
Recent Progress in Ant Algorithms for Fixed

Telecommunication Networks: A Review

Malgorzata Gadomska, Andrzej Pacut

Institute of Control and Computation Engineering

Warsaw University of Technology

00-665 Warsaw, Poland

Abstract. The aim of this paper is to provide a comprehensive review of Swarm

Intelligence based methods for fixed packet-switched telecommunication networks.

Such methods, thank to their distributed form and self-organizing dynamics, are

very well applicable to problems encountered in a network environment. We

believe to show the motivation for using learning methods to solve the routing

problem and moreover to create a basis for researchers who act in the field of

Swarm Intelligence.

1 Introduction

In the recent years, a rapid growth of telecommunication networks can be observed. The
increasing size, changing conditions and complexity of the today’s networks implies a need
for decentralized and adaptive control mechanisms. Especially, there is a strong need for
routing algorithms, as they play a critical role in the network performance. The load
of telecommunication networks is neither constant in time (homogeneous) nor uniformly
distributed over the whole network (uniform). It is then very important to develop
effective routing algorithms which are able to distribute data traffic across multiple paths
and quickly adapt to changes in topology and changes in the data traffic distribution.

During the past years, many such adaptive routing algorithms have been proposed.
According to the learning techniques used, three major research directions can be dis-
tinguished: Swarm Intelligence, Reinforcement Learning and Evolutionary Computing.
Swarm Intelligence utilizes the principles of certain self organizing processes observed in
Nature to propose solutions to different optimization problems. In Reinforcement Learn-
ing techniques, an agent learns on the basis of reinforcements achieved from interactions
with an unknown environment. Evolutionary Computing takes the evolution process as
a basis for developing algorithms. We concentrate on the Swarm Intelligence approach,
mainly on the ant routing algorithms. Swarm Intelligence is an evolving field yielding
methods for distributed systems optimization. For the purpose of network routing, the
ants paradigm has already been proved to be very promising. Ant algorithms do not re-
quire supervision, and their distributed form makes them well applicable to the routing
problem.

The aim of this paper is to survey the most interesting new concepts in Swarm Intelli-
gence based methods for telecommunication networks. We believe to show the motivation

for using learning methods to solve the routing problem and moreover to create a basis
for researchers who act in the field of Swarm Intelligence. We will restrict our survey of
adaptive routing algorithms to fixed packet-switched networks.

The paper is organized as follows. In Sec. 2 we shortly present the Swarm Intelli-
gence paradigm. We also introduce the Ant Colony Optimization (ACO) metaheuristic
and the AntNet algorithm [7, 5] which is the first ant routing algorithm concerning
packet-switched networks. Moreover, a classification scheme of the AntNet algorithm’s
modification is proposed. In the following sections we present the most recent modi-
fications and extensions proposed to AntNet and analyze their impact on the routing
efficiency: modifications concerning the learning model in Sec. 3, approaches which im-
prove the algorithms convergence in Sec. 4, different exploration techniques in Sec. 5. A
novel Swarm Intelligence approach, namely, the BeeHive algorithm, is introduced in Sec.
6. Section 7 concludes the paper.

2 Swarm Intelligence and Ant Colony Optimization

Swarm Intelligence is related to the emergent collective intelligence of groups of simple
autonomous agents. From the Artificial Intelligence perspective, Swarm Intelligence is
a self-organization based computational and behavioral paradigm for solving distributed
problems. It provides a basis enabling to explore collective (or distributed) problem solv-
ing without any centralized control or a provision of a global model. Swarm Intelligence
systems are typically made up of a population of simple agents interacting locally with
one another and with their environment.

Ant Colony Optimization is a metaheuristic based on the Swarm Intelligence paradigm.
It was inspired by observations of real ant colonies and first proposed by Dorigo, Maniezzo,
and Colorni in 1991 [6] as a multi-agent approach to the traveling salesman problem
(TSP) and the quadratic assignment problem (QAP). Although, by itself, an ant is a
simple and unsophisticated insect, collectively, a colony of ants can perform complex
tasks such as discovering routes to food sources and building nests. While traveling,
ants lay pheromone on the ground. As a result, the concentration of pheromone on the
shortest path is reinforced at a higher rate than on the other paths. Ants prefer to travel
along paths with higher pheromone concentration, which results in a majority of ants
using the shortest path for foraging in a steady state. The communication between ants
is indirect through the environment, what is called a stigmergy.

