
Modeling Fuzzy Intervals With Constraint Logic
Programming

Przemys�law Kobylański

Wroc�law University of Technology, Institute of Mathematics and Computer Science, Wroc�law,
Poland, email: Przemyslaw.Kobylanski@pwr.wroc.pl

Abstract. In this paper the method of modeling fuzzy intervals in fuzzy decision-
making is presented. Described method makes use of constraint logic program-
ming and it is based on the concept of descriptors. This approach is very general
and it is consistent with Zadeh’s extension principle and Bellman-Zadeh concept
of fuzzy decision making. It fulfills Klir’s requisite constraint and deals effec-
tively with a drowning effect too. The idea of descriptors of fuzzy intervals and
fuzzy constraints is illustrated with computational example of flexible scheduling
problem in which robust for drowning effect schedule is found.

1 Introduction

It is important to develop tools for fuzzy decision-making which will be consistent with the
fundamental principles like the Zadeh’s extension principle, the Bellman-Zadeh concept of
fuzzy decision-making [1], the Klir’s requirement for requisite constraints [8] and Dubois
and Fortemps remarks on the drowning effect related with sup-min criterion [5].

The paper presents one of such tool which fulfills all of above assumptions. CLP(F)
is a module for modeling and solving fuzzy decision-making in declarative programming
language Prolog. Homepage of our project is http://www.im.pwr.wroc.pl/˜przemko/clpf
and there are sources of CLP(F) module for some implementations of Prolog such as Ciao
Prolog, IF/Prolog, SICStus Prolog and YAP Prolog. The module CLP(F) is based on the
concept of descriptors [11] which are implemented with constraint logic programming.
There are a number of advantages of using CLP(F) module e.g. symbolic computations
and full information about all solutions (feasible, optimal and improved optimal).

The paper is organized as follows: Section 2 describes basics of declarative program-
ming paradigm and the elements of constraint programming, Section 3 describes the
fuzzy constraint satisfaction problem, next section shows how to model and solve fuzzy
decision problems using constraint programming and fuzzy intervals, fuzzy constraints
and systems of constraints represented in the form of descriptors, Section 5 presents
computational example in which the improved schedule for flexible scheduling problem
from [5] is computed with the proposed CLP(F) module.

2 Declarative and constraint programming

In an imperative (algorithmic) paradigm the problem is solved by giving the algorithm
(procedure) which solves it. A declarative paradigm allows us to solve the problem in

the other, much simpler, way. It is possible to state the problem and computer finds the
solution based on this description.

2.1 Programming in logic

One of the most popular declarative programming language is Prolog (PROgramming
in LOGic). In this language, the problem is described with logical clauses from the first-
order predicate calculus. Program consists of facts and rules which states the relations
over the domain of considered problem.

Example 2.1. Let us consider the following example of concatenation of two lists. In the
algorithmic programming we think about concatenation as the process of searching for
the end of the first list and binding the first element of the second list just after the last
element of the first list. It is impossible to make use of the same procedure for splitting
the giving list into two parts. In the declarative programming we consider concatenation
as the relation between three lists: L1, L2 and a list which is concatenations of L1 and
L2. Prolog program for concatenation of lists consists of the following two clauses:

append([], L, L).
append([H | T], L, [H | TL]) :- append(T, L, TL).

The first fact states that concatenation of empty list [] with any list L is equal to L. The
second clause states that if TL is concatenation of T and L, then the list [H | TL] with
head H and tail TL is concatenation of lists [H | T] and L (symbol :- is read as if).

Prolog makes use of SLD-resolution (Selection rule driven Linear resolution for De-
fined clauses) for derivation of answers for the given goal [14]. The number of answers
depends on the number of possible proofs (SLD-derivations). All SLD-derivations are
collected as branches in the SLD-tree (see Figure 1).

append(X, Y, [a, b])

append(T', L', [b])

X = []
Y = [a, b]

X = [a | T']
Y = L'

T' = []
L' = [b]

append(T'', L'', [])

T' = [b | T'']
L' = L''

T'' = []
L'' = []

Answer 1:
X = [], Y = [a, b]

Answer 2:
X = [a], Y = [b]

Answer 3:
X = [a, b], Y = []

append([a,b], [c,d], X)

append([b], [c, d], TL')

append([], [c, d], TL'')

X = [a | TL']

TL' = [b | TL'']

TL'' = [c, d]

a) b)

Answer:
X = [a, b, c, d]

Figure 1. SLD-trees for: a) concatenating [a,b] and [c,d], b) splitting [a,b].

