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Abstract The scope of this paper is the construction of Hierarchical Genetic
Strategy theoretical model based on the L-systems framework. The model was
defined in the case of inactive prefix comparison procedure of HGS. We applied
Vose’s theory in a short formal analysis of basic search mechanisms implemented
in the strategy.

1 Introduction

Theoretical properties of evolutionary algorithms have been studied since their begin-
ning. Early works of Holland and Goldberg (see [2]) contain the theory of schemata and
building-blocks hypothesis for genetic algorithms. Vose and Liepins (see [14]) constructed
the rigorous mathematical model of the Simple Genetic Algorithm (SGA). In this model
the trajectory of the evolving populations is a discrete-time, homogeneous Markov chain
with states in the set of all possible populations of the fixed size.

Markov model of SGA has been extended to the evolutionary strategies (see [13],
[10]). It can be also useful in the formal description of basic mechanisms in parallel
and hierarchical evolutionary strategies like Island SGA or Hierarchical Genetic Strategy
(HGS) (see [12] for example). However, it this case, it is very hard to define the relations
among all parallel processes using Markov chain states and its transition probabilities.
The model of a family of the dependent Markov processes constructed for HGS (see [7])
was too complicated for the estimation of the population distributions. In consequence,
no probability distribution was defined for the whole strategy.

The goal of our current research is to simplify the Markov model of HGS. In this paper
we propose a simple grammar-based model of HGS with SGA engine in the case of inactive
prefix comparison operation. We applied a framework of the stochastic Lindenmayer
system to simulate the growth of HGS tree structure. All populations evolving in HGS
branches are interpreted as the letters in this grammar. The words of grammar are the
sequences of populations generated in HGS metaepochs. New sequences are created by
the grammar parallel rewriting rules executed for each letter in the given word. All
HGS procedures are defined in the terms of grammar productions. This method can
very useful in the analysis of the dependency relation among HGS branches as well as in
the estimation of the population probability distributions, what is demonstrated in the



Section 4. Markov model of SGA is there applied for the calculation of the production
probabilities.

The paper is organized as follows. The background information about stochastic L-
systems is given in Section 2. Section 3 contains a short description of the main HGS
procedures together with the general definition of Vose’s model of SGA. In Section 4 we
defined the new model of HGS in the case of inactive prefix comparison procedure. We
calculated the probabilities of productions and we defined the probability distribution
for the whole strategy. The paper ends with some final remarks.

2 Stochastic Lindenmayer systems

Lindenmayer-systems (or L-systems) are named after the biologist Aristid Lindenmayer
(1925-1989). The emphasis of his study was on modeling the plant topology, i.e. the
neighborhood relations between cells or larger plant modules (see [9]). Koza (see [8]) and
Jacob (see [6]) applied the deterministic L-systems in genetic programming to produce
the genotype patterns. Jacob and Rehder (see [5]) have constructed the simple theoretical
model of neural networks based on hierarchical grammar system.

The central idea of L-systems is that of rewriting. The concept of L-systems rewriting
rules is based on Noam Chomsky’s idea of the description of the syntactic features of
natural languages.

According to Chomsky’s theory each grammar can be defined as a triple G = (X, A, P),
where

e Y - called an alphabet - is a finite set of basic symbols called letters,

e A -is a finite set of start strings called azioms,

e P - is a finite set of rewriting rules called productions.

Let us denote by X* a set of all finite words (strings) over the alphabet ¥. All axioms are
the elements of X* and each production p from the set P C ¥ x ¥* is a homomorphism
p: X — YX*. The production p is written as a — w, that is the letter a, called the
predecessor, is replaced by the word w, called the successor of the production.

In contrast to Chomsky grammars, in L-systems all letters in the given word are
replaced in parallel and simultaneously. The simplest L-systems are deterministic and
context-free (OL-systems), where for any letter a € ¥ there exists at least one word
w € ¥* such that a — w. If for the predecessor a no production is explicitly given, it is
assumed that the identity map a — a belongs to the set of productions.

