
Can interval omputations be applied over spaes ofnon-numbers ?Bartªomiej Jaek Kubia11 Warsaw University of Tehnology, Institute of Control and Computation Engineering, ul.Nowowiejska 15/19, 00�665 Warsaw, Poland, email: bkubia�elka.pw.edu.plAbstrat Interval methods proved to be a useful tool for solving global opti-mization and nonlinear equations systems problems over Rn. But an interval maybe de�ned not only over the set of real numbers or real vetors, but over anypartially ordered set. The paper shows how basi ideas of interval omputationsan be generalized for suh spaes. Some spei� appliations are proposed andpreliminary omputational results are presented.1 IntrodutionBy an interval one usually means the set of real numbers: [a, b] = {x ∈ R | a ≤ x ≤ b}.It is however not the only meaning of the word �interval�. Aording e.g. to Wikipedia([12℄), we may extend the above de�nition to intervals over any partially ordered sets,replaing R by a partially ordered set (P,≤), where �≤� is any p.o. relation.In fat, authors from the interval ommunity all vetors (or matries) of intervals:�vetor intervals� (�matrix intervals�) as well as �interval vetors� (or �interval matries�),i.e. they an be desribed either as vetors (matries) of interval elements or as intervalsover the set of real vetors (matries). Moreover, the term �vetor interval� is atuallymore aurate than �interval vetor� � the set of intervals is not a vetor spae.This paper tries to extend the idea of interval omputations to intervals over anyposet (i.e. partially ordered set), not only over R (Rn or even Rn×m).2 Basi assumptionsConsider the triple (

X, d(·, ·), �
), where (X, d) is a metri spae and ��� is a partialorder on X. The metri d and the partial order ��� should ful�ll the following axiom �let us all it the metri�order axiom (MO):

x1, x2, x3 ∈ X and x1 � x2 � x3 ⇒ d(x1, x2) ≤ d(x1, x3) . (MO)De�nition 2.1. A (losed) interval [x, x] of elements of the spae X is the set {x ∈ X |
x � x � x}, where x, x ∈ X and x � x.Consistently with [6℄, we denote the spae of intervals over the set X by IX, e.g. IR,
IC, IRn. Open intervals, i.e. intervals exluding one or both of its endpoints are denotedas ]x, x], [x, x[, ]x, x[.



Several authors (e.g. [3℄, [5℄, [9℄, [10℄, [11℄) generalize the notion of an interval anduse so-alled �improper intervals�, where x � x. Suh intervals are (usually) interpretedas intervals with hanged quanti�er (�∀� and �∃�) in expressions, where they are used.The set of all Kauher intervals (i.e. where x � x does not have to be ful�lled) over thespae X will be denoted by KX, whih is ompatible with [6℄, too.Remark 2.2. Consider the spae IX of intervals. The spae of n-omponent intervalvetors is equivalent to the spae of intervals over Xn, with the partial order ��� for
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T de�ned by x � y, i� xi � yi ∀i = 1, . . . , n.Also the metri an be obtained in one of a few obvious ways (l1, l2, l∞).Hene, there is no reason to distinguish between I(Xn) and (IX)n, we simply use thenotation IXn.Remark 2.3. We identify the set X with the set of degenerate intervals over X, i.e.intervals, for whih x = x. So, e.g. (

IX \ X
) is the set of all non-degenerate intervals.3 BisetionThe bisetion � main tool of all branh-and-bound algorithms � subdivides an intervalinto two intervals suh that their union is equal to the original one.3.1 De�nitionWe shall treat bisetion as a funtion of two arguments: an interval x and anotherargument k ∈ K(x), desribing the mode of bisetion. The set K(x) depends on theproperties of X and on the interval x ∈ IX. In partiular it may be a trivial set K(x) =

{e}, if only x is non-degenerate; this is the ase e.g. for (one-dimensional) real intervals.We shall de�ne bisetion only for non-degenerate intervals; it is not lear for theauthor if there is a need for a onvention on biseting a single point. It seems we anassume K
(

[x, x]
)

