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Abstract: The present paper discusses the influence of simulation model accuracy on the 
convergence  of  electromagnetic  structure  simulation-based  optimization.  Neither 
response surface approximation method nor the algorithm of moving window filtering, 
commonly used for simulation error compensation, is not fully capable of guaranteeing 
proper  convergence.  The  non-expensive  device  model  with  coarse  meshing  and  a 
modified error compensation method can yield satisfactory results in a reasonable time.

1   Introduction

The  simulation-based  optimization  method  merges  optimization  techniques  with  full-wave 
3D/V2D electromagnetic  simulation  technologies.  The  whole  process  is  usually  extremely 
time- and resource- consuming. The simulators also have limits of credibility, resulting from 
the model behavior and computer implementation. Prior to the optimization we are forced to 
make  a  tradeoff  between  reliability  and  accuracy  of  solution  versus  time  and  number  of 
computer resources necessary to complete the project. The designing process with the use of a 
simulator is a struggle for a better performance of the device in acceptable time, with a limited 
number of computer resources. In practice, accurate simulation models with dense meshing, 
although  extremely  expensive,  are  more  likely  used.  Simulation-based  optimization  has 
achieved growing interest in recent times [1,2]. Many computer packages for the design of 
microwave circuits, called electromagnetic solvers, are available on the market [1-4]. 

This paper is focused on those, using the finite-difference time-domain method FDTD [5]. 
In principle, the FDTD method is based on solving three-dimensional Maxwell equations with 
space (called meshing) and time discretisation. In the space domain, the considered area is 
decomposed into a set of small cuboids cells (the process called meshing). In the time domain, 
electromagnetic fields are evaluated iteratively with a time interval. The discrete and iterative 
character of the FDTD method causes some limits on the performance of the design process 
[6].  Simulation accuracy depends on the finite cell size and evaluation time. The cell size 
reduction by half may decrease the systematic space error, caused by discretisation, about 4 
times.  However,  the  computation  time  must  grow  almost  16  times,  while  the  computer 
memory grows about 4 times. Also the location of meshing planes plays an important role. 
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Every circuit is composed of various materials with various shapes. In theory, meshing should 
match exactly the boundaries of each region. For some class of circuits (those with parallel-to-
meshing boundaries) it is possible to compensate the meshing error, by applying various mesh 
snapping techniques [6]. The choice of meshing is a critical issue for timing and convergence 
[6,7]. Additionally, some problems are caused by data accuracy. Internal computer data are 
often coded as 32-bit floating numbers, which limits the result accuracy to four significant 
digits. What is more, input data are rounded, typically, to 4-6 significant digits. So the 0.01% 
change  of  an  input  variable  may  not  affect  the  simulation  result.  The  accuracy  of  float 
arithmetic, with an iterative character of  the process, and input data rounding, seems to be not 
sufficient enough to guarantee the proper optimization convergence.

The present paper is organized as follows. Chapter II presents the extended results of a 
study  on  the  influence  of   simulation  space  and  meshing  errors.  Chapter  III  presents  an 
improved moving window data (directional) filtering method to optimize the electromagnetic 
structure.

2   The Waveguide Transformer Case

The  following  example  illustrates  an  influence  of  meshing  and  numerical  problems  on 
simulation optimization behavior. A simple rectangular waveguide impedance transformer is 
considered, with mesh snapping switched off (shown in Fig.1). The waveguide is built from a 
rectangular  metal  pipe,  filled  with  air.  The  transformer,  shown in  Fig.1,  consists  of  three 
waveguide sections: an input port (a=23mm, b=10mm), middle section (a=23mm, b=7.8mm) 
with a varying length l, and output port (a=23mm,b=6mm).  

      

Figure 1   Rectangular waveguide impedance transformer and its cross-section with meshing

The maximal value of the modulus of input reflection coefficient S11 in the frequency band 
from 8 to  9  GHz is  used as  an objective function.  The optimization problem is  stated as 
follows:

min
x∈D n

max
f i∈〈 f min , ... , f max 〉

∣S 11 x , f i∣ (1)

where: x is a vector of optimized parameters ,
Dn is an n-dimensional problem domain,
fi is a discretized frequency from <fmin,fmax> range,
S11 denotes a reflection coefficient (matching factor) on the input of the device.

The optimal value of the varying parameter - length l equals, approximately, 9.5 mm. With 
a change of the optimized parameter, the border plane, located on the step-in-width of the 
waveguide, is shifted. The upper border cell is then, more or less, filled with air, while the rest 



is assumed to be a metal. The FDTD method is based on the assumption that each cell is filled 
with  a  uniform  medium.  Some  methods  are  used  for  compensation  of  the  non-uniform 
meshing [6]. However, they are not fully capable of eliminating all associated phenomena and 
assuring a proper convergence of the optimization process [7]. 