A OL-system is deterministic (DOL-system) if and only if for each a € ¥ there is
exactly one word w € ¥* such that ¢ — w. In stochastic OL-systems each predecessor
may have more than one successor. The productions are executed with the additional
parameters called production probabilities. For any predecessor a the sum of all the
probabilities of all productions of a must be equal to 1.

Many interesting examples of L-systems can be found in [9]. We applied the stochastic
Lindenmayer systems framework to model the structure and the dependency relations
between evolutionary processes activated in HGS branches.

3 HGS basics

The efficiency of Hierarchical Genetic Strategy (HGS) comes from a concurrent search in
the optimization landscape performed by many small populations. The creation of these



populations is governed by the dependent genetic processes with low complexity. The
processes of low order represent chaotic search. They detect the promising region on the
optimization landscape in which more accurate processes are activated.

We assume in this paper that SGA is the basic engine of HGS. The general description
of HGS procedures is introduced by a background information on the SGA model [15].

3.1 Mathematical model of SGA

Let us denote by D C R"™ the admissible set for global optimization problem. We
assume that its subset D, C D contains all individual phenotypes encoded into binary
strings of the fixed lenght s € N stored in a genetic space Q5. s is usually identified
with the set of integers from the interval [0, ...,r — 1], where r = 2° .

A collection of n elements (not necessarily different) of Q is called a population of
size n and it is represented by a vector:

p=Ipos---,pr—1]"t P >0, Z,’thl (1)
t=0
where p; is the proportion of element ¢ in the population.
The coordinates of the vector p are identical with the baricentric coordinates of some
point in the standard unit (r — 1)-dimensional simplex A.
Simple Genetic Algorithm (SGA) may be described as an instance of random heuristic
search procedure (see [15]) generating a sequence of populations:

po’pl = T(p0)7p2 = T(pl)"“’pz 6 A7Z = 071’27"' (2)

with some transition rule 7, where p° is referred to as the initial population vector.
Operator 7 is stochastic in case of finite populations (n < +o0) .

Vose and Liepins (see [14]) introduced a heuristic function G : A — A that, given the
current population vector p, produces a vector G(p) whose i-th component is defined as
the probability that the element i is the result of some stochastic procedure, given the
population p.

It is proved in [15] (see Theorem 3.3) that G(p) is the expected next population vector
for p.

Function G for SGA is defined as the superposition G = M o F, where M - denotes
recombination operator and F' - selection operator (see [14]).

Let us denote by X, the finite subset of points from A corresponding to all possible
populations of the fixed size n. Vose (see [15]) proved that for populations of fixed size
n < +o0o SGA forms a Markov chain with states in the set X and transition matrix
@ = [Q; ], where Q; ; are defined as follows:
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(p?), is the y-th coordinate of vector p/ , G(p'), denotes the probability of producing
string y, (y =0,1,...,7 — 1) in the population p/ and N is the number of all possible
populations of the fixed size n. N is calculated from the following formula:

N= (”:if) 4)



Applying Chapman-Kolmogorov’s equations (see [3]) we can calculate the transition
matrix

Q' =[Q1)); ()

where Q¥ ; is the probability that population p’ will change into population p in k steps
(generations).

We will apply the above formulas for the calculation of the production probabilities
in our grammar-based HGS model in Section 4.

3.2 HGS procedures

To start HGS we have to fix the lengths 1 < s1 < ... < $;n = Smae Of genotypes of
the individuals in the populations of the sizes ni,ns, ..., n,, respectively. We also have
to specify the period k € N of metaepoch.

The algorithm starts from a randomly selected population of the shortest binary
genotypes (s; -length) and the root of the HGS structure is built. The branch has degree
j € {1,...,m} if it is created by populations containing chromosomes of the length
sj € {s1,...8m}. The root is the unique branch of the lowest degree 1.