= ∅, in the ase when x = x, for onsisteny.So, bisetion is a funtion: b : {(x, k) | x ∈ IX \ X, k ∈ K(x)} → IX × IX, that ful�llsertain onditions. We laim it should ful�ll the following axioms:
b
(

[x, x], k
)

=
(

[x, m], [m, x]
)

, m, m ∈ X , (B1)
[x, m] ∪ [m, x] = [x, x] . (B2)
m 6= x and m 6= x (B3)Comments. Axiom (B3) simply means that none of the resulting intervals is equal tothe biseted one. In axiom (B2) the equality may possibly be relaxed to �⊇�.The following properties are implied by above axioms.Property 3.1.1. Let b
(

[x, x], k
)

=
(

[x, m], [m, x]
). Then m ∈]x, x] and m ∈ [x, x[.The proof omes diretly from (B2) and (B3).For dense spaes also more important properties may be obtained.



Property 3.1.2. Let b
(

[x, x], k
)

=
(

[x, m], [m, x]
) and (X,�) be dense. Then:

m 6= x and m 6= x , (1)Proof. Suppose m = x. Then the interval [m, x] ontains only one point and theinterval [x, m] has to ontain all other points from [x, x]. But hene X is a dense set,there are points from [x, x] that may be arbitrary lose to x. So, the only possible valueof m is x. But this ontradits (B2).Analogously, we an prove that m = x ontradits (B2). QED.Please note that for (X,�) that is not dense (1) does not have to be ful�lled. Forexample for the integer interval [1..2] we have � aording to de�nitions in the nextsubsetion � b
(

[1..2], k
)

=
(

[1..1], [2..2]
).Property 3.1.3. Let b

(

[x, x], k
)

=
(

[x, m], [m, x]
), (X,�) be dense. Then m � m.Proof. If m � m then interval [m, m] is nonempty and ontained in [x, x], but in noneof the resulting intervals [x, m] and [m, x]. This ontradits (B2). QED.Again, for non-dense spaes it does not have to hold, e.g. the above bisetion ofinteger intervals.So, for dense spaes, m � m. But an it be strengthened to m � m ? It seems onlyan under an additional ondition.Property 3.1.4. Let b

(

[x, x], k
)

=
(

[x, m], [m, x]
), (X,�) be dense and the followingondition holds: ∀x ∈ X the set:

N(x) = {y ∈ X | y � x and x � y} (2)is an open set in the topology generated by metri d. Then: m � m.Proof. Suppose m � m.Hene m ∈ N(m) � from (2) � and hene N(m) is an open set, there is an openneighborhood U of m suh that ∀x ∈ U x � m. Sine m ∈]x, x[, we an hoose U ⊆]x, x[.And hene (X,�) is dense, there is an element m′ ∈ U suh that m � m′ and � hene
m � m � m′ � m.So m′ /∈ [x, m] and m′ /∈ [m, x]. But m′ ∈ U ⊆]x, x[, whih ontradits (B2). QED.Comment. All ontinuous spaes X onsidered by the author ful�lled the ondition ofopenness of (2). Nevertheless it does not seem to be implied by earlier assumptions inany way. The author is unertain about the existene (and usefulness) of spaes, where(2) does not have to be open and intervals over suh spaes.3.2 ExamplesIntervals from IR . In this ase the most ommonly used bisetion operation subdi-vides the interval [x, x] to [x, c] and [c, x], where c = midx = 1

2 · (x + x). The set K(x)ontains only one element (if x is non-degenerate). Suh an operation obviously ful�llsall the bisetion axioms.



Intervals from IRn . Now, we an do the bisetion in n ways, biseting one of the
n oordinates. So,K(x) = {k ∈ {1, 2, . . . , n} | xk is non-degenerate }. We hoose k ∈
K(x) and biset x = (x1, . . . , xn)T to x(1) and x(2), where:

x(1) = (x1, . . . , xn)T , x(1) = (x1, . . . , xk−1, c, xk+1, . . . , xn)T ,
x(2) = (x1, . . . , xn)T , x(2) = (x1, . . . , xk−1, c, xk+1, . . . , xn)T ,and c = midxk, as previously. Axioms of bisetion are obviously ful�lled with m = x(2)and m = x(1).Integer intervals. Following [2℄, we denote integer intervals by [n1..n2], where n1 ≤

n2. Obviously, [n1..n2] = {n1, n1 + 1, n1 + 2, . . . , n2 − 1, n2}.
K

(

[n..n]
)