The goal is placed in the root of the SLD-tree. Each edge in the tree is labeled with
proper substitution. All branches ended with symbol �, which represents empty goal,
lead to the answers which are the compositions of all substitutions on the branch. In the

SLD-tree presented in Figure 1a) there is one answer [a,b,c,d] because there is only one
concatenation of lists [a,b] and [c,d]. In Figure 1b) there are three answers because list
of two elements [a, b] could be split in three different ways: [], [a,b]; [a], [b]; [a,b], [].

In general case, many branches in the SLD-tree end with failure and do not lead
to any answer (solution). An SLD-tree sometimes contains infinite branches and the
SLD-resolution, which is depth-first searching of SLD-tree, does not finish computations.

2.2 Constraint logic programming

As it was shown, the process of solving the stated problem in programming in logic
is depth-first searching of some SLD-tree. The efficiency of searching depends on how
early the procedure finds out that considered SLD-subtree does not contain any branch
which leads to solution.

The most powerful method for improving the efficiency of searching for solutions in
SLD-tree is constraint technology. Opposite to standard of Prolog, it allows imposing
constraints over uninstantiated variables (variables without assigned values). During
propagation of such constraints system could detect inconsistency and stop searching in
considered branch. In this case backtrack is done and searching is continued in the next
branch.

Methods for processing of constraints are described in [2].

Discrete case. In this case some variables have assigned domains i.e. finite subsets
of integers which contains all possible values for this variables. During propagation of
constraints domains are restricted by excluding the values which do not satisfy some of
constraints. In many problems the propagation of constraints does not ensure detection
of inconsistency. After constraints propagation labeling of variables is done by assigning
(with backtracks) the values from domains to variables.

Example 2.2. The following goal checks if it is possible to choose three pairwise different
values from the set {1, 2}, where #\= is not equal relation:

?- [X, Y, Z] in 1..2, X #\= Y, X #\= Z, Y #\= Z.
yes

The positive answer is incorrect and the labeling is necessary to detect inconsistency:

?- [X, Y, Z] in 1..2, X #\= Y, X #\= Z, Y #\= Z, labeling([X, Y, Z]).
no

The family of programming languages which enable such constraints is called CLP(FD)
(constraint logic programming over finite domains).

Continuous case. In this case it is possible to impose constraints over uninstantiated
variables with values from the set of rational or real numbers [7]. The Fourier-Motzkin
algorithm is used for projection of linear inequalities and simplex method is used for
optimizing linear objective functions.

Example 2.3. Let us consider the following very simple linear programming model:

?- {X >= 0, Y >= 0, 2*X + 3*Y =< 10, 3*X =< 5, Z = X+Y}, maximize(Z).
X = 5/3,
Y = 20/9,
Z = 80/9

The family of programming languages which enable such constraints is called CLP(Q)
or CLP(R) (constraint logic programming over rational numbers or over real numbers).

3 Fuzzy constraint satisfaction problem

Uncertainty could be expressed in many ways and one of them is the theory of fuzzy
sets [6].

Definition 3.1. A fuzzy set F is equivalent to giving the reference set Ω and a map-
ping, µF , of Ω into [0, 1]. The value µF (ω), for ω ∈ Ω, is interpreted as the degree of
membership of ω in the fuzzy set F . For the giving value λ ∈ (0, 1] the set

Fλ = {ω ∈ Ω|µF (ω) ≥ λ} (1)

is called a λ-cut of F .

For a given fuzzy set F , the family of all λ-cuts is monotone i.e.

