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Abstract Interval methods proved to be a useful tool for solving global opti-
mization and nonlinear equations systems problems over R™. But an interval may
be defined not only over the set of real numbers or real vectors, but over any
partially ordered set. The paper shows how basic ideas of interval computations
can be generalized for such spaces. Some specific applications are proposed and
preliminary computational results are presented.

1 Introduction

By an interval one usually means the set of real numbers: [a,b] = {z € R | a <z < b}.
It is however not the only meaning of the word “interval”. According e.g. to Wikipedia
([12]), we may extend the above definition to intervals over any partially ordered sets,
replacing R by a partially ordered set (P, <), where “<” is any p.o. relation.

In fact, authors from the interval community call vectors (or matrices) of intervals:
“vector intervals” (“matrix intervals”) as well as “interval vectors” (or “interval matrices”),
i.e. they can be described either as vectors (matrices) of interval elements or as intervals
over the set of real vectors (matrices). Moreover, the term “vector interval” is actually
more accurate than “interval vector” — the set of intervals is not a vector space.

This paper tries to extend the idea of interval computations to intervals over any
poset (i.e. partially ordered set), not only over R (R™ or even R"*™).

2 Basic assumptions

Consider the triple (X, d(-,-), = ), where (X, d) is a metric space and “=<” is a partial
order on X. The metric d and the partial order “=" should fulfill the following axiom —
let us call it the metric order axiom (MO):

x1, 22,23 € X and 21 2 @2 X3 = d(r1,22) < d(z1,23) . (MO)

Definition 2.1. A (closed) interval [z, 7] of elements of the space X is the set {z € X |
z <2z < T}, where 2,7 € X and z < T.

Consistently with [6], we denote the space of intervals over the set X by IX| e.g. IR,
IC, TR™. Open intervals, i.e. intervals excluding one or both of its endpoints are denoted
as |z, 7], [z,7[, |z, 7[.



Several authors (e.g. [3], [5], [9], [10], [11]) generalize the notion of an interval and
use so-called “improper intervals”, where 2 > T. Such intervals are (usually) interpreted
as intervals with changed quantifier (“Vv” and “3”) in expressions, where they are used.
The set of all Kaucher intervals (i.e. where z < T does not have to be fulfilled) over the
space X will be denoted by KX, which is compatible with [6], too.

Remark 2.2. Consider the space IX of intervals. The space of n-component interval
vectors is equivalent to the space of intervals over X", with the partial order “=<” for
r = (21,...,2,)7 and y = (y1,...,yn)T defined by x <y, iff 2; <y; Vi=1,...,n.
Also the metric can be obtained in one of a few obvious ways (I1, l2, lo)-

Hence, there is no reason to distinguish between I(X") and (IX)"™, we simply use the
notation IX".

Remark 2.3. We identify the set X with the set of degenerate intervals over X, i.e.
intervals, for which x =7. So, e.g. (]IX \ X) is the set of all non-degenerate intervals.

3 Bisection

The bisection — main tool of all branch-and-bound algorithms — subdivides an interval
into two intervals such that their union is equal to the original one.

3.1 Definition

We shall treat bisection as a function of two arguments: an interval & and another
argument k € K(x), describing the mode of bisection. The set K(z) depends on the
properties of X and on the interval € IX. In particular it may be a trivial set K (x) =
{e}, if only x is non-degenerate; this is the case e.g. for (one-dimensional) real intervals.

We shall define bisection only for non-degenerate intervals; it is not clear for the
author if there is a need for a convention on bisecting a single point. It seems we can
assume K([g, E]) = (), in the case when z = T, for consistency.

So, bisection is a function: b: {(z,k) | x € IX\ X,k € K(z)} — IX x IX, that fulfills
certain conditions. We claim it should fulfill the following axioms:

bz, 7], k) = ([@,m], [m,z]), mmeX, (B1)
[Q, m] U [mv E] = [Qv E] . (BQ)
m#Zxand m#£T (B3)

Comments. Axiom (B3) simply means that none of the resulting intervals is equal to
the bisected one. In axiom (B2) the equality may possibly be relaxed to “2”.

The following properties are implied by above axioms.
Property 3.1.1. Let b([z, 7], k) = ([@,ﬁ], [m,f]). Then m €]z, 7] and m € [z,Z].

The proof comes directly from (B2) and (B3).
For dense spaces also more important properties may be obtained.



Property 3.1.2. Let b([@j],k) = ([@,m], [m,f]) and (X, <) be dense. Then:

m#Tandm#z, (1)

Proof. Suppose m = Z. Then the interval [m,Z] contains only one point and the
interval [z, m] has to contain all other points from [z,Z]. But hence X is a dense set,
there are points from [z, Z] that may be arbitrary close to T. So, the only possible value
of m is ZT. But this contradicts (B2).

