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Abstract. Recently, we proposed a centralized distance-based technique TSA
(Trilateration & Simulated Annealing) that uses a combination of the trilateration
method, along with the simulated annealing optimization algorithm for performing
localization of nodes in an ad hoc network with static nodes (Wireless Sensor
Networks). Our location scheme depends on network nodes transmitting data to
a central computer, where calculation is performed to determine the estimated
location of each node. Although it achieves high accuracy in estimating sensors’
locations, speed of the method can not be satisfactory for large scale practical
applications. It strongly depends on the values of the parameters specific to the
algorithm. In this paper' we report the results of numerical tests performed for
various values of these parameters. On the other hand we propose the distributed
version of our technique where each network node estimates its position based on
only local data gathered from its neighbors. Finally, we present the comparative
study of centralized and distributed schemes.

1 Introduction and localization problem formulation

Wireless Sensor Networks (WSN) used to monitoring and controlling the environment
surrounding them are useful only if it is possible to correlate data transmitted to a
base station in time and in space. This is the reason why network nodes’ localization
is a fundamental tool for ad hoc networks. Because of constraints on the cost and size
of network nodes, energy consumption and the randomly deployment of sensors, most
nodes do not know their position. Recently some techniques [2] for assigning geographic
coordinates to each node in an ad hoc network system have been proposed. They allow
to estimate nodes location using information transmitted by a set of anchor nodes. An
anchor is defined as a node that is aware of its own location, either through GPS adapter
or manual deployment at the point with known position. It should be pointed that
localization schemes should give the solution in the short time, achieve good accuracy
even in the case of unevenly distributed nodes, and scale to large networks.

Two classes of localization methods can be distinguished: connectivity-based and
distance-based. Distance-based methods use inter-sensor distance or angle measurements
in location calculation. The techniques proposed in literature are based on applying
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popular optimization methods to nodes localization, such as semidefinite programming
(SDP) [1], simulated annealing [3, 4] and genetic algorithm [7]. The connectivity-based
methods use only contents of the received messages to locate the entire sensor network.
They are based on hop-counting. A survey of these approaches can be found in [5,
9, 10]. Both, connectivity-based and distance-based techniques have some weaknesses,
i.e., distance-based algorithms require the additional costly equipment, connectivity-
based algorithms are cost effective but their performance is usually worse. The method
described in this paper belongs to the class of centralized distance-based algorithms.

Hence, let us formulate the mathematical model of the localization problem for
distance-based approaches. There is a network of N nodes (sensors) in R with bidi-
rectional communication constraints as the edges. Positions of M nodes (anchors) are
known. The Euclidean physical distance d;; between the ith and jth nodes can be mea-
sured if (¢,7) € N;, where N; = {(¢,7) : ||z — «;|| = di; < r} denotes a set of neighbors
of node i, z; € R* and x; € R true locations of nodes i and j, r is a fixed parame-
ter called transmission range (radio range). Assuming that we have the measurements
of distances between all pairs of nodes we can formulate the model of the localization
problem that minimizes the sum of squares of errors in sensor positions for fitting the
distance measurements.
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where ciij denotes an estimated distance between nodes ¢ and j, dij = ||&; — 2,||, 2; € R
an estimated position of node i and #; € R* an estimated position of a neighbor of
node i, C‘iij a measured distance between nodes ¢ and j. The measured distance ciij
between two neighbor nodes is produced by measurement methods described in literature
[6]. These methods involve measurement uncertainty; each distance value ciij represents
the true physical distance d;; corrupted with a noise describing the uncertainty of the
distance measurement. For the purpose of numerical experiments we supposed that this
disturbance is described by introducing Gaussian noise with a mean of 0 and a standard
deviation of 1 added to the true physical distance d;;.

dij = dij - (1.0 + randn() - nf) (2)

where nf denotes a noise factor.

To evaluate the performance of tested algorithms we used the mean error between
the estimated and the true location of the non-anchor nodes in the network, defined as
follows
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where x; denotes the true position of the sensor node ¢ in the network, Z; estimated
location of the sensor node i and r the radio transmission range. The location error LE
is expressed as a percentage error. It is normalized with respect to the radio range to
allow comparison of results obtained for different size and range networks.