The populations evolving in branches of the different degrees are denoted by:

p?,j (6)
where:

e e € N - is the global metaepoch counter,
e j.je€{1,...,m} - degree of the branch containing individuals of the length s;,
e i - is the unambiguous branch identifier, i = (i1,...,%m), i, = 0 for h > j.

The unambiguous branch identifier i = (i1,...,1,) describes the "history of creation”
of the given branch. For example, let i1,...7;_1 be the numbers of predecessors (counted
from the root) of the branch of degree j. The current branch is the i;-th consecutive
child of the branch indexed by (il, ceeytj-1,0,0,. ., O).

A new branch could be created after executing a metaepoch in the parental branch.
A k -periodic metaepoch My, (k € N) is a discrete evolution process which starts from
the given population and terminates after at most k generations by selection of the best
adapted individual. The outcome of the metaepoch started from the population p¢ may
be denoted by : -

My, (p?) = (p™', 2(k), stop); 1<k, (7)
where p?*! is the resulting population and z(k) is the best adapted individual in the
metaepoch. stop is the branch stop criterion flag (see [7] for details).

—

New branches of higher degree are created by the sprouting procedure. Let z(k) be
the best adapted individual in some metaepoch of the period k. An operator given by
the formula:

50 (Pff) = (Pff;l’p?',jﬂ) (8)

where i’ = (il, ceeytio1,1,0,.. O), defines the process of construction of an initial popu-
lation for a new branch of degree j + 1 represented by the vector p¥ _j+1- This population

is a multisubset of 0 The individual genotypes are defined by = = z(k)y , where:

Sjt1°
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Figure 1. The general schema of the HGS structure after 3 metaepoch

. x/(\k:) - is the s; - length prefix of = and

e Y€ Q( ) is the s;41 — s; - length suffix of = selected according to the uniform

8j41=5;
probability distribution over (

siv1—s;)
The sprouting procedure can be activated or not, depending on the outcome of the
prefix comparison operator. The codes of all HGS procedures can be found in [4].

4 Grammar-based HGS model

Let us assume that the prefix comparison operator is not active in HGS mechanism. It
means that each branch of degree j; (j e{l,...,m— 1}) after each metaepoch produces a
”child” of degree j+ 1. All branches of maximal degree m have to be just elongated. The
general schema of the HGS structure in this special case is presented in Figure 1. Let us
denote by Xsnjj ;7 € {1,...,m} the set of all possible populations of the size n; consisting
of genotypes of the length s;. It contains IV; elements, where N; can be calculated from
the formula (4) applied for s; and r; = 2%.
HGS in this case can be modeled by a context-free L-system G = (X, S, P), where:

o L=, X/ is the alphabet,
e S=2X,7 isthe set of start symbols,

e P={P, P} is the set of stochastic productions.



Productions from the set P are defined in the following way:

— (P er1 o o
Prs Py = PiGPigeigas = Lm =1,
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where pf;) € X5 = 1,...,m; i(j) = (i1;...,45,0,0,....0) and i(j) + 1 =
(i1,...,i5,1,0...,0).

Production (P ) defines the process of the execution of the single k-periodic metaepoch
in the parental branch of degree j. This procedure is at the end combined with the
sprouting of a new branch of degree j 4+ 1. The successors of (P;) are the words from X*
consisted of two letters: one is a resulting population for the metaepoch executed in the
parental branch and the second one is an initial population for the new process activated

by the operator SO defined in the previous section. It means that:

e M e+1
Pij).j S_> Pigj).
e+1 0
Pig). 7 Pij)+1.4
We assumed that SGA is the basic engine for HGS. The evolution process in each
branch can be then modeled as a Markov chain according to Vose’s theory. Probability

(Py1(y)) is calculated for the populations p;"(j) ; and pf(';)l] in the following way:

(P1(4)) = Prob(pi: i1p5).5) - Prob(plj) 1) (9)

where:
. Prob(pfa)lﬁpf(j)’j) is an element of the matrix Q(k, s;) = Q*(s;) (see formula(8))
and QF(s;) denotes the Markov transition matrix defined for SGA in the branch
of degree j,

1
0 —
Prob(pyjy11,;) = <2sj+lsj i 1> :

(10)
nj

The last formula is a simple consequence of the definition 3.2. The number of possible
choices of an sj;1 — s; - length suffix of any genotype in p?(j)+1 jis by =2%+17%, Thus
the probability of creation of the new population of the size nj;4 is %, where ¢ = CZ{Fnrl
is the number of choices of n; samples of the suffixes (with replacement).

Probability P, is calculated in the same way as Prob (pf(';)lj|p:f(j) j).

The words produced by the presented L-system, are the sequences of populations
generated in HGS metaepoch. For example, the structure of HGS presented on the
Figure 1 can be defined as a following sequence of words produced by the grammar-

based model of HGS:

e start symbol: P(()l 0,...,0),1

.l 0
e step I: Pao,.,0,1 Pii,0..,0),2

. 2 0 1 (1]
o step Il: pi o o)1 P02 Pui..02 Pi110..0)3



The production probabilities from the set P determine the probability distribution
for the strategy HGS (as well as for the L-system defined above). We can reconstruct the
creation process of the given population pf( i) by the analysis of the unambiguous branch

identifier i(j) =i = (il, RV P T ,). The values of i1,...,4;_1 are determined by the
grammar productions. In the above example population p?172’___70)’2 of degree j = 2 was
created from the root (iy = 1) after two metaepochs ( io = 2). The probability of its
production from the start symbol p(()1 0...,0),1 can be calculated as follows (see formula

(9)):

Probe,ij = Pmb(p%’o,...,om|p?1,0,...,0),1) - Prob(py o, 0)1lPl10....0)1)"
'Pmb(p(l,o,...,o),l

(11)

The main task in our current research is to generalize the above formula for pop-
ulations in all types of branches. It could help to define the formal criterion for the
procedures of the empirical estimation of the population distributions, like those pre-
sented in [11] .

Let us observe that the numbers of branches of the different degrees in several metae-
pochs form the Pascal triangle. We start from the single population in the branch of
degree 1, after the first metaepoch we have one population in the branch of degree 1 and
one population in the branch of degree 2, then L-system produces 1 population in branch
of degree 1, two populations in the branch of degree 2 and one population in the branch
of degree 3, etc. The process is continued till the creation of the initial population in the
first branch of the maximal degree. It happens after running of m metaepochs. We have
to wait another m metaepochs for the next branch of the maximal degree.

This simple observation confirms a basic property of the multitype Galton-Watson
branching process (see [1]), which also can be used to model HGS in this case. However,
the branching processes theory cannot be easily adapted for the analysis of structure
and properties of HGS with any additional procedure like prefix comparison or branch
reduction (see [4]). In that case we plan to extend the L-systems framework by the
definition of some logical mechanism governing the grammar stochastic productions.

5 Conclusions and future work

e Lindenmayer systems (L-systems), originally designed for the simulation of the
natural growth processes, can be also applied in genetic programming to produce
the genotype patterns. We used them in modeling the growth of the tree structure
of hierarchical evolutionary multipopulation algorithm.

e All populations evolving in HGS branches are interpreted as the letters in our
grammar-based model. The words of grammar are the sequences of populations
generated in HGS metaepochs and HGS procedures are defined in terms of grammar
productions.

e We demonstrated in Section 4 that the method is very useful in the analysis of
the dependency relation among HGS branches as well as in the estimation of the
population probability distributions for the HGS in the case of inactive prefix com-
parison operator.

e The next research aim is the extension of the current model to the case of HGS
with the active prefix comparison and branch reduction procedures. We want to



combine the presented L-system framework with some additionally defined logical
procedure, what can give us an example of logical L-system.
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