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t Interval methods proved to be a useful tool for solving global opti-mization and nonlinear equations systems problems over Rn. But an interval maybe de�ned not only over the set of real numbers or real ve
tors, but over anypartially ordered set. The paper shows how basi
 ideas of interval 
omputations
an be generalized for su
h spa
es. Some spe
i�
 appli
ations are proposed andpreliminary 
omputational results are presented.1 Introdu
tionBy an interval one usually means the set of real numbers: [a, b] = {x ∈ R | a ≤ x ≤ b}.It is however not the only meaning of the word �interval�. A

ording e.g. to Wikipedia([12℄), we may extend the above de�nition to intervals over any partially ordered sets,repla
ing R by a partially ordered set (P,≤), where �≤� is any p.o. relation.In fa
t, authors from the interval 
ommunity 
all ve
tors (or matri
es) of intervals:�ve
tor intervals� (�matrix intervals�) as well as �interval ve
tors� (or �interval matri
es�),i.e. they 
an be des
ribed either as ve
tors (matri
es) of interval elements or as intervalsover the set of real ve
tors (matri
es). Moreover, the term �ve
tor interval� is a
tuallymore a

urate than �interval ve
tor� � the set of intervals is not a ve
tor spa
e.This paper tries to extend the idea of interval 
omputations to intervals over anyposet (i.e. partially ordered set), not only over R (Rn or even Rn×m).2 Basi
 assumptionsConsider the triple (

X, d(·, ·), �
), where (X, d) is a metri
 spa
e and ��� is a partialorder on X. The metri
 d and the partial order ��� should ful�ll the following axiom �let us 
all it the metri
�order axiom (MO):

x1, x2, x3 ∈ X and x1 � x2 � x3 ⇒ d(x1, x2) ≤ d(x1, x3) . (MO)De�nition 2.1. A (
losed) interval [x, x] of elements of the spa
e X is the set {x ∈ X |
x � x � x}, where x, x ∈ X and x � x.Consistently with [6℄, we denote the spa
e of intervals over the set X by IX, e.g. IR,
IC, IRn. Open intervals, i.e. intervals ex
luding one or both of its endpoints are denotedas ]x, x], [x, x[, ]x, x[.



Several authors (e.g. [3℄, [5℄, [9℄, [10℄, [11℄) generalize the notion of an interval anduse so-
alled �improper intervals�, where x � x. Su
h intervals are (usually) interpretedas intervals with 
hanged quanti�er (�∀� and �∃�) in expressions, where they are used.The set of all Kau
her intervals (i.e. where x � x does not have to be ful�lled) over thespa
e X will be denoted by KX, whi
h is 
ompatible with [6℄, too.Remark 2.2. Consider the spa
e IX of intervals. The spa
e of n-
omponent intervalve
tors is equivalent to the spa
e of intervals over Xn, with the partial order ��� for
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T de�ned by x � y, i� xi � yi ∀i = 1, . . . , n.Also the metri
 
an be obtained in one of a few obvious ways (l1, l2, l∞).Hen
e, there is no reason to distinguish between I(Xn) and (IX)n, we simply use thenotation IXn.Remark 2.3. We identify the set X with the set of degenerate intervals over X, i.e.intervals, for whi
h x = x. So, e.g. (

IX \ X
) is the set of all non-degenerate intervals.3 Bise
tionThe bise
tion � main tool of all bran
h-and-bound algorithms � subdivides an intervalinto two intervals su
h that their union is equal to the original one.3.1 De�nitionWe shall treat bise
tion as a fun
tion of two arguments: an interval x and anotherargument k ∈ K(x), des
ribing the mode of bise
tion. The set K(x) depends on theproperties of X and on the interval x ∈ IX. In parti
ular it may be a trivial set K(x) =

{e}, if only x is non-degenerate; this is the 
ase e.g. for (one-dimensional) real intervals.We shall de�ne bise
tion only for non-degenerate intervals; it is not 
lear for theauthor if there is a need for a 
onvention on bise
ting a single point. It seems we 
anassume K
(

[x, x]
)

= ∅, in the 
ase when x = x, for 
onsisten
y.So, bise
tion is a fun
tion: b : {(x, k) | x ∈ IX \ X, k ∈ K(x)} → IX × IX, that ful�lls
ertain 
onditions. We 
laim it should ful�ll the following axioms:
b
(

[x, x], k
)

=
(

[x, m], [m, x]
)

, m, m ∈ X , (B1)
[x, m] ∪ [m, x] = [x, x] . (B2)
m 6= x and m 6= x (B3)Comments. Axiom (B3) simply means that none of the resulting intervals is equal tothe bise
ted one. In axiom (B2) the equality may possibly be relaxed to �⊇�.The following properties are implied by above axioms.Property 3.1.1. Let b
(

[x, x], k
)

=
(

[x, m], [m, x]
). Then m ∈]x, x] and m ∈ [x, x[.The proof 
omes dire
tly from (B2) and (B3).For dense spa
es also more important properties may be obtained.