Analogously, we can prove that m = z contradicts (B2). QED.

Please note that for (X, =) that is not dense (1) does not have to be fulfilled. For
example for the integer interval [1..2] we have — according to definitions in the next

subsection — b([1..2], k) = ([1..1]7 [22])

Property 3.1.3. Let b([z, 7], k) = ([g,m], [m,f])7 (X, <) be dense. Then m £ m.

Proof. If m < m then interval [, m] is nonempty and contained in [z, Z], but in none
of the resulting intervals [z, ] and [m,Z]. This contradicts (B2). QED.

Again, for non-dense spaces it does not have to hold, e.g. the above bisection of
integer intervals.

So, for dense spaces, T A m. But can it be strengthened to m < m ? It seems only
an under an additional condition.

Property 3.1.4. Let b([g, f],k) = ([g, m|, [m, E]), (X, X) be dense and the following
condition holds: Vx € X the set:

N(z)={yeX|y Az and z £y} (2)
is an open set in the topology generated by metric d. Then: m < m.

Proof. Suppose m £ m.

Hence m € N(m) — from (2) — and hence N(7) is an open set, there is an open
neighborhood U of m such that Vo € U x £ m. Since m €]z, [, we can choose U Clz, .
And hence (X, <) is dense, there is an element m’ € U such that m < m/ and hence
mAm m Am.

So m' ¢ [z,m] and m’ ¢ [m,T]. But m’ € U Clz, Z[, which contradicts (B2). QED.

Comment. All continuous spaces X considered by the author fulfilled the condition of
openness of (2). Nevertheless it does not seem to be implied by earlier assumptions in
any way. The author is uncertain about the existence (and usefulness) of spaces, where
(2) does not have to be open and intervals over such spaces.

3.2 Examples

Intervals from IR . In this case the most commonly used bisection operation subdi-
vides the interval [z,7] to [z,c] and [c,Z], where ¢ = mid@ = § - (z + Z). The set K (x)
contains only one element (if & is non-degenerate). Such an operation obviously fulfills
all the bisection axioms.



Intervals from IR™ . Now, we can do the bisection in n ways, bisecting one of the
n coordinates. So,K(x) = {k € {1,2,...,n} | ) is non-degenerate }. We choose k €

K (x) and bisect = (x1,...,2,)" to ") and ), where:
W= (z,,...,2,)7", TN = (Ty, . Toe1, & Thsts - Tn) |,
E(z)z(flauwfn)T 3 §(2):(Ela'"7£k—1707§k+17"'7£n)T 9

and ¢ = mid ,, as previously. Axioms of bisection are obviously fulfilled with m = z(?
and m =z,

Integer intervals. Following [2], we denote integer intervals by [nj..ns], where ny <
ny. Obviously, [ny..ng] = {ny,n1 +1,n1 +2,...,n2 — 1,na}.
K ([n.m]) = {e} (when n+ 1 <) is trivial, as for reals and the bisection is given by

the following formula: b([n;..no], k) = ([nl..m], [m + 1..n2]), where m = L%J and

|-] is the integer part of the number .

Some more interesting examples are going to be considered below.

3.3 Problem one

Please note that the above conditions do not assure that the bisection will in general
be convergent to a point, i.e. that a sequence:

(Zy)nen , such that: (3)

b(mna kn) = (anrlaszrl) or b(mna kn) = (ZnJrlaanrl) vn eN )
kn € K(x,) VneN,

will have the property: 3z € Xlim, . d(z,,z) = lim,_c d(Tn,x) = 0, nor even the
weaker one: lim,,_, d(z,,,Tn) = 0.

In fact, not all such sequences (x,) are convergent to a point.

For example, if we bisect two-dimensional boxes over R (i.e. intervals over R2),
bisecting only the first component, the subsequent boxes will become thinner and thinner,
but will never converge to a point. (Nevertheless, it will converge to a two-dimensional
box, with the first component thin.)

It is an interesting problem to consider what (general) properties should the bisection
operation have to be convergent to a point.

Theorem 3.1. Consider a dense space (X, X). The sequence (3) is convergent, at least to
an interval (i.e. Iz, T] € IX such that lim, o d(z,,,z) = 0 and lim, . d(T,,T) = 0),
if and only if X is a continuum.

Proof. The (MQO) axiom together with (1) imply that (z,,)nen and (T, )nen, obtained
from (3) are both Cauchy sequences. Hence, they are convergent in any continuum.