The circuit was simulated with an FD-TD simulator [6], with four different cell sizes: 2, 1, 
0.5 and 0.25 mm. The simulations results are shown in Fig.2. The theoretical shape of the 
objective  is  smooth  and  convex.  The  shape  of  the  simulator  evaluated  objective,  for  the 
reference (cell size equal 0.25 mm) meshing, also seems to be smooth and convex, with one 
optimum. With a growing cell size the ripples on the curve are growing and the minimum of 
the function shifts sideways. Also the number of local optima is growing. One may expect that, 
more or  less  probably,  the  optimization process  will  end up at  one  of  the local  basins of 
attraction.

    

Figure 2 Plot of the objective function (left figure) and simulation error (right figure) versus the length of 
the matching section.

The systematic simulation error, shown in Fig.2, constitutes a quasi-periodic function with the 
period equal to the cell size, specified lengthwise the matching section, of a triangular shape. 
The phenomenon of the cell size dependent systematic error is caused by the fact that the 
boundaries of circuit regions do not coincide with the cell boundaries. Lets go further into 
detail. The shape of the objective curve in a neighborhood closer to the optimal solution is 
shown in Fig.3. 

Even  on  the  objective  curve  with  higher  simulation  accuracy,  some small  ripples  are 
observed. These ripples are relatively narrow and probability of falling into a “hole” during 
optimization is relatively small. However, they may cause premature stops of the process, even 
with very precise meshing. Another phenomena - a stepped like noise which is best visible on 
the upper (cell size equal 1mm) curve - seems to be caused by numerical errors, namely, the 
use of the float data type and input data rounding. Also some drift of the optima with a change 
of the mesh size can be observed. 

Most  of  the  response  surface  algorithms  [7,10,11]  preserves  higher  moments.  The 
consequences of this phenomena is illustrated in Fig.3. The simulation points, marked as black 
dots, were chosen randomly. The approximation error, even for a large number of  samples, is 
comparable  with  the  objective  function.  Combined with  the  simulation error,  it  causes  an 
appearance of some new parasitic local optima. An algorithm to eliminate  the notches of the 
objective  function  is  welcome,  otherwise  the  convergence  of  the  optimization  procedure 
cannot be guaranteed. The exploitation of fuzzy systems [12] may reduce the sensitivity of  the 
optimization process due to the simulation error, but at a high cost



   

Figure 3 Magnified plot of the objective function (left figure) versus length of the matching section and 
error chart of the response surface approximation (right figure), evaluated for the cell size equal 
to 0.5 mm and 80 simulation samples, versus the length and width of  the matching section.

For a multi-modal objective function and lots of optimization parameters, space sampling 
should be dense enough in order to reduce the approximation error. This raises the cost of the 
design to an unacceptably high level. With a growing number of samples the execution time 
increases  exponentially.  Recently  published  examples  [12]  deal  with  2-3  optimization 
variables, and therefore are capable of fine-tuning the network. You can forget about solving 
multiple-variable global optimization in reasonable time.

The  amplitude  of  the  meshing  error  decreases  with  increased  simulation  accuracy. 
However  model improvement causes an unreasonable growth of execution time and greater 
need  for  more  operational  memory.  Also  with  a  growing  amount  of  necessary  computer 
resources the simulation process is more likely to hang up, crash or become unstable, due to 
hardware  problems.  So  in  practice,  we  may never  be  certain  about  the  simulation  result. 
Anyway,  from the  numerical  point  of  view,  0.25 mm meshing seems to  be an acceptable 
choice for structure optimization. However, the required computer memory is, approximately, 
64 times greater than for the 2-mm meshing, while the simulation time grows about 4000 
times.  In practice,  the programming overhead (input/output processing system procedures), 
and the limited bandwidth of memory transfer reduces this ratio several times. But still the 
opportunity  for  fast  exploration  -  hundreds  or  even  thousands  of  rough  characteristic 
evaluations in the same time as the very precise one, is very encouraging.

3   Simulation Error Compensation

With a large number of simulation samples available, we may try to filter the parasitic 
periodic peak out of the shape of the response function. Smoothing the function must flatten 
the  ripples,  creating  a  convex  function  with  one  optimum.  The  commonly  used  way  of 
objective function smoothing is called “moving window filtering” [10]. For uniform approach, 
the search space is discretized into a regular grid and the simulation result is evaluated for 
every node of the grid. Every grid point constitutes the center point of a window used for 
filtering. Finally, the filtered objective value is evaluated as the average of values of all points 
located  inside  the  window,  and  the  minimum  is  found.  Therefore  with  a  growing 
dimensionality and sampling rate the cost  increases exponentially.  The filtration range and 
quality of smoothing is determined by the window size and grid density. Finally, the algorithm 



assumes  that  simulation  results  are  corrupted  by  random  variations.  But  in  general,  the 
simulator specific error is  deterministic.  So the method will  not work as we expect.  First, 
filtering accurate and “quite” good models is too expensive and therefore impractical. The 
peaks of the objective function are so narrow that with any global optimization method we can 
quite easily escape from their neighborhood. Moving window filtering may help only for a 
coarse model when the meshing error is high, like one with the 2 mm cell size. Surprisingly, a 
given accuracy is assumed as the  best compromise between result accuracy and evaluation 
time, from a point of view of field theory specialists. The results of the application of moving 
window filtering (curve F) with rough meshing (cell size = 2 mm) are presented in Figure 4. It 
should  be  mentioned that  in  the  aforementioned  example  the  optimized  variable  vector  is 
orthogonal to the meshing plane. In general, moving window filtering method applied to the 
media with more complicated shapes, like e.g. circular resonator, behaves differently and the 
considered phenomena need further investigation.  