Property 3.1.2. Let b
(

[x, x], k
)

=
(

[x, m], [m, x]
) and (X,�) be dense. Then:

m 6= x and m 6= x , (1)Proof. Suppose m = x. Then the interval [m, x] 
ontains only one point and theinterval [x, m] has to 
ontain all other points from [x, x]. But hen
e X is a dense set,there are points from [x, x] that may be arbitrary 
lose to x. So, the only possible valueof m is x. But this 
ontradi
ts (B2).Analogously, we 
an prove that m = x 
ontradi
ts (B2). QED.Please note that for (X,�) that is not dense (1) does not have to be ful�lled. Forexample for the integer interval [1..2] we have � a

ording to de�nitions in the nextsubse
tion � b
(

[1..2], k
)

=
(

[1..1], [2..2]
).Property 3.1.3. Let b

(

[x, x], k
)

=
(

[x, m], [m, x]
), (X,�) be dense. Then m � m.Proof. If m � m then interval [m, m] is nonempty and 
ontained in [x, x], but in noneof the resulting intervals [x, m] and [m, x]. This 
ontradi
ts (B2). QED.Again, for non-dense spa
es it does not have to hold, e.g. the above bise
tion ofinteger intervals.So, for dense spa
es, m � m. But 
an it be strengthened to m � m ? It seems onlyan under an additional 
ondition.Property 3.1.4. Let b

(

[x, x], k
)

=
(

[x, m], [m, x]
), (X,�) be dense and the following
ondition holds: ∀x ∈ X the set:

N(x) = {y ∈ X | y � x and x � y} (2)is an open set in the topology generated by metri
 d. Then: m � m.Proof. Suppose m � m.Hen
e m ∈ N(m) � from (2) � and hen
e N(m) is an open set, there is an openneighborhood U of m su
h that ∀x ∈ U x � m. Sin
e m ∈]x, x[, we 
an 
hoose U ⊆]x, x[.And hen
e (X,�) is dense, there is an element m′ ∈ U su
h that m � m′ and � hen
e
m � m � m′ � m.So m′ /∈ [x, m] and m′ /∈ [m, x]. But m′ ∈ U ⊆]x, x[, whi
h 
ontradi
ts (B2). QED.Comment. All 
ontinuous spa
es X 
onsidered by the author ful�lled the 
ondition ofopenness of (2). Nevertheless it does not seem to be implied by earlier assumptions inany way. The author is un
ertain about the existen
e (and usefulness) of spa
es, where(2) does not have to be open and intervals over su
h spa
es.3.2 ExamplesIntervals from IR . In this 
ase the most 
ommonly used bise
tion operation subdi-vides the interval [x, x] to [x, c] and [c, x], where c = midx = 1

2 · (x + x). The set K(x)
ontains only one element (if x is non-degenerate). Su
h an operation obviously ful�llsall the bise
tion axioms.



Intervals from IRn . Now, we 
an do the bise
tion in n ways, bise
ting one of the
n 
oordinates. So,K(x) = {k ∈ {1, 2, . . . , n} | xk is non-degenerate }. We 
hoose k ∈
K(x) and bise
t x = (x1, . . . , xn)T to x(1) and x(2), where:

x(1) = (x1, . . . , xn)T , x(1) = (x1, . . . , xk−1, c, xk+1, . . . , xn)T ,
x(2) = (x1, . . . , xn)T , x(2) = (x1, . . . , xk−1, c, xk+1, . . . , xn)T ,and c = midxk, as previously. Axioms of bise
tion are obviously ful�lled with m = x(2)and m = x(1).Integer intervals. Following [2℄, we denote integer intervals by [n1..n2], where n1 ≤

n2. Obviously, [n1..n2] = {n1, n1 + 1, n1 + 2, . . . , n2 − 1, n2}.
K

(

[n..n]
)

= {e} (when n + 1 ≤ n) is trivial, as for reals and the bise
tion is given bythe following formula: b
(

[n1..n2], k
)