0 < λ1 ≤ λ2 ≤ 1→ Fλ2 ⊆ Fλ1 . (2)

Definition 3.2. Let A1, . . . , An be fuzzy sets in Ω1, . . . ,Ωn with the membership func-
tions µA1(x), . . . , µAn(x), respectively. Then the Cartesian product of the fuzzy sets
A = A1 × · · · × An is defined as a fuzzy set in Ω = Ω1 × · · · × Ωn whose membership
function has the following form:

µA(xxx) = µA1×···×An(x1, . . . , xn) (3)

= min{µA1(x1), . . . , µAn(xn)}.

Let us recall the extension principle of Zadeh [15], which provides a general method
for extending a non-fuzzy mathematical concept to the fuzzy framework:

Definition 3.3. Let f be be mapping from Ω to a set Y such that y = f(xxx). Then the
fuzzy set B in Y induced by the fuzzy set A in Ω is defined by the following membership
function:

µB(y) =

{
sup xxx∈Ω

y=f(xxx)
µA(xxx) for f−1(y) �= ∅,

0 for f−1(y) = ∅.
(4)

Nguyen [13] proposed an equivalent representation of the extension principle:

Theorem 3.4. If there exist x1, . . . , xn such that µB(y) = µA1×···×An(x1, . . . , xn) for
any y ∈ Y (the supremum of (4) is attained in xxx = 〈x1, . . . , xn〉), then the following
equality holds:

Bλ = [f(A1, . . . , An)]λ = f(Aλ
1 , . . . , A

λ
n), (5)

where Aλ
i is λ-cut of the fuzzy set Ai.

When the reference set Ω is equal to the set of real numbers a fuzzy set is called a
fuzzy quantity.

The special kind of fuzzy quantity is a fuzzy interval i.e. a fuzzy quantity whose
membership function is quasiconcave:

∀u ≤ v ∀w ∈ [u, v] µQ(w) ≥ min(µQ(u), µQ(v)). (6)

In many practical applications a fuzzy decision-making problem is formulated as the
following fuzzy constraint satisfaction problem [3, 4, 5]:

Definition 3.5. The Fuzzy Constraint Satisfaction Problem (FCSP for short) P =
(X ,D ,C ,R) is
• A set of variables X = {X1, . . . , Xn}.
• A set of definition domains D = {D1, . . . , Dn} where Di is the definition domain

of Xi. Ω is the Cartesian product of the definition domains Ω = D1 × · · · ×Dn.
• A set of constraints C = {C1, . . . , Cm}. They can be either flexible or classical.
• A set of fuzzy relation R = {R1, . . . , Rm} where Rj defines the solutions satisfying

more or less the constraint Cj . For the classical constraints, the relation Rj is
all-or-nothing, while for the flexible constraints Rj is a fuzzy relation.

For each solution d ∈ Ω, the global satisfaction degree is

Sat(d) = µR1∩···∩Rm(d) = min
Ci∈C

µRi(d). (7)

Sat(d) gives the degree to which d belongs to the fuzzy set of the feasible solutions of
P, Sols(P):

µSols(P)(d) = Sat(d). (8)

The consistency degree of FCSP is defined as the satisfaction of its best solutions:

Cons(P) = sup
d∈Ω

µSols(P)(d) = sup
d∈Ω

Sat(d) = (9)

= sup
d∈Ω

min
Ci∈C

µRi(d).

The above formulation is consistent with the well known Bellman-Zadeh concept of
fuzzy decision-making [1] which combines the multi-objective fuzzy optimization and
fuzzy constraint satisfaction problems into one fuzzy constraint satisfaction problem.

The consistency degree of FCSP is obtained for the solution d ∈ Ω which maximizes
the value minCi∈C µRi(d). The sup-min criterion does not ensure the maximal value for
each µRi(d) and probably some of them could be improved. This phenomenon is called
the drowning effect. If the linear programming is used to determine the best solution
according to global satisfaction degree, the solution d is at facet of the feasible region (at
the ends of the proper α-cuts) and all the constraints Ci ∈ C are satisfied at the same
degree equal to Cons(P).

The drowning effect and the methods for improving solutions are described in [5].

4 Modeling fuzzy constraints

In [11] modeling fuzzy constraints with constraint programming was proposed. The
fuzzy intervals, expressions, constraints and systems of constraints are represented with

special structures called descriptors. The descriptors contain real or rational variables
constrained with system of linear equalities and inequalities.