For a good sampling rate the optimum of a filtered function is located very close to the 
“real” optimal point. The shift of optima with 2 mm mesh  is better  than 0.8%. The calculation 
time of the whole process is, approximately, the same as that of the simulation with the 0.5 mm 
mesh. It must be also emphasized that the accuracy of optima location for the 0.5 mm cell size 
(with no filtering)  is  about  1.2%. To achieve the same result  with any other  optimization 
method,  at  least,  10-20  objective  evaluation  is  required.  So  the  estimated  convergence 
improvement is of about ten times. The simulation cost, thanks to coarse meshing, is relatively 
low.

     

Figure 4 Results of “moving window” filtering: objective function - left figure, and accuracy of optima 
localization versus the size of moving window (in millimeters) for various samples (ppm – 
points per mesh size) – right figure.

The  performance  chart,  shown  in  Fig.  4,  illustrates  that  sufficient  accuracy  can  be 
achieved only for relatively dense probing. More than 20 points are necessary to locate optima 
with ±2% accuracy.  In  one-dimensional  case,  20 evaluations  is  an  acceptable  cost.  But  it 
makes 400 for 2 variables and 8000 for 3 variables. So by increasing dimensionality, we are 
losing all the profit resulting from coarse meshing. Also in a multi-dimensional case we must 
keep in mind that the simulation error depends on the orientation of an optimized variable 
vector according to the meshing plane. When some vectors are parallel,  the application of 
moving  window  filtering  may  lead  to  a  misleading  result  as  the  simulation  errors  are 
correlated.



Anyway,  the method was also tested in  a  two-dimensional  convex case,  with varying 
length l and width w of the matching section. These vectors are orthogonal, so their simulation 
errors are non-correlated.  From the initial number of 6 local optima, only one global remains 
after filtering. The shift of optima location was about 2.5%, which is sufficient enough in the 
considered case,  but worse than before. The only advantage of moving window filtering in a 
multi-dimensional case  stems from the fact that the objective function after filtering is smooth, 
so we can effectively use direct search methods [7,9] for local exploitation. Concluding, the 
application of multi-dimensional moving window filtering is neither safe nor efficient. The 
only reasonable solution is  to use one-dimensional moving window algorithm, called later, 
directional filtering. The filtering along the axes of the problem domain space is the most 
suitable choice for the steepest descent Gauss-Seidel algorithm. It may overcome a commonly 
used asynchronous parallel pattern search algorithm [8]. We can also apply other non-gradient 
algorithms  and  evaluate  the  filtered  objective  in  line  search  procedure  along  the  current 
direction.

What  about  global  optimization?  Very  low single  evaluation  cost  is  a  promising  and 
encouraging factor.  Evolutionary algorithms are  implemented in  a  couple  wave simulation 
solvers [13]. However, the efficiency of the EA is poor due to high single evaluation cost. The 
application of directional filtering changes the situation dramatically. Within the same time we 
are able to generate ten to hundred times solutions more. Some tests confirm this thesis. But a 
complete problem investigation, with still an expensive objective function, requires a lot of 
computation time. The case is currently analyzed.

The distribution of a directional filtering algorithm is easy and effective. It can be realized 
via asynchronous parallel simulations. With a large number of “real simulation” samples the 
method is not sensitive to the uncertainty about the simulation result, the loss of data or delay 
in data transmission evaluated  from some sample  points. So it can even be safely used on a 
computer grid with various processors.

4   Conclusions

Many  heuristic  techniques  have  been  evaluated  by  experimenting  with  test  cases. 
Several efforts have been made to prove the convergence of such, intuitively created methods. 
Few of them were successful. Anyway, the proof of convergence is not necessary for efficient 
functioning of the algorithm. Directional filtering of simulation data seems to perform faster 
and  be  more  reliable  than  the  response  surface  algorithm,  particularly  in  the  case  of  the 
QuickWave  FDTD  simulator.  The  phenomena  of  the  space  error  under  consideration  is 
common for all finite-difference simulators. So, intuitively thinking, we may expect that the 
method  can  perform  well,  in  general.  The  problem  needs  further  investigation  though. 
Simulation result  redundancy not  only lets us explore a  wider  space range, increasing the 
probability  of   finding  a  new and  better  solution   but   it  also  enables  us  to  neglect  the 
uncertainty and unreliability of the simulation as well. The filtering method is simple and easy 
to  implement  with  an  evolutionary  algorithm  and  ideal  for  concurrent  asynchronous 
processing.
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