=
(

[n1..m], [m + 1..n2]
), where m =

⌊

n1+n2

2

⌋ and
⌊·⌋ is the integer part of the number .Some more interesting examples are going to be 
onsidered below.3.3 Problem onePlease note that the above 
onditions do not assure that the bise
tion will in generalbe 
onvergent to a point, i.e. that a sequen
e:

(xn)n∈N , su
h that: (3)
b(xn, kn) =

(

xn+1, zn+1

) or b(xn, kn) =
(

zn+1, xn+1

)

∀n ∈ N ,
kn ∈ K(xn) ∀n ∈ N ,will have the property: ∃x ∈ X limn→∞ d(xn, x) = limn→∞ d(xn, x) = 0, nor even theweaker one: limn→∞ d(xn, xn) = 0.In fa
t, not all su
h sequen
es (xn) are 
onvergent to a point.For example, if we bise
t two-dimensional boxes over R (i.e. intervals over R2),bise
ting only the �rst 
omponent, the subsequent boxes will be
ome thinner and thinner,but will never 
onverge to a point. (Nevertheless, it will 
onverge to a two-dimensionalbox, with the �rst 
omponent thin.)It is an interesting problem to 
onsider � what (general) properties should the bise
tionoperation have to be 
onvergent to a point.Theorem 3.1. Consider a dense spa
e (X,�). The sequen
e (3) is 
onvergent, at least toan interval (i.e. ∃[x, x] ∈ IX su
h that limn→∞ d(xn, x) = 0 and limn→∞ d(xn, x) = 0),if and only if X is a 
ontinuum.Proof. The (MO) axiom together with (1) imply that (xn)n∈N and (xn)n∈N, obtainedfrom (3) are both Cau
hy sequen
es. Hen
e, they are 
onvergent in any 
ontinuum.Obviously ∀n ∈ N xn � xn, so limn→∞ xn � limn→∞ xn, 
onsequently the limit x of

(xn) is a proper interval.On the other hand, in a non-
ontinuum spa
e, both (xn)n∈N and (xn)n∈N may 
on-verge to points not belonging to X. (Example: X = Q is the set of rational numbers;
x = [1, 2]; after ea
h bise
tion we 
hoose the interval, 
ontaining √

2; the limit of bothupper and lower bound sequen
es is √2 /∈ X.) QED.



Remark 3.2. It seems that (3) 
onverges to a point at least if all of the following takepla
e:
• X is a 
ontinuum (see Theorem 3.1),
• all elements from K(·) appear in (kn) in�nitely many times (
ompare [1℄ for thetheory of 
haoti
 and semi-
haoti
 iterations),
• the set K(x) �exhausts� all possibilities of bise
ting x ∈ X.But how to formalize the third assumption . . . ?Please note also the above 
onditions may be su�
ient, but are not ne
essary. Forexample in�niteness of K(·) does not pre
lude 
onvergen
e of the bise
tion pro
ess, aswe shall see in Subse
t. 5.2.3.4 Problem twoPlease note also that the following de�nition of bise
tion in IR ful�lls the axioms ofbise
tion:

b
(

[x, x], k
)

=
(

[

x,
1

4
· x +

3

4
· x

]

,
[3

4
· x +

1

4
· x, x

]

)

, k ∈ {e} .This operation, for example, would �bise
t� the interval [0, 1] to [0, 0.75] and [0.25, 1],
ausing an unne
essary reprodu
tion of a large part of the bise
ted interval.The only solution, the author 
an think of, is to extend the stru
ture from Se
tion2 by one more element: (

X, d(·, ·), µ(·), �
), where (X, σ(IX), µ) is a measurable spa
e;

σ(IX) is the smallest σ-�eld of subsets of X, 
ontaining all intervals over X.Now, we 
an simply demand that:
µ
(

[m, m]
)

= 0 . (B-measure)Example. For IR and IRn the well-known Lebesgue measure seems a very good 
hoi
e.4 Operations on intervalsSuppose, we have an operation ◦ : X×X → X. Good examples are arithmeti
 operationson the elements of R.How to design the operation ◦ : IX × IX → IX, so that x ∈ x and y ∈ y would imply
x ◦ y ∈ x ◦ y ?Obviously, x ◦ y = �{x ◦ y | x ∈ x and y ∈ y} (where the interval hull �S of a set
S is the smallest interval 
ontaining S) is a good 
hoi
e. But is it always simple to be
omputed pre
isely ?The general 
ase may be 
ompli
ated, but it is easy to prove that if �◦� is monotonous,i.e. if x1 � x2 and y1 � y2 implies x1 ◦ y1 � x2 ◦ y2, then x ◦ y = [x ◦ y, x ◦ y]. A goodexample is the addition operation over IR or ICre
t : it is given by [a, a] + [b, b] =
[a + b, a + b]. Subse
tion 5.1 gives us other good examples.