The first ant routing algorithm was proposed by Schoonderwoerd in 1996 [9]. Their
ABC algorithm could be applied only to symmetric circuit-switched networks. However,
AntNet algorithm introduced by Dorigo and di Caro in 1998 [7] was the first ant-routing
algorithm designed for asymmetric packet-switched networks, and the primary objective
of the algorithm was to maximize the performance of a complete network. The algorithm
implicitly achieves load balancing by probabilistic distribution of packets on multiple
paths. The experiments reported in [7, 4, 5] have proved that AntNet outperforms, with
respect to the throughput and the delay, other competitors, such as Q-routing [2], PQ-
routing [3], Shortest Path First (SPF) and OSPF. In [12] it has been shown that AntNet
performs very well also under high and/or time varying load levels (also those changing
periodically).

Various modifications of AntNet have been developed within the following years,
therefore we will treat this algorithm as a basis, and introduce its modifications and

extensions according to the following classification:

• Model. Here we consider modifications of the routing probabilities and the traffic
model [18, 4].

• Convergence. All techniques that improve the convergence of the ant algorithm
are considered here, including an intelligent initialization of the routing tables [1,
14], limitation of the number of ants in the network [1, 14] and introduction of new
ant agents [13].

• Exploration. The ants must explore the network to find efficient paths. Even
when the paths have already been discovered, exploration is still necessary to pre-
vent stagnation and to ensure algorithm’s adaptability to changing network condi-
tions [18, 1, 14, 11].

• Scalability. Here we consider the algorithms in which a hierarchy is introduced in
order to improve a scalability [15].

In the following sections we will present the most interesting modifications in the
above categories. Those belonging to more then one category will be placed to the most
relevant one.

The presented algorithms are evaluated using various quality indicators. The most
common are the mean packet delay and the convergence time, understood as the time
necessary for the average packet delay to stabilize. Moreover, the generated routing
overhead, which denotes the extra load generated by routing packets, and the ability to
avoid congestion are taken into account.

2.1 AntNet

In this section we will describe the basic AntNet algorithm [7]. There are two types
of simple agents (ants): the forward ants that explore the network in order to find paths,
and the backward ants that use information collected by the forward ants to improve the
routing policies. Every network node k is assigned a routing table Tk and a statistical
traffic model Mk including some local traffic statistics. The routing table Tk stores the
probabilities tk(d, n) for each neighbor node n and each destination node d used to
determine the probabilistic routing policy. Both the routing tables and the statistical
model are calculated iteratively during normal operation of the network.

The forward ants Fs→d are launched at regular intervals from randomly selected
source nodes s to randomly selected destination nodes d. For each node visited k, the
forward ant stores its age, i.e. the time elapsed from its launch, and chooses the next
node to be visited n according to the probability pk(d, n). This probability is calculated
by modifying the probability tk(d, n) stored in the routing table Tk by a relative length
qk(n) of the output queue in node k, namely

pk(d, n) =
tk(d, n) + (1 − `k(n))

1 + (|Nk| − 1)
, n ∈ Nk (1)

where Nk denote the set of neighbors of the node k, |N | denotes the number of elements
of a set N and lk(n) is the relative output queue length, namely

`k(n) =
qk(n)

∑

n′∈Nk
qk(n′)

(2)

where qk(n) denote the output queue lengths. If a cycle is detected, namely, the ant
visits a node repeatedly, the nodes in the cycle are removed from the ant’s memory, and
if the cycle length is greater than half the ant’s age, the ant is destroyed.

After reaching the destination node, the forward ant Fs→d creates the backward ant
Bd→s, transfers all the collected knowledge about the visited nodes and the visiting times,
to the backward ant and is removed from the system (dies). The backward ant travels
back the same path as its parental forward ant, but uses high-priority queues in order
to quickly propagate information about the discovered path. In every visited node k it
updates the values of the traffic model and the routing probabilities for all the entries
corresponding to every node i on its path.

The traffic model Mk at node k consists of the estimates µk(d) and σ2
k(d) of the

expected value and the variance of the trip time from k to the destination node d, and
are updated according to

µk(d) ← µk(d) + η (ok(d) − µk(d)) (3)

σ2
k(d) ← σ2

k(d) + η
(

(

ok(d) − µk(d)
)2

− σ2
k(d)

)

where ok(d) is the trip time from k to the destination node d as observed by the forward
ant Fs→d, and η is a parameter. Note that if η = 1/m in (3), where m is the update
number, we obtain the usual average value.

In the routing table Tk, the probability corresponding to the neighbor f chosen at
node k by the forward ant Fs→d is increased

tk(d, f) ← tk(d, f) + r (1 − tk(d, f)) (4)

with the corresponding decrease of the remaining neighbor probabilities

tk(d, n) ← tk(d, n) − r tk(d, n), n 6= f, n ∈ Nk (5)

to make their sum equal to one. The reinforcement parameter r depends on the ant trip
time and on the local traffic model Mk, namely

r = c1
Wk(d)

ok(d)
+ c2

Ihi
k (d) − I lo

k (d)
(

Ihi
k (d) − I lo

k (d)
)

+
(

ok(d) − I lo
k (d)

) (6)

where ok(d) is the observed trip time, constants c1 and c2 control the effect of the last
ok(d), and Wk(d) is the ant’s shortest trip time for the given destination at the last
observation period. [I lo

k (d), Ihi
k (d)] denotes the confidence interval of the mean trip time.