4.1 Descriptors

A fuzzy interval is represented by the region under the plot of its membership function.
This region is described with a set of constraints:

Definition 4.1. Let interval [Fλ, F
λ
] be the λ-cut of fuzzy interval F̃ . The descriptor

D(F̃) of fuzzy interval F̃ is a structure:

(x, λ)@C(x, λ), (10)

where C(x, λ) is the system of constraints restricting the values of variables x, λ ∈ R:

C(x, λ) = {0 ≤ λ ≤ 1, Fλ ≤ x ≤ Fλ}. (11)

Descriptor of the value of a fuzzy arithmetic expression could be build with the
descriptors of its subexpressions:

Definition 4.2. Let D(Ṽi) = (xi, λi)@Ci(xi, λi), for i ∈ {1, 2}, be descriptors of fuzzy
values Ṽi of two expressions. Then descriptor D(Ṽ1�̃Ṽ2) of the fuzzy value of expression
Ṽ1�̃Ṽ2 has the following form:

(x, λ)@C1(x1, λ1) ∪ C2(x2, λ2)∪ (12)

{λ ≤ λ1, λ ≤ λ2, x = x1 � x2}.
A fuzzy constraint is represented with a descriptor build with two descriptors of the

value of fuzzy expressions:

Definition 4.3. Let D(Ei) = (xi, λi)@Ci(xi, λi), where i ∈ {1, 2}, are two descriptors
of two values of fuzzy expressions E1 and E2. Then, for a relation ∝∈ {=,≤,≥, <,>, �=},
descriptor D(E1∝̃E2) of fuzzy constraint E1∝̃E2 has the following form:

(〈x1, x2〉, λ)@C1(x1, λ1) ∪ C2(x2, λ2)∪ (13)

{λ ≤ λ1, λ ≤ λ2, x1 ∝ x2}.
Descriptor of the system of fuzzy constraints is build with the descriptors of fuzzy

constraints:

Definition 4.4. Let S = {C1, C2, . . . , Cn} be the system of fuzzy constraintsC1, C2, . . . , Cn

and D(Ci) = (xxx(i), λi)@Ci(xxx(i), λi), where i = 1, 2, . . . , n. Then descriptor D(S) has the
following form:

(xxx(1);xxx(2); . . . ;xxx(n), λ)@
n⋃

i=1

Ci(xxx(i), λi)∪ (14)

{λ ≤ λ1, λ ≤ λ2, . . . , λ ≤ λn},
where

〈x1, . . . , xn〉; 〈y1, . . . , ym〉 = 〈x1, . . . , xn, y1, . . . , ym〉.
In [11] propositions that descriptors are consistent with Zadeh’s extension principle

are proved.

4.2 Constraint networks and improving optimal solution

When the descriptor is used a suitable constraint network is created (about constraint
networks and constraint processing see [2]). It contains nodes for each decision variable
and the arcs corresponding to imposed constraints.

In Figure 2 an example of descriptor D({X̃≤̃Z̃, Ỹ ≤̃Z̃}) is presented. It is worth
noticing that the box for descriptor of fuzzy interval Z̃ is simultaneously nested in the
box for descriptor of constraint X̃≤̃Z̃ and in the box for descriptor of constraint Ỹ ≤̃Z̃.
This ensures that realization z of fuzzy interval Z̃ is the same in both constraints.

ω ≤ δ

D(Z)D(X) D(Y)

D(X ≤ Z)

D(Y ≤ Z)

D({X ≤ Z, Y ≤ Z})

x ≤ z

y ≤ z

λ ≤ ψ λ ≤ ω

ψ ≤ α
ψ ≤ δ

ω ≤ β

x α z δ y β

ψ

ω

λ

Figure 2. Constraint network for D({ eX≤̃ eZ, eY ≤̃ eZ}).

In [9], another method for improving optimal solution with constraint programming
was proposed. In the following example the drowning effect is presented an the idea of
improving solution is shown.