5 Intervals over other sets5.1 Twins � intervals of intervalsThere are a few types of twin arithmeti
 (e.g. [8℄), but � to the best knowledge of theauthor � no bise
tion has been de�ned for them, up to now.It is well-known that a metri
 may be de�ned on the set IR (or KR):
d(x, y) = max

{

|x − y|, |x − y|
} . (4)Equation (4) may be found e.g. in [5℄, but � to the best knowledge of the author � it wasproposed by Moore, already in his early works.Remark 5.1. Please note, this is not the only metri
 that 
an be de�ned on the set IR� e.g. d1(x, y) = |x − y| + |x − y| or d2(x, y) =

√

(x − y)2 + (x − y)2 would ful�ll theaxioms of metri
, too.At least three partial orders on IR have been introdu
ed in the literature:(i) the p.o. de�ned by in
lusion relation; x � y, i� x ⊆ y, i.e. i� x ≥ y and x ≤ y,e.g. [4℄, [9℄,(ii) the p.o. de�ned by relation �≤�, where x ≤ y, i� ∀x ∈ x ∀y ∈ y x ≤ y, i.e. i� x ≤
y, e.g. [6℄,(iii) the p.o. de�ned by relation �≤c�, where x ≤c y, i� x ≤ y and x ≤ y, e.g. [9℄,First two orders have good set-theoreti
al interpretation, while the third one does not.Unfortunately, p.o. (ii) is not dense � no interval 
an be put between [x1, x2] and [x2, x3].The �rst partial order, de�ned by the in
lusion relation seems very good and 
an beused to de�ne intervals over the set IR of intervals. A
tually, so does the p.o. (iii), butthe author 
annot see any appli
ation for this ordering.Now, let us fo
us on p.o. (i) and metri
 (4) and de�ne the set IIR of intervals over

IR. We use the metri
 (4) and �⊆� as the p.o.Elements [

[x, x], [y, y]
] of IIR are sets of intervals z su
h that: [x, x] ⊆ z ⊆ [y, y].Obviously, the set is nonempty only when [x, x] ⊆ [y, y].We shall denote su
h intervals of intervals by boldfa
e Gothi
 letters, e.g.:

x = [x, x] = [xin, xout] =
[

[xin, xin], [xout, xout]
]So, y ∈ x, i� xin ⊆ y ⊆ xout.To make IR a measurable spa
e, let us de�ne a measure on this set. Consider anyimmersion of ı : IR → R2, as in [10℄. The standard immersion

ı
(

(

[x1, x1], [x2, x2], . . . , [xn, xn]
)T

)

=
(

− x1,−x2, . . . ,−xn; x1, x2, . . . , xn

)T ,seems to be a good 
hoi
e.Now, the measure of a set Y ⊆ IR of intervals is the Lebesgue measure of its imagewith respe
t to ı(·):
µ(Y ) = µL

(

{y ∈ R2 | y = ı(x) for some x ∈ Y }
) , ∀ Y ⊆ IR . (5)It 
an be proved that (5) is a measure on the spa
e IR.And now let us des
ribe the bise
tion of intervals from IIR.



De�nition 5.2. Consider an interval of intervals x = [xin, xout].It 
an be bise
ted in two ways, i.e. k ∈ K(x) = {1, 2}.
b(x, 1) =

( [

[xin, xin], [
xin + xout

2
, xout]

]

,
[

[
xin + xout

2
, xin], [xout, xout]

] ) (6)
b(x, 2) =

( [

[xin,
xin + xout

2
], [xout, xout]

]

,
[

[xin, xin], [xout,
xin + xout

2
]
] ) (7)The set K(x) ⊆ {1, 2} is determined by:

1 ∈ K(x) , i� xout < xin ,
2 ∈ K(x) , i� xin < xout .Remark 5.3. De�nition 5.2 is mu
h simpler than it may look, at the �rst glan
e.A
tually, what does x ∈ x mean ? This means that x ∈ [xout, xin] and x ∈ [xin, xout].We 
an bise
t su
h an obje
t in two ways: either (k = 1) divide the range of x to