2 TSA scheme description

In [7] we proposed the localization technique that uses a combination of the geometry of
triangles (trilateration), along with the stochastic optimization. This algorithm operates
in two phases. In the first phase the initial localization is provided. Trilateration uses the
known locations of a few anchor nodes, and the measured distance between a given non-
anchor and each anchor node. To accurately and uniquely determine the relative location
of a non-anchor on a 2D plane using trilateration alone, generally at least three neighbors
with known positions are needed. Hence, all nodes are divided into two groups: group A
containing M nodes with known location (in the beginning only the anchor nodes) and
group B of nodes with unknown location. In each step of the algorithm node i, where
i=M+1,...,N from the group B is chosen. Next, three nodes from the group A that
are within node ¢ radio range are randomly selected. If such nodes exist the location of
node ¢ is calculated based on inter-nodes distances between three nodes selected from the
group A and the measured distances between node ¢ and these three nodes. The localized
node % is moved to the group A. Otherwise, another node from the group B is selected
and the operation is repeated. The first phase stops when there are no more nodes
that can be localized based on the available information about all nodes localization. It
switches to the second phase.

Due to the distance measurement uncertainty the coordinates calculated in the first
phase are estimated with non-zero errors. Hence, the solution of the first phase is modified
by applying stochastic optimization methods. Two techniques, i.e., simulated annealing
and genetic algorithm were considered. The numerical results obtained for simulated
annealing SA were much more promising (see [7, 8]) w.r.t. calculated location accuracy
and speed of convergence. So, we decided to focus on this approach. We called this
method TSA (Trilateration & Simulated Annealing).

From the numerical experiments it was observed that the increased value of the loca-
tion error is usually driven by incorrect location estimates calculated for a few nodes. The
additional functionality (correction) was introduced to the second phase to remove incor-
rect solutions involved by the distances measurement errors. The additional constraints
were introduced to the optimization problem. The detail description of the correction
algorithm can be found in [7].

3 TSA scheme evaluation

We performed many numerical tests to cover a wide range of network system configu-
rations including: size of the network (200 — 10000 nodes), anchor nodes deployment
(evenly and unevenly distributed), distance measurement error and computation time.
The key metric for evaluating a localization method was the accuracy of the location
estimates versus the computation costs. A detailed analysis of performance of the TSA
method for networks consisting of 1000 randomly generated nodes is presented in [8].
The results of TSA were compared with those obtained using semidefinite programming
(SDP). The summary results for network with 200 evenly and unevenly deployed nodes,
TSA and SDP methods are collected in the table 1. We have to point that although
we achieved high accuracy in estimating sensors’ locations, speed of the method was not
satisfactory for large scale networks. From the table 2 we can observe that the compu-
tation time increases proportionally to the network dimension. The compromise should



Table 1. Computing time and localization errors; different deployment of anchors

Task Method Localization Computation
error (LE) [%] time [s]
anchors evenly SDP 1.32 17.0
distributed TSA 0.14 3.0
anchors unevenly SDP 98.34 9.5
distributed TSA 0.24 3.0

Table 2. Localization error and computation times for different network sizes

Number of Localization Computation
nodes error (LE) [%] time [s]
200 0.11 1.4
500 0.15 7.6
1000 0.29 29.4

be made between efficiency and accuracy. To decrease the calculation effort the optimal
values of method’s parameters have to be estimated. In the simulated annealing imple-
mentation used in the second phase of the TSA scheme at each value of the coordinating
parameter T' (temperature), P - (N — M) non-anchor nodes are randomly selected for
modification (where N denotes the number of sensors in the network, M the number of
anchors, and P a reasonably large number to make the system into thermal equilibrium).
The parameter P plays the important role — it influences the estimated location accuracy
and calculation time. The figures 1 and 2 present the results of numerical tests performed
for the network with 200 nodes and various values of P.
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Figure 1. Localization error for various values of P

To calculate the optimal value of the parameter P for a given network we can solve
the two-criterion optimization problem

. At At LE LE.\?
min § = | — — — -
At,LE Ate Ate LE, LE;

(4)

where At denotes a calculation time, LE a localization error defined in (3), At; and LE;
are, respectively, a time of calculations for P = 1 and corresponding localization error,
LE, and At, acceptable localization error and corresponding calculation time.
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Figure 2. Computation times for various values of P
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Figure 3. The solution of the problem (4) for the network with 200 nodes

The figure 3 presents the Pareto frontier for the network of 200 nodes. We can see the
utopia point (13.6; 0.0978) and eight undominated points. The solution closest to the
utopia point (in the Euclidean metric) is equal (33.6;0.1081) and calculated for P = 4.
The optimal values of the parameter P corresponding to the solutions of the task (4)
for different networks are presented in the table 3. Because TSA should be the general

Table 3. Optimal values of the parameter P for different size of network

Number of nodes || 200 | 500 | 1000 | 2000 | 4000
Calculated P 4 4 4 2 3

purpose localization scheme that can be used to solve different dimension problems we
suggest to choose the parameter value P = 4. The results of calculations performed for
network with 200 to 10000 nodes and P = 4 are presented in the table 4.