= {e} (when n + 1 ≤ n) is trivial, as for reals and the bisetion is given bythe following formula: b
(

[n1..n2], k
)

=
(

[n1..m], [m + 1..n2]
), where m =

⌊

n1+n2

2

⌋ and
⌊·⌋ is the integer part of the number .Some more interesting examples are going to be onsidered below.3.3 Problem onePlease note that the above onditions do not assure that the bisetion will in generalbe onvergent to a point, i.e. that a sequene:

(xn)n∈N , suh that: (3)
b(xn, kn) =

(

xn+1, zn+1

) or b(xn, kn) =
(

zn+1, xn+1

)

∀n ∈ N ,
kn ∈ K(xn) ∀n ∈ N ,will have the property: ∃x ∈ X limn→∞ d(xn, x) = limn→∞ d(xn, x) = 0, nor even theweaker one: limn→∞ d(xn, xn) = 0.In fat, not all suh sequenes (xn) are onvergent to a point.For example, if we biset two-dimensional boxes over R (i.e. intervals over R2),biseting only the �rst omponent, the subsequent boxes will beome thinner and thinner,but will never onverge to a point. (Nevertheless, it will onverge to a two-dimensionalbox, with the �rst omponent thin.)It is an interesting problem to onsider � what (general) properties should the bisetionoperation have to be onvergent to a point.Theorem 3.1. Consider a dense spae (X,�). The sequene (3) is onvergent, at least toan interval (i.e. ∃[x, x] ∈ IX suh that limn→∞ d(xn, x) = 0 and limn→∞ d(xn, x) = 0),if and only if X is a ontinuum.Proof. The (MO) axiom together with (1) imply that (xn)n∈N and (xn)n∈N, obtainedfrom (3) are both Cauhy sequenes. Hene, they are onvergent in any ontinuum.Obviously ∀n ∈ N xn � xn, so limn→∞ xn � limn→∞ xn, onsequently the limit x of

(xn) is a proper interval.On the other hand, in a non-ontinuum spae, both (xn)n∈N and (xn)n∈N may on-verge to points not belonging to X. (Example: X = Q is the set of rational numbers;
x = [1, 2]; after eah bisetion we hoose the interval, ontaining √

2; the limit of bothupper and lower bound sequenes is √2 /∈ X.) QED.



Remark 3.2. It seems that (3) onverges to a point at least if all of the following takeplae:
• X is a ontinuum (see Theorem 3.1),
• all elements from K(·) appear in (kn) in�nitely many times (ompare [1℄ for thetheory of haoti and semi-haoti iterations),
• the set K(x) �exhausts� all possibilities of biseting x ∈ X.But how to formalize the third assumption . . . ?Please note also the above onditions may be su�ient, but are not neessary. Forexample in�niteness of K(·) does not prelude onvergene of the bisetion proess, aswe shall see in Subset. 5.2.3.4 Problem twoPlease note also that the following de�nition of bisetion in IR ful�lls the axioms ofbisetion:

b
(

[x, x], k
)

=
(

[

x,
1

4
· x +

3

4
· x

]

,
[3

4
· x +

1

4
· x, x

]

)

, k ∈ {e} .This operation, for example, would �biset� the interval [0, 1] to [0, 0.75] and [0.25, 1],ausing an unneessary reprodution of a large part of the biseted interval.The only solution, the author an think of, is to extend the struture from Setion2 by one more element: (

X, d(·, ·), µ(·), �
), where (X, σ(IX), µ) is a measurable spae;

σ(IX) is the smallest σ-�eld of subsets of X, ontaining all intervals over X.Now, we an simply demand that:
µ
(

[m, m]
)