Example 4.5 (Drowning effect). Let X̃ = (0, 1, 2), Ỹ = (2, 3, 4), Z̃ = (1, 2, 3) are the
triangular fuzzy intervals. The set of constraints consists of X̃ ≤ Z̃ and Ỹ ≤ Z̃. The
constraint network for considered set of constraints is presented in Figure 2. The optimal
solution is found with the linear programming (maximization of λ subject to constraints
presented in Figure 2). One of the basic optimal solution is 〈x, y, z〉 = 〈0.5, 2.5, 2.5〉
and µ eX(x) = µeY (y) = µeZ(z) = 0.5 (see Figure 3a). But this optimal solution could be
improved. The better optimal solution is 〈x′, y, z〉 = 〈1, 2.5, 2.5〉 with µ eX(x′) = 1 > 0.5
(see Figure 3b).

Improving solution could be written in imperative way as Algorithm 1. The procedure
maximize finds the maximal value for its argument and the predicate var is satisfied if
its argument is still not fixed decision variable.

The solution found by Algorithm 1 is Pareto-optimal and has the following property:

Property 1. Let u = (u1, . . . , un) be the vector of values of variables λ1, . . . , λn found
by Algorithm 1. If v = (v1, . . . , vn) is any other vector of feasible values of variables
λ1, . . . , λn, then if for some variable λi condition vi > ui is fulfilled, then for some other
variable λj condition vj < uj ≤ ui is fulfilled.

The proof of the above property is presented in [9].

X YZ

x=0.5 y=z=2.5

µX(0.5)=µY(2.5)=µZ(2.5)=0.5
a) basic optimal solution (drowning effect)

X YZ

x=1 y=z=2.5

µX(1)=1 µY(2.5)=µZ(2.5)=0.5
b) improved solution

Figure 3. Drowning effect.

Data: Variables for satisfaction degrees λ1, λ2, . . . , λn

Result: Improved optimal solution
L0 ← {λ1, λ2, . . . , λn};
k ← 0;
while Lk �= ∅ do

let yk be a new variable;
foreach λ ∈ Lk do

impose constraint yk ≤ λ;
end
call maximize(yk);
Lk+1 ← {λ ∈ Lk|var(λ)};
k ← k + 1;

end
Algorithm 1: Improving optimal solution.

Property 1 means that in the solution found by Algorithm 1 it is not possible to
increase some satisfaction degree without decreasing some other one. Such solutions are
called improved solutions.

Example 4.6 (Improving solution with Algorithm 1). Let X̃, Ỹ , Z̃ are the triangular
fuzzy intervals from Example 4.5. The constraint network corresponding with the de-
scriptor D({X̃≤̃Z̃, Ỹ ≤̃Z̃}) is presented in Figure 2. The degrees for each fuzzy intervals
α, β, δ, fuzzy constraints ψ, ω and the system of constraints λ are collected in one set L0.
In the first iteration the following model is solved:

y0 �→ max,

y0 ≤ α, y0 ≤ β, y0 ≤ δ, y0 ≤ ψ, y0 ≤ ω, y0 ≤ λ,
and variables β, δ, ψ, ω, λ are fixed to 1

2 , L1 = {α}. In the second iteration the following
model is solved:

y1 �→ max,

y1 ≤ α,
and variable α is fixed to 1, L2 = ∅. The condition Lk �= ∅, for k = 2, in line 3 of the
algorithm is false and the algorithm is stopped.

4.3 CLP(F) module

The descriptors were implemented as the CLP(F) module. It makes use of the clp(Q,
R) modules [7] for the constraint programming on the rational and real numbers.

CLP(F) module contains predicates for defining fuzzy intervals (fuzzy), fuzzy con-
straints and systems of fuzzy constraints (fcon) and predicates for solving the fuzzy
constraint satisfaction problem and for computing the consistency degree and improving
optimal solution (cons). The computations could be done on rational numbers (slower
but exact result) or on the real numbers (faster but not exact result).

The fuzzy intervals are defined with predicate fuzzy(Var, Shape), which has two ar-
guments: the variable which is unified with new descriptor and the term which de-
scribes the shape of the fuzzy interval. In Figure 4 the available shapes of fuzzy intervals
are presented. The parameters A,B,C,D are either rational or real numbers, where
A ≤ B ≤ C ≤ D.