All the details and justifications can be found in [7].

3 Modifications of the learning model

In this section we present modifications of the model used in AntNet proposed in order
to achieve a better performance.

3.1 AntNet-FA

The authors of AntNet proposed a variant of AntNet, known as AntNet-CO or
AntNet-FA [4]. Its basic behavior is identical to AntNet except that in AntNet-FA both

forward and backward ants make use of high-priority queues. Moreover, the forward
ants do not carry any information about their experienced trip times. The backward
ants update the routing tables in the visited nodes using estimates of forward ants trip
times computed at each node k on the base of the depletion dynamics of local links l
and the actual queue sizes. On the base of this estimates, a statistical traffic model Mk

is built for each node k. The estimated trip time ok(n) from any node k to a neighbor
node n is calculated as:

ok(n) = dk(n) + (`k(n) + sa)/Bk(n) (7)

where dk(n) is the links propagation delay, `k(n) is the size of the output queue to
neighbor n (in bytes), sa is the ant’s size and Bd(n) is the link bandwidth.

Through this modification, forward ants quickly discover paths that are later evalu-
ated by backward ants using locally estimated trip times. As reported in [4], AntNet-
FA showed always the best performance, as compared both to traditional algorithms
(OSPF, SPF) and learning based algorithms (Q-Routing, PQ-Routing, basic AntNet).
The advantages of AntNet-FA increased with the size of the test networks. In a 150-
node topology, the delays obtained when using AntNet-FA where about four times lower
considering the 90th percentile, then in the case of basic AntNet.

We believe that the most significant advantages of AntNet-FA are that: (i) the forward
ants use priority queues which accelerates the propagation of information about good
paths in the network, (ii) the estimated trip times are gathered later and are more up-
to-date then in the case of AntNet, (iii) the statistical traffic model is also more reliable.

3.2 Ant Swarm-based Routing

The Adaptive Swarm-based Routing (ASR) was proposed in 2004 for packet-switched
networks by Yong, Guang-Zhou and Fan-Jun [18]. Only the main differences from AntNet
will be described, as the basic concept is very similar.

A different traffic model Mk is introduced. For every destination node d and neighbor
node n, the last two estimates, Dk(d, n) and D−

k (d, n), of the trip time from k via n to
the destination node d are stored. The backward ant Bd→s updates the values of the
model

Dk(d, n) ← Dk(d, n) + η
(

(1 − α)∆Dk(d, n) + α∆D−

k (d, n)
)

(8)

where

∆Dk(d, n) = dk(d, n) − Dk(d, n) (9)

∆D−

k (d, n) = Dk(d, n) − D−

k (d, n)

dk(d, n) is the forward ants trip time from node k to node d via node n, η is the learning
rate and α is the momentum parameter.

The second significant difference is the way of updating the routing probabilities
stored in the routing table Tk at every node k. After updating the network’s traffic
model Mk, the routing probabilities are computed as

tk(d, n) =
(Dk(d, n))

−β

∑

n′∈Nk
(Dk(d, n′))

−β
(10)

where β ≥ 1 is a non-linearity parameter. Note that this method corresponds to Boltz-
mann exploration with the quality equivalent to lnDk(d, n), since we can write

tk(d, n) =
e−β ln Dk(d,n)

∑

n′∈Nk
e−β ln Dk(d,n′)

(11)

Finally, the ant agent realizes the ε-greedy policy, namely, it chooses a random neighbor
node with a probability ε and with the probability 1 − ε it selects the node according
to the routing probabilities tk(d, n). This approach prevents the probabilities of the
shortest paths from becoming very close to 1, which would reduce the exploration, i.e.
the capability of the algorithm to adapt to the environmental changes.

In order to speed up the learning process, the routing probabilities are initialized in
such a way that a higher initial probability is given to the neighbor which happens to be
the destination node.

In [18, 12, 8] it was shown that the ASR finds efficient routing policies much faster
then AntNet and under high loads it assures lower mean packet delays. Moreover it
assures faster adaptation to various load level changes, what has been investigated in
[12]. Experiments reported in [8] also proved that contrary to the common belief, also
TCP in the transport layer still enables the adaptive algorithms to extend the range of
load levels under which they can find efficient routing policies. Under TCP, the ASR
outperformed AntNet in terms of both the mean packet delay and the convergence range.