= 0 . (B-measure)Example. For IR and IRn the well-known Lebesgue measure seems a very good hoie.4 Operations on intervalsSuppose, we have an operation ◦ : X×X → X. Good examples are arithmeti operationson the elements of R.How to design the operation ◦ : IX × IX → IX, so that x ∈ x and y ∈ y would imply
x ◦ y ∈ x ◦ y ?Obviously, x ◦ y = �{x ◦ y | x ∈ x and y ∈ y} (where the interval hull �S of a set
S is the smallest interval ontaining S) is a good hoie. But is it always simple to beomputed preisely ?The general ase may be ompliated, but it is easy to prove that if �◦� is monotonous,i.e. if x1 � x2 and y1 � y2 implies x1 ◦ y1 � x2 ◦ y2, then x ◦ y = [x ◦ y, x ◦ y]. A goodexample is the addition operation over IR or ICret : it is given by [a, a] + [b, b] =
[a + b, a + b]. Subsetion 5.1 gives us other good examples.



5 Intervals over other sets5.1 Twins � intervals of intervalsThere are a few types of twin arithmeti (e.g. [8℄), but � to the best knowledge of theauthor � no bisetion has been de�ned for them, up to now.It is well-known that a metri may be de�ned on the set IR (or KR):
d(x, y) = max

{

|x − y|, |x − y|
} . (4)Equation (4) may be found e.g. in [5℄, but � to the best knowledge of the author � it wasproposed by Moore, already in his early works.Remark 5.1. Please note, this is not the only metri that an be de�ned on the set IR� e.g. d1(x, y) = |x − y| + |x − y| or d2(x, y) =

√

(x − y)2 + (x − y)2 would ful�ll theaxioms of metri, too.At least three partial orders on IR have been introdued in the literature:(i) the p.o. de�ned by inlusion relation; x � y, i� x ⊆ y, i.e. i� x ≥ y and x ≤ y,e.g. [4℄, [9℄,(ii) the p.o. de�ned by relation �≤�, where x ≤ y, i� ∀x ∈ x ∀y ∈ y x ≤ y, i.e. i� x ≤
y, e.g. [6℄,(iii) the p.o. de�ned by relation �≤c�, where x ≤c y, i� x ≤ y and x ≤ y, e.g. [9℄,First two orders have good set-theoretial interpretation, while the third one does not.Unfortunately, p.o. (ii) is not dense � no interval an be put between [x1, x2] and [x2, x3].The �rst partial order, de�ned by the inlusion relation seems very good and an beused to de�ne intervals over the set IR of intervals. Atually, so does the p.o. (iii), butthe author annot see any appliation for this ordering.Now, let us fous on p.o. (i) and metri (4) and de�ne the set IIR of intervals over

IR. We use the metri (4) and �⊆� as the p.o.Elements [

[x, x], [y, y]
] of IIR are sets of intervals z suh that: [x, x] ⊆ z ⊆ [y, y].Obviously, the set is nonempty only when [x, x] ⊆ [y, y].We shall denote suh intervals of intervals by boldfae Gothi letters, e.g.:

x = [x, x] = [xin, xout] =
[

[xin, xin], [xout, xout]
]So, y ∈ x, i� xin ⊆ y ⊆ xout.To make IR a measurable spae, let us de�ne a measure on this set. Consider anyimmersion of ı : IR → R2, as in [10℄. The standard immersion

ı
(

(

[x1, x1], [x2, x2], . . . , [xn, xn]
)T

)

=
(

− x1,−x2, . . . ,−xn; x1, x2, . . . , xn

)T ,seems to be a good hoie.Now, the measure of a set Y ⊆ IR of intervals is the Lebesgue measure of its imagewith respet to ı(·):
µ(Y ) = µL

(

{y ∈ R2 | y = ı(x) for some x ∈ Y }
) , ∀ Y ⊆ IR . (5)It an be proved that (5) is a measure on the spae IR.And now let us desribe the bisetion of intervals from IIR.