Table 4. Localization errors and computation times for different sizes of network

Number of nodes | Localization error (LE) [%] | Computation time [s] |

200 0.1275 0.4
500 0.4124 2.2
1000 0.1387 8.0
2000 0.1081 33.6
4000 0.1086 125.8
5000 0.1581 189.8
10000 0.1193 790.4

4 Distributed version of TSA scheme

The centralized TSA method provides quite accurate location estimates even in the case
of unevenly distributed nodes with known positions. However we have to gather the
measurements of distances between all pairs of network nodes in a single computer to
solve the optimization problem (1). The data transmission to the central station involves
time delays, high communication cost and high energy consumption. Because of these
disadvantages the centralized techniques can not be acceptable in many applications (e.g.
mobile networks and large scale networks).

In contrast to the centralized method we can propose a fully distributed method
where computation takes place at every node. Each node is responsible for determin-
ing its position using information about neighbors. It offers a significant reduction in
computation requirements because the number of neighbors is usually between ten and
twenty, so the number of connections is usually a few orders of magnitude less. The use
of a fully distributed computation model is also tolerant to node failures, and distributes
the communication cost evenly across the sensor nodes. On the other hand, distributed
algorithms implementation is often connected with the loss of information. There are two
reasons of that: loss of information due to parallel computation and loss of information
due to the incomplete network map.

The loss of information due to parallel computation is connected with the way how
the optimization in the second phase of TSA method is performed. At each value of the
coordinating parameter T' (temperature), P times non-anchor nodes (N — M nodes) are
randomly selected for modification, i.e., coordinate estimates of chosen nodes are per-
turbed with small distance Ad in a random direction. Modifications are done in order
— the location of current node is determined based on the previous transformations. In
distributed algorithm each node have to do P small displacements. This is done in par-
allel and the information is exchanged between neighboring nodes every P iterations. An
example is presented in the figure 4. The considered node (marked by square) updates
the location using the information about previous positions of neighbor nodes (light-gray
circles). Because all movements are done independently there is no guarantee that the
performance value is better after the iteration. The loss of information due to an incom-
plete network map has the major impact on the correction operation in the TSA method.
The correction operation depends on nonconvex neighborhood constraints involved by
the transmission range. In the centralized approach, a complete network state (location
estimates of all nodes) is available. Due to this information it is possible to detect the
situation when the estimated distance between two neighbor nodes is greater than the
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Figure 4. Parallel nodes displacements

transmission range. In the same way it can be detected that the estimated distance
between two nodes is less than the transmission range, but these nodes are not in neigh-
borhood. In the distributed approach situation is different. Certainly each node can
detect the situation when the estimated distance between it and its neighbor is greater
than the transmission range, but it is impossible to find out that from the estimated
location appears that the node is closed to another node which is not a true neighbor.
In order to overcome this problem we propose to modify the correction operation. In
the centralized scheme all neighbors are considered. In distributed we distinguish two
versions: basic — only 1-hop neighbors are considered, and extended — both, 1-hop and
2-hop neighbors are considered. In the table 5 the results obtained for networks with
evenly and unevenly distributed anchors with 1-hop neighbor and 2-hop neighbor correc-
tion are presented. Figure 5 presents the solution quality difference between centralized

Table 5. Localization errors for 1-hop and 2-hop correction. Different deployment of anchors

Task Localization error (LE) [%)]
1-hop neighbor correction [ 2-hop neighbor correction
anchors evenly distributed 0.34 0.31
anchors unevenly distributed 12.84 3.01

and distributed algorithms (using two-hop correction). The obtained results confirm
that from the perspective of location estimation accuracy, centralized algorithm provides
more accurate location estimates than distributed one. As a final result we can say that
for evenly distributed anchors we obtain quite accurate solution using both methods,
otherwise the results of location estimation are much worse in case of distributed version
of our scheme.

5 Summary and conclusions

We presented and evaluated the localization scheme that combines simple geometry of tri-
angles and simulate annealing technique to determine the location of nodes with unknown
positions in the sensor network. We demonstrated that TSA method provides quite ac-
curate location estimates in the sensible computing time. The proposed technique was
implemented in a centralized and distributed variants. We discussed the advantages and
drawbacks of both approaches. In our future research, we plan to perform experiments
using software environments for sensor networks simulation, and finally apply our scheme
to the testbed network of sensors in the laboratory.
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Figure 5. Localization error for centralized and distributed algorithms
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