A A B A B C

A B C D A A B

A A B

a) A b) [A, B] c) [A, B, C]

d) [A, B, C, D] e) right(A) f) right(A, B)

g) left(A) h) left(A, B) i) unrestr

Figure 4. Terms and corresponding shapes of fuzzy intervals.

The fuzzy interval could also be defined as the value of the fuzzy arithmetical expres-
sion with predicate fuzzy(Var, Expr1 OP Expr2), where Var is the variable unified with
new descriptor, Expr1 and Expr2 are two fuzzy arithmetical subexpressions and OP is
one of the following operation: +, −, ∗, /.

In the following example the subtraction of two fuzzy intervals X and Y with the
same membership functions is considered:

?- fuzzy(X, [1, 2, 3]), fuzzy(Y, [1, 2, 3]),
fuzzy(Z, X-Y).

X = f(A, B),
Y = f(C, D),
Y = f(E, F),
{E = A-C, D =< 1, D+C =< 3, B+A =< 3,
D-C =< -1, B-A =< -1, D >= 0, B >= 0,

D-F >= 0, B-F >= 0}

In the answer the term f(A,B) describes fuzzy interval with realization equal to A
and the possible degree of satisfaction of this realization equal B. Between parentheses
{ and } the system of crisp constraints on realizations and degrees of satisfactions of X ,
Y and Z is shown.

In the following example the subtraction of two the same fuzzy intervals is considered:

?- fuzzy(X, [1, 2, 3]), fuzzy(Y, X),
fuzzy(Z, X-Y).

X = f(A, B),
Y = f(A, B),
Z = f(0, C),
{B+A =< 3, B-A =< -1, B >= 0, B-C >= 0}

Variable Z is equal to 0 according to the requisite constraints [8].
Fuzzy constraint on fuzzy intervals X1, X2, . . .Xn is defined with the predicate

fcon(Var, [X1, X2, . . . , Xn], Constr), where Var is variable unified with new descriptor
and Constr is fuzzy constraint or the system of fuzzy constraints build with the relations:
=, �=, <, ≤, >, ≥.

The consistency degree CD of fuzzy constraint FC is computed with the predicate
cons(FC, CD) and the improved solution, represented by vector VEC, is found with the
predicate cons(FC, CD, VEC).

The following dialog solves the problem from Example 4.6:

?- fuzzy(X, [0, 1, 2]), fuzzy(Y, [2, 3, 4]),
fuzzy(Z, [1, 2, 3]),
fcon(FC, [X, Y, Z], (X =< Z, Y =< Z)),
cons(FC, CON, VEC).

CON = 1/2,
VEC = [f(1,1),f(5/2,1/2),f(5/2,1/2)]

Variable CON is equal to the consistency degree of fuzzy constraint FC and the list
VEC contains the improved optimal solution (X is equal to 1 with membership function
equals to 1, Y and Z are equal to 5/2 with membership functions equal to 1/2).

The constraint networks are created only for the computing consistency degree and
after that they are destroyed (no side effects):

?- fuzzy(X, [1, 3, 6]), fcon(FC1, [X], X = 2),
fcon(FC2, [X], X = 4),
cons(FC1, CON1), cons(FC2, CON2).

CON1 = 1/2,
CON2 = 2/3

The constraint X = 2 is active only during computation consistency degree CON1
and it is possible to compute consistency degree CON2 of constraints X = 4.

Table 1. Parameters of operations.

Operation Ready date Due date Duration Machine
A1 (0, 5,∞,∞) (−∞,−∞, 20, 24) (4, 5,∞,∞) M1

A2 (3, 4,∞,∞) M2

B1 (0, 5,∞,∞) (−∞,−∞, 20, 24) (2, 3,∞,∞) M2

B2 (1, 2,∞,∞) M1

C1 (0, 5,∞,∞) (−∞,−∞, 24, 30) (2, 3,∞,∞) M1

C2 (8, 9,∞,∞) M3

C3 (4, 5,∞,∞) M2

D1 (0, 5,∞,∞) (−∞,−∞, 24, 30) (7, 8,∞,∞) M3

D2 (8, 9,∞,∞) M1

E1 (0, 5,∞,∞) (−∞,−∞, 24, 30) (0, 1,∞,∞) M2

E2 (6, 7,∞,∞) M3

E3 (7, 8,∞,∞) M1

E4 (2, 3,∞,∞) M3

5 Computational example

Let us consider the following example from [5]. In Table 1 the fuzzy ready dates, due
dates and durations of operations on machines M1,M2,M3 are presented (all parameters
are fuzzy trapezoid intervals). All operations in task have the same ready date and the
same due date.