Obviously Vn € N z,, <&, so lim,,_, z,, =% lim,,_, &y, consequently the limit = of
(x,,) is a proper interval.

On the other hand, in a non-continuum space, both (z,,)nen and (T, )neny may con-
verge to points not belonging to X. (Example: X = Q is the set of rational numbers;
x = [1,2]; after each bisection we choose the interval, containing V/2; the limit of both
upper and lower bound sequences is v/2 ¢ X.) QED.



Remark 3.2. It seems that (3) converges to a point at least if all of the following take
place:

e X is a continuum (see Theorem 3.1)

e all elements from K(-) appear in (k,) infinitely many times (compare [1] for the
theory of chaotic and semi-chaotic iterations)

e the set K (x) “exhausts” all possibilities of bisecting € X.
But how to formalize the third assumption ... ?
Please note also the above conditions may be sufficient, but are not necessary. For

example infiniteness of K (-) does not preclude convergence of the bisection process, as
we shall see in Subsect. 5.2.

3.4 Problem two

Please note also that the following definition of bisection in IR fulfills the axioms of
bisection:

-x+§-ﬂ [§-x+
= 4 b =

z, 1

-E,ﬂ),ke{e}.

PN
PN

b(@’ 7], k) = (

This operation, for example, would “bisect” the interval [0,1] to [0,0.75] and [0.25, 1],
causing an unnecessary reproduction of a large part of the bisected interval.

The only solution, the author can think of, is to extend the structure from Section
2 by one more element: (X, d(-,-), p(-), < ), where (X 0(IX), 1) is a measurable space;
o(IX) is the smallest o-field of subsets of X, containing all intervals over X.

Now, we can simply demand that:
p([m,m]) =0 . (B-measure)

Example. For IR and IR" the well-known Lebesgue measure seems a very good choice.

4 Operations on intervals

Suppose, we have an operation o: X x X — X. Good examples are arithmetic operations
on the elements of R.

How to design the operation o: IX x IX — IX so that x €  and y € y would imply
roy€xoy?

Obviously, zoy = O{z oy | z €  and y € y} (where the interval hull OS of a set
S is the smallest interval containing S) is a good choice. But is it always simple to be
computed precisely 7

The general case may be complicated, but it is easy to prove that if “o” is monotonous,
ie. if 2y < 29 and y; = yp implies x1 0yy X w2 0 Yo, then xoy = [z 0y, ToF|. A good

example is the addition operation over IR or ICyect : it is given by [a,a] + [b,0] =
[a+ b,@+ b]. Subsection 5.1 gives us other good examples.



5 Intervals over other sets

5.1 Twins — intervals of intervals
There are a few types of twin arithmetic (e.g. [8]), but — to the best knowledge of the
author — no bisection has been defined for them, up to now.
It is well-known that a metric may be defined on the set IR (or KR):
d(z,y) = max {|z —y|, [T - [} . (4)

Equation (4) may be found e.g. in [5], but — to the best knowledge of the author — it was
proposed by Moore, already in his early works.

Remark 5.1. Please note, this is not the only metric that can be defined on the set IR
—eg di(x,y) = |z —y|+ [T 7| or dax,y) = \/@ —y)2 + (T — 7)? would fulfill the

axioms of metric, too.

At least three partial orders on IR have been introduced in the literature:
(i) the p.o. defined by inclusion relation; € < y, iff x C y,ie. iff z > yand T < 7,
e.g. 4], [9]
(ii) the p.o. defined by relation “<”, wherex <y, iff Ve e xVy €y =z <y, ie. iff T<
g’ e'g' [6]7
(iii) the p.o. defined by relation “<.”, where & <.y, iff z <y and T <7, e.g. [9],
First two orders have good set-theoretical interpretation, while the third one does not.
Unfortunately, p.o. (ii) is not dense — no interval can be put between [z1, 22| and [z2, 23].
The first partial order, defined by the inclusion relation seems very good and can be
used to define intervals over the set IR of intervals. Actually, so does the p.o. (iii), but
the author cannot see any application for this ordering.
Now, let us focus on p.o. (i) and metric (4) and define the set IIR of intervals over
IR. We use the metric (4) and “C” as the p.o.