[xout,
x

in
+x

out

2 ] and [
x

in
+x

out

2 , xin], or (k = 2) divide the range of x analogously.This is literally, what equations (6) and (7) mean.Property 5.1.1. Bise
tion of twins, as pres
ribed in De�nition 5.2, ful�lls axioms ofbise
tion (B1)�(B3). It also ful�lls � at least for measure (5) � axiom (B-measure).5.2 Interval random variables � intervals of random variablesIn re
ent years the author was working on the theory of so-
alled interval randomvariables, a notion related to p-bounds and Dempster�Shafer un
ertainty � see e.g. [7℄and referen
es therein.The title of this Subse
tion should probably be �generalized histograms � intervals ofprobability distributions�, but in the author's opinion it would be less 
lear, though morea

urate.De�nition 5.4. Let the probability spa
e (Ω, S, P ) be given, where Ω is the set ofelementary events, S � the σ-�eld of events and P � the probability measure.Any mapping X : Ω → IX ⊆ ∗IR, for whi
h sets {ω ∈ Ω | X(ω) = x and x ∈ IX}are events (i.e. they belong to S), is 
alled an interval random variable.De�nition 5.5. Consider a �nite subset of IR, IX = {x1, . . . , xn}.A generalized histogram is a mapping P : IX → R+∪{0}, su
h that: ∑n

i=1 P (xi) = 1.As in [7℄, we shall not always pre
isely distinguish between a random variable and itsdistribution.To interpret histograms as intervals of probability distributions we need a partialordering and a metri
 on the spa
e of distributions.We 
an use the following (simple and well-known) partial order ��� on probabilitydistributions:
X � Y , i� FX(x) ≤ FY (x) ∀ x ∈ R , (8)where FX(·) and FY (·) are 
umulative distribution fun
tions (CDFs) of random vari-ables X and Y respe
tively (pre
isely: are two CDFs asso
iated with two probabilitydistributions; we do not 
onsider random variables themselves, i.e. asso
iating values toelementary events, we 
onsider only their distributions).



We need a metri
, yet. It may be the following fun
tion: d(F1, F2) =
+∞
∫

−∞

∣

∣F1(x) −

F2(x)
∣

∣dx. A
tually, it is an extended metri
, i.e. it 
an attain in�nite values for somepairs of arguments.Now, an interval of random variables (i.e. an interval random variable) is the set
X = [X, X] = {X | X � X � X}, where X and X are real-valued random variables.As we said before, pre
isely: X is an interval of probability distributions and X and Xrepresent real valued probability distributions.How about bise
tion of su
h intervals ? A generalized histogram is a set of N pairs
(xi, pi) � an interval and its probability. The number of bise
tion nodes is also N ; pleasenote it is not bounded in general � a histogram may 
onsist of arbitrary many pairs. Ifthe bise
tion is performed with respe
t to pair (

[xi, xi], pi

), two histograms are obtained,ea
h with N + 1 pairs. The bise
ted pair is repla
ed by either:
•

(

[xi,midxi],
pi

2

) and (

[xi, xi],
pi

2

) or
•

(

[midxi, xi],
pi

2

) and (

[xi, xi],
pi

2

).This 
orresponds to two possibilities: the CDF either is larger than a spe
i�
 value atthe point midxi or not. Sin
e the CDF is non-de
reasing there is no third possibility.Example. Consider a histogram {(xi, pi), i = 1, . . . , N}, where N = 2, x1 = [0, 2],
x2 = [2, 4] and p1 = p2 = 0.5.We 
an bise
t this histogram in two ways, obtaining either:

•
{

(

[0, 1], 0.25
)

,
(

[0, 2], 0.25
)

,
(

[2, 4], 0.5
)

} and {

(

[1, 2], 0.25
)

,
(

[0, 2], 0.25
)

,
(

[2, 4], 0.5
)

}or
•

{

(

[0, 2], 0.5
)

,
(

[2, 3], 0.25
)

,
(

[2, 4], 0.25
)

} and {

(

[0, 2], 0.5
)

,
(

[3, 4], 0.25
)

,
(

[2, 4], 0.25
)