In Figure 5 the precedence relation between operations is presented (this relation is
given).

A1

A2

B1 B2

C1 C2

C3

D1
D2

E1 E2
E3

E4S

T

Figure 5. Precedence relation.

The ready dates and duration times are modeled by fuzzy intervals described with
term left(A, B) and the due dates are described with terms right(A, B). For all task
with fuzzy ready date RD, fuzzy due date DD and fuzzy duration time DU, the fuzzy
constraints Start >= RD and Start + DU =< DD are imposed, where Start is the start
time of operation and it is modeled with fuzzy interval described with term unrestr (see
Figure 4).

Table 2. Improved schedule

Operation RD Start DU DD
A1 〈3017 , 6

17 〉 〈3017 , 1〉 〈7417 , 6
17 〉 〈x1, 1〉

A2 〈x2, 1〉 〈x3, 1〉 〈x4, 1〉 〈x5, 1〉
B1 〈17551 ,

35
51 〉 〈17551 , 1〉 〈13751 ,

35
51 〉 〈x6, 1〉

B2 〈x7, 1〉 〈10417 , 1〉 〈2317 , 6
17 〉 〈x8, 1〉

C1 〈x9, 1〉 〈12717 , 1〉 〈4017 , 6
17 〉 〈x10, 1〉

C2 〈x11, 1〉 〈463 , 1〉 〈253 , 1
3 〉 〈x12, 1〉

C3 〈x13, 1〉 〈713 , 1〉 〈133 , 1
3 〉 〈28, 1

3 〉
D1 〈53 , 1

3 〉 〈53 , 1〉 〈223 , 1
3 〉 〈x14, 1〉

D2 〈x15, 1〉 〈16717 , 1〉 〈14217 ,
6
17 〉 〈x16, 1〉

E1 〈x17, 1〉 〈x18, 1〉 〈x19, 1〉 〈x20, 1〉
E2 〈x21, 1〉 〈9, 1〉 〈193 , 1

3 〉 〈x22, 1〉
E3 〈x23, 1〉 〈30917 , 1〉 〈12517 ,

6
17 〉 〈43417 ,

38
51 〉

E4 〈x24, 1〉 434
17 , 1〉 〈4017 , 6

17 〉 〈47417 ,
6
17 〉

The fuzzy duration time needs some remarks. It could be considered as uncertain
variable which does not depend on the user’s decision but in this example, like in [5], it
is considered as the controlled variable i.e. decision-maker decides if the duration time
is shorter – which is less possible - or it is longer – which is more possible.

The improved schedule was computed with predicate cons for the system of all con-
straints for start times and for all precedences relations between operations.

In Table 2 the improved schedule is presented. The variables x1, x2, . . . , x24 indicate
that there are many (continuum) improved schedules. CLP(F) module makes use of
symbolic computations and finds the relations between values of this variables (15).



104
17 ≤ x1 ≤ 20, 5 ≤ x2, 4 ≤ x4, x5 ≤ 20,
104
17 ≤ x6 ≤ 20, 5 ≤ x7 ≤ 104

17 ,
127
17 ≤ x8 ≤ 20, 5 ≤ x9 ≤ 127

17 ,
167
17 ≤ x10 ≤ 24, 5 ≤ x11 ≤ 46

3 ,
71
3 ≤ x12 ≤ 24, 5 ≤ x13 ≤ 71

3 ,
9 ≤ x14 ≤ 24, 5 ≤ x15 ≤ 167

17 ,
309
17 ≤ x16 ≤ 24, 5 ≤ x17,

104
17 ≤ x18, 1 ≤ x19, x20 ≤ 24, 5 ≤ x21 ≤ 9,
46
3 ≤ x22 ≤ 24, 5 ≤ x23 ≤ 309

17 , 5 ≤ x24 ≤ 434
17 , x18 + x19 ≤ 9,

x3 + x4 − x5 ≤ 0, x18 + x19 − x20 ≤ 0, 0 ≤ x3 − x2, 0 ≤ x18 − x17,
0 ≤ x3 − x18 − x19.