Elements [[g, 7], [y, y]} of IR are sets of intervals z such that: [z,Z] C z C [y, 7]

Obviously, the set is nonempty only when [z,Z] C [y,7].
We shall denote such intervals of intervals by boldface Gothic letters, e.g.:

£ =08 = i @ou] = [[2in, Fonls ouss Fou

So,y e, iff &y Cy C Tows-
To make TR a measurable space, let us define a measure on this set. Consider any
immersion of +: IR — R?, as in [10]. The standard immersion

—_ — _ T _ _\T
Z(([£17x1]7 [&2,1‘2],-- -,[&nm’ﬁn]) ) = (_£15_£27-- <y T Ly L1, T2, .- '71:77.) )

seems to be a good choice.
Now, the measure of a set Y C IR of intervals is the Lebesgue measure of its image
with respect to 4(:):

wY)=pur ({y € R? | y = o(x) for some x € Y}) ) VY CIR. (5)

It can be proved that (5) is a measure on the space IR.
And now let us describe the bisection of intervals from IIR.



Definition 5.2. Consider an interval of intervals ¥ = [T, Tout].
It can be bisected in two ways, i.e. k € K(x) = {1,2}.

b, 1) = ( [z Ton s 22202 Tl (252 50, s Toud] ) (6)

Tin + Tou — — Tin + Tou
b 2) = ( [Izin 52 ot Toutl |+ [[ins Tind, [ous 521 ) (7)
The set K(x) C {1,2} is determined by:

le K(x),iff z,,4<z,,
2e K(x) , il Tip < Tout -

Remark 5.3. Definition 5.2 is much simpler than it may look, at the first glance.
Actually, what does @ € ¥ mean ? This means that z € [z,,;, 2;,] and T € [Tin, Tout)-

Foutr Zin
We can bisect such an object in two ways: either (k = 1) divide the range of z to
[Zouts %] and [%,Qm], or (k = 2) divide the range of T analogously.

This is literally, what equations (6) and (7) mean.

Property 5.1.1. Bisection of twins, as prescribed in Definition 5.2, fulfills axioms of
bisection (B1)-(B3). It also fulfills — at least for measure (5) — axiom (B-measure).

5.2 Interval random variables — intervals of random variables

In recent years the author was working on the theory of so-called interval random
variables, a notion related to p-bounds and Dempster—Shafer uncertainty — see e.g. [7]
and references therein.

The title of this Subsection should probably be “generalized histograms — intervals of
probability distributions”, but in the author’s opinion it would be less clear, though more
accurate.

Definition 5.4. Let the probability space (2, S, P) be given, where €2 is the set of
elementary events, S — the o-field of events and P — the probability measure.

Any mapping X: Q — Ix C *IR, for which sets {w € Q | X(w) = x and x € I x}
are events (i.e. they belong to S), is called an interval random variable.

Definition 5.5. Consider a finite subset of IR, I x = {x1,...,x,}.
A generalized histogram is a mapping P: Ix — Ry U{0}, such that: 7" | P(x;) = 1.

As in [7], we shall not always precisely distinguish between a random variable and its
distribution.
To interpret histograms as intervals of probability distributions we need a partial
ordering and a metric on the space of distributions.
We can use the following (simple and well-known) partial order “=<” on probability
distributions:
X RY ,iff Fx(z) < Fy(z) VeeR, (8)

where Fx(-) and Fy(-) are cumulative distribution functions (CDFs) of random vari-
ables X and Y respectively (precisely: are two CDFs associated with two probability
distributions; we do not consider random variables themselves, i.e. associating values to
elementary events, we consider only their distributions).



We need a metric, yet. It may be the following function: d(Fi, Fz) = f |F1

Fg(x)‘da:. Actually, it is an eztended metric, i.e. it can attain infinite values for some
pairs of arguments.

Now, an interval of random variables (i.e. an interval random variable) is the set
X =[X,X]={X | X =< X = X}, where X and X are real-valued random variables.
As we said before, precisely: X is an interval of probability distributions and X and X
represent real valued probability distributions.

How about bisection of such intervals ? A generalized histogram is a set of N pairs
(z;,p;) — an interval and its probability. The number of bisection nodes is also N; please
note it is not bounded in general — a histogram may consist of arbitrary many pairs. If

the bisection is performed with respect to pair ([gz, Ei],pi), two histograms are obtained,
each with IV 4 1 pairs. The bisected pair is replaced by either:

. ([x mid x;], 21) and ([ VT, 2") or

o ([midwi,fi],%) and ([ T, 2)
This corresponds to two possibilities: the CDF either is larger than a specific value at
the point mid x; or not. Since the CDF is non-decreasing there is no third possibility.

Example. Consider a histogram {(x;,p;),i = 1,..., N}, where N = 2, z; = [0, 2],
T3 = [2,4] and p; = p2 = 0.5.