}.Please note that bise
tion of a histogram, 
onsisting of two intervals results with his-tograms of three intervals.6 Appli
ationsThe presented theory not only allows us to explain known algorithms in a more generalframework, but also to propose new ones. Two appli
ations are brie�y 
onsidered � oneis 
onjun
ted with twins and the other one � with interval random variables.6.1 How to �nd an algebrai
 solution of a polynomial interval equation ?Shary in [10℄ des
ribes the problem of �nding an algebrai
 solution of a linear equationssystem with interval 
oe�
ients, i.e. an interval (not ne
essarily proper) that, whensubstituted to the equation, results in a valid equality. For linear equations systemssome algorithms to 
ompute an algebrai
 solution are presented and the interpretationof su
h solutions is given.It is un
ertain if this interpretation holds for the nonlinear 
ase or another one hasto be 
onstru
ted. A

ording to [3℄ (Theorems 4.8 and 4.9) we should possibly 
hangeall but one o

urren
es of the variable to its duals.Here is a simple example. We 
onsider the equation x3 − [1, 2] ·x2 + [−1,−2] = 0. Asthe initial twin we take [

[10,−11], [−11, 10]
].



We immediately obtain the following solutions: [

[1.955065, 1.799000], [1.955064, 1.799000]
],

[

[1.955064, 1.799000], [1.955063, 1.799000]
], [

[1.955064, 1.798999], [1.955063, 1.799000]
],

[

[1.955063, 1.798999], [1.955063, 1.799000]
]. They probably form a 
luster, en
losing onesolution.And if we solve x3 − [1, 2] · dual x2 + [−1,−2] = 0, we obtain 8 points:

[

[2.205570, 1.695621], [2.205569, 1.695622]
], [

[2.205570, 1.695621], [2.205569, 1.695621]
],

[

[2.205569, 1.695621], [2.205569, 1.695622]
], [

[2.205569, 1.695621], [2.205569, 1.695621]
],

[

[2.205569, 1.695621], [2.205568, 1.695622]
], [

[2.205569, 1.695621], [2.205568, 1.695621]
],

[

[2.205568, 1.695621], [2.205568, 1.695622]
], [[2.205568, 1.695621], [2.205568, 1.695621]

], thatprobably form a 
luster, too.Please note that in the in
lusion fun
tion we have to use [dual xout, dual xin

]

6=dual
[

xin, xout

].6.2 How to �nd the maximal varian
e of all sele
tions of an interval randomvariable ?While there probably exists an e�
ient algorithm to 
ompute the lower bound ofthe varian
e, the upper bound 
annot be obtained e�
iently. Nevertheless, using theproposed framework, we 
an 
ompute it using the bran
h-and-bound meta algorithm,subsequently bise
ting the histogram, representing the approximate probability distribu-tion.Also an analog of the monotoni
ity test was used to in
rease the e�
ien
y. This ap-proa
h may possibly be ine�
ient sometimes, but adding the monotoni
ity test resultedwith a quite good performan
e.For example 
omputation for initially 4 dis
retization intervals and probability 0.25for ea
h of them obtained the value [2.5, 2.5] for varian
e after 0.32 se
onds and 1315bise
tions (starting form range [0.125, 4.25] for the varian
e). The resulting randomvariable was dis
rete with 10 points. Hen
e for probabilities p1 = p4 = 0.1, p2 = p3 = 0.4the program 
omputed varian
e as [1.599999, 1.600001] (when the initial approximation:
[0.049999, 3.050001]) in 0.01 se
onds and 51 bise
tions. As previously, the resultingrandom variable was dis
rete with 10 points. In both experiments xi = [i − 1, i], where
i = 1, . . . , 4, were used.Obviously, 
omputing the varian
e is quite an easy example, but it seems likely thatsimilar te
hniques 
an be used to solve optimization problems over sto
hasti
 spa
es;other interval te
hniques, like 
onstraint propagation (e.g. [4℄) may also be useful forintervals of probability distributions.6.3 Possible extensionsOnly the basi
 bran
h-and-bound approa
h was used in the 
al
ulations with twinsand in random variables 
al
ulations also an analog of the monotoni
ity test. It seemsan analog of the monotoni
ity test exists also for twins. And � probably � some intervalNewton operators for both 
ases 
an also be obtained.



7 Con
lusionsThe paper des
ribed a trial to develop a generalized theory of interval 
omputations, inparti
ular it gave axioms of bise
tion and Theorem 3.1 on its 
onvergen
e.Both appli
ations presented in Se
tion 6 prove it is possible to do 
omputations onintervals over sets of non-numbers. Some extensions � mentioned e.g. in Subse
tion 6.3 �are possible and may be the subje
t of future resear
h. Also, some theoreti
al questionsneed to be answered, like what 
onditions assure the existen
e of points m and m forbise
tion or about the existen
e and usefulness of intervals over spa
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