD speeds up the convesgenthe global minimum, reduces the
demands on the size of the initial population oinggm and is more robust w.r.t. the local
solutions.

The algorithm operates as follows. In each stepva population is created using both GA
and NM methods, i.e. a subset of new points is g¢ee by genetic operations, and a subset
by the downhill method. In order to speed up thaveogence, the proportion of points
generated by both methods varies as the globaiaptiis approached. The more iterations
have been executed, the more points are created i NM method.

A simple coding is proposed, in which each valueeisresented by a code value from
range (0;1). Crossover is based on random seleafoparents' genes, whereas during
mutation each gene may be replaced by a randone.valuhe selection phase the values of
fitness calculated for points from old and new gapan are compared. The points with better
fitness are selected.

3.2 Simulated Annealing with Genetic Algorithm

The method called SA/SOSSyYnchronous approach with occasional solution ergeg is
described in [12]. It combines the simulated aningaSA with the genetic algorithm GA.
SA/SOS algorithm operates as follows. Computatsopdrformed on the initial set of points.
Simulated annealing is used to transform the pdijpmaAfter assumed number of steps, a
crossover operator as implemented in GA is appitedhe selected points. The randomly
selected coordinates of chosen points are modified.overall solution qualiti is measured

as a sum of fitness of all points in the populatipn= Z:zl f (x,) WhereP denotes the size of

population of pointsx, k=1,...,B f the performance function (1) (fitness). The cohtr
parameterT (temperature) in SA does not change in case whenoterall solutionE is



improved. Otherwise, it is changed according to toeling schemeT =T/(1+ fE /E),
whereE" = Z:Zl f (X)X andx, points before and after crossover operatiori(...,P.

4 Paralld Algorithms

The implementation of parallel versions of optintiaa algorithms provided in GOOL-PV
numerical library is based on the OpenMP tool. OpenMP (Open Multi-Processing) [13] is
an application programming interface (API) that mogts multi-platform shared memory
multiprocessing programming in C/C++ and Fortrammany architectures. It consists of a set
of compiler directives, library routines, and ewviment variables that influence run-time
behavior. An application can run on multiprocessoilti-core, machines and computer
clusters.

The objective of parallel implementations was teexpup the calculations and improve the
accuracy of the solution. Several ways of methodslfelization were considered, which
resulted several more and less complicated, artieasame time more and less effective
variants of each algorithm. In general the hybristhmunication model combining master-
slave architecture and peer-to-peer communicatias applied. We distinguished two groups
of threads:

Master (the main thread) initiated by the GOOL-PV systembich goal is to read all
parameters from GOOL-PV/GUI, start the calculaticmsd create slave
threads.

Slaves- threads that perform the calculations.

All variants of parallel implementations of giveptonization algorithms differ in frequency
and organization of slave threads/processes interamication. Two following variants are
implemented:

A. Several independent instances (slave threads) gifem algorithm are executed for
different sets of input data (in case of GA varidogial populations), each on a
separate processor. The master process is resfgorfsib calculation processes
initialization and calculations termination. Eaclave stops the calculations after
stopping condition is met and sends its resultettuey with the adequate message to
the master thread.

B. Similarly to A several independent instances oifverg algorithm are executed, each on
a separate processor and its own set of input @ammaster thread is responsible for
calculation processes initialization, master-slaa@mmunication and calculations
termination. The master-slave communication durihg calculation is performed.
After each assumed number of iterations each slewels the message with its local
best point/points to the master and takes thepmst currently available in the master
thread. The master-slave communication is asyncumn Each slave stops the
calculations after stopping condition is met anddseits results together with the
adequate message to the master thread.

It should be pointed that different parallel impktation emphasis different aspects, namely a
compromise is made between efficiency, accuracyehability, where reliability refers to the
probability of obtaining a global minimum.



5 Numerical Results

Multiple numerical experiments were performed faurf standard multimodal functions
defined by Ackley (AC), Levy (LE), Rastrigin (RAnd Griewank (GR), and described in the
Appendix. The tests were carried out on the Sue Ni#440 computer equipped with four
processors. The objective of the experiments wasotopare the performance of the global
optimization solvers provided in GOOL-PV. The setigd and parallel versions were
considered. The focus was on benefits of paraihglémentation. The results of calculations
are presented in figures and tables. Three mderierithat determined the performance of the
compared algorithms: the quality of the final résulinning time and number of function
evaluation were taken into consideration.

5.1 Hybrid Methods

The hybrid method GOD was compared with the geradgjorithm GA. The initial population
consisted of 40 points in GOD and 160 points in GAe algorithms were terminated when
the difference of performance values for a few fr@ints was less thas=0.1.

The SA/SOS performance was compared with the stedilannealing SA. The following
cooling schemes for decreasing the control paranfe{éeemperature) were implemented: in
case of SAT'™ = (1-a)T', wherea=0.2, in SA/SOST'* =T'/(1+ fE"/E), where=0.2.
The initial population in SA/SOS consisted of 10m&

Table 1. Comparison of hybrid and traditional methods

GOD GA SA/SOS SA

fun n f_min f_eval f_min f_eval f_min f_eval f_mih f_eval

AC | 5 0,87 256 7,07 160016( 2,96 130481 3,61 120815
10 0,93 1654 13,03 1600080 5,18 384525 5,27 362591
20 3,34 16973 15,86 160016D 6,74 1270940 9,43 Z0a5

LE | 5 0,93 32 1,79 112144 0,79 2704 7,74 2480
10 0,92 194 1,36 1487796 18,52 3816 41,59 3639
20 2,24 18984 32,49 160016p 81,52 12269 178(76 8291

RA| 5 0,87 1700 4,31 1600160 2,87 1317 6,69 121641
10 15 23260 28,84 320016p 23,61 389842 30,98 3218
20 17,5 655179 106,15 1600160 91,92 1282865 116,16 1201664

The table 1 shows the average results over sefigdrals for four methods: GA, GOD,
SAJ/SOS and SA. The values collected in the adecpaitanns denotdun — test functionn —
problem dimensionf _min— average value of the performance function catedldor 5 runs
of the algorithm,f_eval — number of performance function evaluation neettedind the
solution with the assumed stop criterion.