We can bisect, this histogram in two ways, obtaining either:

o {(10.11,0.25), (10,2],0.25), ([2,4],0.5) } and {([1,2],0.25), (10,2],0.25), ([2,4],0.5) }

or

o {(10.2,05), (12,3],0.25), ([2,4],0.25)} and { ([0,2],0.5), (3, 4),0.25), ([2,4],0.25) }
Please note that bisection of a histogram, consisting of two intervals results with his-
tograms of three intervals.

6 Applications

The presented theory not only allows us to explain known algorithms in a more general
framework, but also to propose new ones. Two applications are briefly considered one
is conjuncted with twins and the other one — with interval random variables.

6.1 How to find an algebraic solution of a polynomial interval equation ?

Shary in [10] describes the problem of finding an algebraic solution of a linear equations
system with interval coefficients, i.e. an interval (not necessarily proper) that, when
substituted to the equation, results in a valid equality. For linear equations systems
some algorithms to compute an algebraic solution are presented and the interpretation
of such solutions is given.

It is uncertain if this interpretation holds for the nonlinear case or another one has
to be constructed. According to [3] (Theorems 4.8 and 4.9) we should possibly change
all but one occurrences of the variable to its duals.

Here is a simple example. We consider the equation * — [1,2] -2+ [~1,—2] = 0. As

the initial twin we take |[10,—11], [~11, 10]]



We immediately obtain the following solutions: {[1.955065, 1.799000], [1.955064, 1.799000]],
[[1.955064, 1.799000], [1.955063, 1.799000] [[1.955064, 1.798999], [1.955063, 1.799000]},

[1.955063, 1.798999], [1.955063, 1.799000]_ . They probably form a cluster, enclosing one

solution.
And if we solve z® — [1,2] - dual ®* + [~1, —2] = 0, we obtain 8 points:

[ 2.205570, 1.695621], [2.205569, 1.695622 _ , 1[2.205570, 1.695621], [2.205569, 1.695621

[ [ ] :
[[2.205569, 1.695621], [2.205569, 1.695622]|, [[2.205569, 1.695621], [ ,
[[2.205569, 1.695621], [2.205568, 1.695622] |, || [ ,
]

2.205569, 1.695621], [2.205568, 1.695621

]
2.205569, 1.695621]}
]
]

[[2.205568, 1.695621], [2.205568, 1.695622]

[2.205568, 1.695621], [2.205568, 1.695621] |, that
probably form a cluster, too. )

Please note that in the inclusion function we have to use [dual Tout, dual a:m} #+

dual {mm, mout} .

6.2 How to find the maximal variance of all selections of an interval random
variable 7

While there probably exists an efficient algorithm to compute the lower bound of
the variance, the upper bound cannot be obtained efficiently. Nevertheless, using the
proposed framework, we can compute it using the branch-and-bound meta algorithm,
subsequently bisecting the histogram, representing the approximate probability distribu-
tion.

Also an analog of the monotonicity test was used to increase the efficiency. This ap-
proach may possibly be inefficient sometimes, but adding the monotonicity test resulted
with a quite good performance.

For example computation for initially 4 discretization intervals and probability 0.25
for each of them obtained the value [2.5,2.5] for variance after 0.32 seconds and 1315
bisections (starting form range [0.125,4.25] for the variance). The resulting random
variable was discrete with 10 points. Hence for probabilities p; = py = 0.1, po = p3 = 0.4
the program computed variance as [1.599999, 1.600001] (when the initial approximation:
[0.049999, 3.050001]) in 0.01 seconds and 51 bisections. As previously, the resulting
random variable was discrete with 10 points. In both experiments x; = [i — 1,14, where
i=1,...,4, were used.

Obviously, computing the variance is quite an easy example, but it seems likely that
similar techniques can be used to solve optimization problems over stochastic spaces;
other interval techniques, like constraint propagation (e.g. [4]) may also be useful for
intervals of probability distributions.

6.3 Possible extensions

Only the basic branch-and-bound approach was used in the calculations with twins
and in random variables calculations also an analog of the monotonicity test. It seems
an analog of the monotonicity test exists also for twins. And — probably — some interval
Newton operators for both cases can also be obtained.



7 Conclusions

The paper described a trial to develop a generalized theory of interval computations, in
particular it gave axioms of bisection and Theorem 3.1 on its convergence.

Both applications presented in Section 6 prove it is possible to do computations on
intervals over sets of non-numbers. Some extensions — mentioned e.g. in Subsection 6.3 —
are possible and may be the subject of future research. Also, some theoretical questions
need to be answered, like what conditions assure the existence of points m and m for
bisection or about the existence and usefulness of intervals over spaces where sets (2) are
not open.
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