De�nition 5.2. Consider an interval of intervals x = [xin, xout].It an be biseted in two ways, i.e. k ∈ K(x) = {1, 2}.
b(x, 1) =

( [

[xin, xin], [
xin + xout

2
, xout]

]

,
[

[
xin + xout

2
, xin], [xout, xout]

] ) (6)
b(x, 2) =

( [

[xin,
xin + xout

2
], [xout, xout]

]

,
[

[xin, xin], [xout,
xin + xout

2
]
] ) (7)The set K(x) ⊆ {1, 2} is determined by:

1 ∈ K(x) , i� xout < xin ,
2 ∈ K(x) , i� xin < xout .Remark 5.3. De�nition 5.2 is muh simpler than it may look, at the �rst glane.Atually, what does x ∈ x mean ? This means that x ∈ [xout, xin] and x ∈ [xin, xout].We an biset suh an objet in two ways: either (k = 1) divide the range of x to

[xout,
x

in
+x

out

2 ] and [
x

in
+x

out

2 , xin], or (k = 2) divide the range of x analogously.This is literally, what equations (6) and (7) mean.Property 5.1.1. Bisetion of twins, as presribed in De�nition 5.2, ful�lls axioms ofbisetion (B1)�(B3). It also ful�lls � at least for measure (5) � axiom (B-measure).5.2 Interval random variables � intervals of random variablesIn reent years the author was working on the theory of so-alled interval randomvariables, a notion related to p-bounds and Dempster�Shafer unertainty � see e.g. [7℄and referenes therein.The title of this Subsetion should probably be �generalized histograms � intervals ofprobability distributions�, but in the author's opinion it would be less lear, though moreaurate.De�nition 5.4. Let the probability spae (Ω, S, P ) be given, where Ω is the set ofelementary events, S � the σ-�eld of events and P � the probability measure.Any mapping X : Ω → IX ⊆ ∗IR, for whih sets {ω ∈ Ω | X(ω) = x and x ∈ IX}are events (i.e. they belong to S), is alled an interval random variable.De�nition 5.5. Consider a �nite subset of IR, IX = {x1, . . . , xn}.A generalized histogram is a mapping P : IX → R+∪{0}, suh that: ∑n

i=1 P (xi) = 1.As in [7℄, we shall not always preisely distinguish between a random variable and itsdistribution.To interpret histograms as intervals of probability distributions we need a partialordering and a metri on the spae of distributions.We an use the following (simple and well-known) partial order ��� on probabilitydistributions:
X � Y , i� FX(x) ≤ FY (x) ∀ x ∈ R , (8)where FX(·) and FY (·) are umulative distribution funtions (CDFs) of random vari-ables X and Y respetively (preisely: are two CDFs assoiated with two probabilitydistributions; we do not onsider random variables themselves, i.e. assoiating values toelementary events, we onsider only their distributions).



We need a metri, yet. It may be the following funtion: d(F1, F2) =
+∞
∫

−∞

∣

∣F1(x) −

F2(x)
∣

∣dx. Atually, it is an extended metri, i.e. it an attain in�nite values for somepairs of arguments.Now, an interval of random variables (i.e. an interval random variable) is the set
X = [X, X] = {X | X � X � X}, where X and X are real-valued random variables.As we said before, preisely: X is an interval of probability distributions and X and Xrepresent real valued probability distributions.How about bisetion of suh intervals ? A generalized histogram is a set of N pairs
(xi, pi) � an interval and its probability. The number of bisetion nodes is also N ; pleasenote it is not bounded in general � a histogram may onsist of arbitrary many pairs. Ifthe bisetion is performed with respet to pair (

[xi, xi], pi

), two histograms are obtained,eah with N + 1 pairs. The biseted pair is replaed by either:
•

(

[xi,midxi],
pi

2

) and (

[xi, xi],
pi

2

) or
•

(

[midxi, xi],
pi

2

) and (

[xi, xi],
pi

2

).This orresponds to two possibilities: the CDF either is larger than a spei� value atthe point midxi or not. Sine the CDF is non-dereasing there is no third possibility.Example. Consider a histogram {(xi, pi), i = 1, . . . , N}, where N = 2, x1 = [0, 2],
x2 = [2, 4] and p1 = p2 = 0.5.We an biset this histogram in two ways, obtaining either:

•
{

(

[0, 1], 0.25
)

,
(

[0, 2], 0.25
)

,
(

[2, 4], 0.5
)

} and {

(

[1, 2], 0.25
)

,
(

[0, 2], 0.25
)

,
(

[2, 4], 0.5
)

}or
•

{

(

[0, 2], 0.5
)