(15)

CLP(F) module prints full information about all improved optimal solutions of con-
sidered problem.

6 Conclusions

The presented CLP(F) module for modeling, solving and improving solutions in fuzzy
decision-making is consistent with Zadeh’s extension principle and Bellman-Zadeh con-
cept of fuzzy decision making. It is implemented with constraint programming in order

to fulfill requisite constraints and to deal with a drowning effect related to the sup-min
optimization criterion. Proposed module prints in symbolic way full information about
all improved optimal solutions. The computational example shows the possibility of
improving solutions of fuzzy decision-making with the proposed tool.

The provided module could be used in practical problems. For instance in [10] it was
used in two stage heuristic for vehicle routing for clients with fuzzy time windows. In the
first stage predicate cons/2 (two arguments) was used to compute the satisfaction degree
for possible routes to find the most satisfied routes and in the second stage predicate
cons/3 (three arguments) was used to compute the improved schedule for routes obtained
in the first stage.

The CLP(F) module could be develop in the future research e.g. for support for
prioritized constraints [12]. It is also interesting how to implement two different types
of descriptors for fuzzy intervals: one for controlled variables (value depends on user
decision) and second for uncertain variables (value depends on the nature or some random
events).

Acknowledgements

This work was supported in part by the Ministry of Education and Science under grant
no. 3T11C05430.

Bibliography

[1] Richard Bellman and Lofti Zadeh. Decision-making in a fuzzy environment. Man-
agement Science, 17(4):141–164, 1970.

[2] Rina Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.

[3] Didier Dubois, Helen Fargier, and Henri Prade. Fuzzy Sets, Neural Networks and
Soft Computing, chapter Propagation and satisfaction of flexible constraints, pages
166–187. Kluwer Academic Publishers, 1994.

[4] Didier Dubois, Hélène Fargier, and Henri Prade. Possibility theory in constraint
satisfaction problems: Handling priority, preference and uncertainty. Applied Intel-
ligence, 4:287–309, 1996.

[5] Didier Dubois and Philippe Fortemps. Computing improved optimal solution to
max-min flexible constraint satisfaction problems. European Journal of Operational
Research, 118:95–126, 1999.

[6] Didier Dubois and Henri Prade. Possibility Theory. An Approach to Computerized
Processing of Uncertainty. Plenum Press, 1988.

[7] Christian Holzbaur. OFAI clp(q, r) manual. Technical Report TR-95-09, Austrian
Research Institute for Artificial Intelligence, Vienna, 1995.

[8] George J. Klir. Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems,
91:165–175, 1997.

[9] Przemys�law Kobylański. Soft Computing - Tools, Techniques and Applications, chap-
ter Improving fuzzy solutions with constraint programming, pages 119–133. Aka-
demicka Oficyna Wydawnicza EXIT, 2004.

[10] Przemys�law Kobylański and Micha�l Kulej. Improved solutions for vehicle routing
and scheduling with fuzzy time windows and fuzzy goal. Badania Operacyjne i
Decyzje, 4, 2003.

[11] Przemys�law Kobylański and Pawe�l Zieliński. Fuzzy modeling with constraint tech-
nology. In Proceedings of EUROFUSE 2002, 7-th Meeting of the EURO Working
Group on Fuzzy Sets, Workshop on Information Systems, 2002.

[12] Xudong Luo, Jimmy Ho-man Lee, Ho-fung Leung, and Nicholas R. Jennings. Priori-
tised fuzzy constraint satisfaction problems: axioms, instantiation and validation.
Fuzzy Sets and Systems, 136:151–188, 2003.

[13] H.T. Nguyen. A note on the extension principle for fuzzy sets. J. Math. Anal. Appl.,
68:369–380, 1978.

[14] Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. John Wiley &
Sons Ltd., 1995.

[15] L. A. Zadeh. The concept of a linguistic variable and its application to approximate
reasoning. American Elsevier Publishing Co., 1973.