The hybrid method GOD proved to be very fast armlisd in testing problems. It is better
both in terms of speed of convergence to the smiuind calculated solution's accuracy than



GA. We can say that proposed modification makesf&Anore effective even for smaller size
of an initial population. Results obtained for slatad annealing methods clearly show that
the hybrid method SA/SOS achieves better resudits $imple SA.

5.2 Paralld Methods

Parallel versions of GA and SA were tested forawinumbers of threads. Final quality of result
and computational effort measured by number oftfanevaluations were compared. The goal
of the tests was to calculate the solution witthHigvel of accuracy. In sequential version of
population set based methods like GA the calcuiatiwere performed for the initial population
consisting ofP points P was different for different algorithms). In cask parallel versions
executed omm processorsm instances of the considered algorithm were exdc@ach on a
separate processor. Each processor transformedplsation ofP points. The stop criterion was
the assumed number of iterations (10 000 for GAZhA0QH for SA). The results of numerical
experiments are presented in table 2 and figufgng.values collected in the table denate;
problem dimensiomt — number of executed threadlsmin— average value of the performance
over a serie of 5 trial§, bestandf_worst respectively the best and worst solution.

In general, the results of calculations show tls#tge of parallel methods results in better
accuracy, achieved in similar number of functioaleations. The improvement of final results
for multiple threads was observed. In most casesatituracy of the solution increased in 10-
20%. However, parallel genetic algorithm found hsseven 50% better than its sequential
version. Parallel simulated annealing method wjthckronous communication scheme, which
turned out to be the most effective version of $getalgorithms implemented in GOOL-PV,
achieved improvement of up to 65% for selectedftesttions.

Table 2. Comparison of sequential and parallel versionsAfand SA methods

method Genetic Algorithm Simulated Annealing

function GR RA GR RA

n| nt|f bestf min| f worst f best| f min| f worstf_best f min |f worsf f_best| f min| f_worg

5| 1 1,5 1,64 1,87 3,76 4,31 4,8 3,31 4,66 589 13,87,95| 21,91
2 | 095| 1,55 1,93 0558 091 1,08 281 3,5 4}46 616,07,78| 21,50
3 0,94| 1,25 1,44 0,31 0,71 1,38 2,4 3,44 527 114,27,38| 24,12
4 1074 1,19 1,48 0,33 051 0,74 2,2 340 4|38 83B,96| 1841

10| 1 | 5,29| 5,98 6,24| 26,99 2884 31,33 22,37,18| 30,96| 66,51 71,98 73,7
2 | 539 571 6,29 10,74 1447 16,46 1824,19| 26,84 58,73 6855 79,2
3 4,98 | 5,62 6,23 11,04 12585 13,41 1558,05| 33,51 51,8 6548 74,7
4 | 437| 5,18 5,78 10,59 12,54 16,11 17,12,18| 24,13| 44,13 59,7p 72,7

20| 1 |26,68] 28,26 | 29,37| 101,4p106,15 111,05 83,97 90,12| 100,3] 171,36186,28| 190,10
2 |20,62| 24,63| 29,33| 77,57 83,4 92,62 63|981,66| 90,25 165,78178,57| 193,73
3 |[13,07) 22,41| 30,32 67,49 72,71 77,2 76)719,48 | 87,78 175,614178,28 191,26
4 112,75/ 16,98 | 23,35 62,1 64,9 72,58 65/7/79,51| 90,04| 156,24171,25| 185,82
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Figure2. Solutions calculated by Genetic Algorithm a) Gréak function, b) Rastrigin function

6 Summary and Conclusions

In this paper a brief description of the softwatatfiorm GOOL-PV for complex systems
sequential and parallel optimization was done. \Ate say that presented software system can
be successfully used for solving complex globalrjzation problems. The open design of
the system architecture and extensibility to inelmgw numerical methods make it be a useful
tool for researchers and students. Our comparasttely of sequential and parallel
implementations of the selected global technigueswns that the parallel calculations can
improve the results, and that effectiveness ofvargiglobal method strongly depends on its
computer implementation and assumed attempt fmitsllelization.

Appendix: test functions

Ackley function Ac(x) = 20+e—20ex;{—é }1Z>92J—ex 1ZcosQn;g ))
Nz Nz

The search domain: -8%; <30, the global minimurfy,;,=0 forx = 0,i = 1,...n.
Levy function
n-1
LE(X) =sin®(75,) + 3. (¥, = 1) (L+10sin* (75, +1))] + (y, =1 (L+10sin? (273,))
i=1

wherey; = 1+ (x, — 1)/4. The search domain: <& <10, the global minimunf,;,=0 forx; = 0,
i=1,...n



Rastrigin function RA(X) =10n+ Z (xiz -10cos@7x, ))
i=1

The search domain: -5.4%; <5.12, the global minimurfy,;;=0 forx, = 0,i = 1,...n.

. . 1 & n X
Griewank function GR(X) =—Y " (x3) +1-[] cos ==
() =253 (%) +1- ] cos -

i=1 1=1

The search domain: -4 <40, the global minimurfy,=0 forx, = 0,i = 1,...n.
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