,
(

[2, 3], 0.25
)

,
(

[2, 4], 0.25
)

} and {

(

[0, 2], 0.5
)

,
(

[3, 4], 0.25
)

,
(

[2, 4], 0.25
)

}.Please note that bisetion of a histogram, onsisting of two intervals results with his-tograms of three intervals.6 AppliationsThe presented theory not only allows us to explain known algorithms in a more generalframework, but also to propose new ones. Two appliations are brie�y onsidered � oneis onjunted with twins and the other one � with interval random variables.6.1 How to �nd an algebrai solution of a polynomial interval equation ?Shary in [10℄ desribes the problem of �nding an algebrai solution of a linear equationssystem with interval oe�ients, i.e. an interval (not neessarily proper) that, whensubstituted to the equation, results in a valid equality. For linear equations systemssome algorithms to ompute an algebrai solution are presented and the interpretationof suh solutions is given.It is unertain if this interpretation holds for the nonlinear ase or another one hasto be onstruted. Aording to [3℄ (Theorems 4.8 and 4.9) we should possibly hangeall but one ourrenes of the variable to its duals.Here is a simple example. We onsider the equation x3 − [1, 2] ·x2 + [−1,−2] = 0. Asthe initial twin we take [

[10,−11], [−11, 10]
].



We immediately obtain the following solutions: [

[1.955065, 1.799000], [1.955064, 1.799000]
],

[

[1.955064, 1.799000], [1.955063, 1.799000]
], [

[1.955064, 1.798999], [1.955063, 1.799000]
],

[

[1.955063, 1.798999], [1.955063, 1.799000]
]. They probably form a luster, enlosing onesolution.And if we solve x3 − [1, 2] · dual x2 + [−1,−2] = 0, we obtain 8 points:

[

[2.205570, 1.695621], [2.205569, 1.695622]
], [

[2.205570, 1.695621], [2.205569, 1.695621]
],

[

[2.205569, 1.695621], [2.205569, 1.695622]
], [

[2.205569, 1.695621], [2.205569, 1.695621]
],

[

[2.205569, 1.695621], [2.205568, 1.695622]
], [

[2.205569, 1.695621], [2.205568, 1.695621]
],

[

[2.205568, 1.695621], [2.205568, 1.695622]
], [[2.205568, 1.695621], [2.205568, 1.695621]

], thatprobably form a luster, too.Please note that in the inlusion funtion we have to use [dual xout, dual xin

]

6=dual
[

xin, xout

].6.2 How to �nd the maximal variane of all seletions of an interval randomvariable ?While there probably exists an e�ient algorithm to ompute the lower bound ofthe variane, the upper bound annot be obtained e�iently. Nevertheless, using theproposed framework, we an ompute it using the branh-and-bound meta algorithm,subsequently biseting the histogram, representing the approximate probability distribu-tion.Also an analog of the monotoniity test was used to inrease the e�ieny. This ap-proah may possibly be ine�ient sometimes, but adding the monotoniity test resultedwith a quite good performane.For example omputation for initially 4 disretization intervals and probability 0.25for eah of them obtained the value [2.5, 2.5] for variane after 0.32 seonds and 1315bisetions (starting form range [0.125, 4.25] for the variane). The resulting randomvariable was disrete with 10 points. Hene for probabilities p1 = p4 = 0.1, p2 = p3 = 0.4the program omputed variane as [1.599999, 1.600001] (when the initial approximation:
[0.049999, 3.050001]) in 0.01 seonds and 51 bisetions. As previously, the resultingrandom variable was disrete with 10 points. In both experiments xi = [i − 1, i], where
i = 1, . . . , 4, were used.Obviously, omputing the variane is quite an easy example, but it seems likely thatsimilar tehniques an be used to solve optimization problems over stohasti spaes;other interval tehniques, like onstraint propagation (e.g. [4℄) may also be useful forintervals of probability distributions.6.3 Possible extensionsOnly the basi branh-and-bound approah was used in the alulations with twinsand in random variables alulations also an analog of the monotoniity test. It seemsan analog of the monotoniity test exists also for twins. And � probably � some intervalNewton operators for both ases an also be obtained.
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