4 Improving the convergence

In this section we will describe the methods proposed to improve the convergence of
AntNet. One of the ideas is to introduce intelligent initialization of the routing tables,
as it has been done in ASR (Sec. 3.2). The same initialization method is also used in [1].

In [1], it is also suggested to constrain the number of ants inside the network, to
remain lower than four times the number of links. This restriction may reduce the
routing overhead and the possible congestion, but it also places a restriction on the
frequency of launching ants which may lead to a reduction in the adaptiveness of the
routing algorithm. A different scheme of controlling the number of ants in the network
is used in [14, 12, 8] where the ratio of the number of forward ants and data packets is
controlled.

In order to reduce the overhead and out-of-date information it is proposed in [14]
to delete from the network the ants older then 2 times the number of nodes. This
modification reduced the mean packet delay, because in the original AntNet some packets
travel with a very high number of hops.

4.1 Helping ants

In [13] the authors introduced the helping ants into AntNet in order to increase
the cooperation among neighboring nodes, thereby reducing the algorithm’s convergence
time. The concept of helping ants is inspired by the fact that insect’s coordination via
the pheromones relies on three main dynamic processes [14]: aggregation of successive
deposits by different ants, evaporation of pheromone to discard obsolete information,
and propagation of pheromone from one location to other nearby locations to share

information. Ant Colony Optimization uses aggregation and evaporation, but does not
perform pheromone propagation.

The helping ants imitate the mechanism of information sharing among nearby ants by
pheromone propagation in their natural colonies. The modified AntNet has three kinds
of agents: forward, backward and helping ants. Similar to AntNet, each forward ant
Fs→d explores the network and collects information while moving from a source mode
s toward a destination d. After arriving at its destination, the forward ant generates a
backward ant Bd→s and is removed from the system. The backward ant travels back
along the same path as the forward ant and updates the routing tables and statistical
traffic models on its way. The statistics computed in the traffic model and the updating
methods are the same as in the original AntNet.

When the backward ant Bd→s reaches its destination node s and the trip time os(d)
is good, i.e. os(d) < µs(d), s creates helping ants and sends them to its neighbors.
When a helping ant reaches the corresponding neighboring node i, it computes oi(s), as
oi(s) = os(i). Then, under the assumption that the queuing time is negligible, the new
trip time oi(d) through the neighbor s is estimated as: oi(d) = oi(s) + os(d).

If the trip time is good, i.e. oi(d) < µi(d), the helping ant updates the routing
probabilities in the node i, according to the same scheme as in the original AntNet
(equations 4, 5, 6).

According to [13], the proposed modification significantly reduces the mean delay and
network overhead without an increase of the loss rate or jitter. Simulations using the
NSFNet, which is the old USA backbone (1987), show that helping ants, in comparison to
the original AntNet, decreased the mean packet delay at a significant factor. Moreover,
reduction of the forward ant generation rate by 50% in the modified Antnet, makes the
behavior of both algorithms approximately equal, while the overhead in modified AntNet
is much lower. Experiments also indicate that the performance of the modified AntNet
significantly improves when the paths are long or there exists few alternative paths. The
algorithm’s behavior was also tested under changing network conditions, such as a link
going down and coming up again. In such situations AntNet with helping ants reduces
the packet delay by reducing the convergence time.

In our opinion, this modification is worth noticing, however, we believe that the
estimated trip time oi(s) should not be based on the real trip time of the helping ant
traveling from s to d, because the ant travels this path in the opposite way. The estimate
of the trip time oi(s) should rather be calculated on the base of the known link delay
from d to s and the present size of the output queue.

5 Introducing alternative exploration techniques

If many ants would choose a non-optimal path at the beginning of the learning process,
other ants would follow these paths and reinforce them. If no exploration techniques were
applied, the ants would stagnate travelling along a non-optimal paths. Even if they did
find an optimal path, lack of exploration would prevent them from adapting to changing
network conditions. It is therefore very important to use exploration techniques. Here we
present the main exploration techniques used in ant algorithms, namely, the pheromone
control strategies. A more detailed description can be found in [17].

In the Ant Colony Optimization algorithms exploration is assured by pheromone
evaporation [6]. The value of pheromone µij on all links (i, j) is decreased by a factor

α < 1, namely µij ← αµij . This reduces an influence of the past experience. If a
congestion occurs on some frequently used path and few ants will succeed returning from
that path, the probability of using this path will decrease and the other paths will be
discovered. The second method to mitigate stagnation is ant aging, motivated by a
decrease with ant’s age.

In AntNet [7, 4], the reinforcement (the amount of pheromone) of a path depends on
its quality evaluated on the base of the traffic model, the trip time of the current forward
ant and the best trip time experienced by any ant within the specified time window (6).
According to [7, 4], such policy results in a better performance and convergence.

The authors of ASR [18] use a method corresponding to Boltzmann’s exploration,
with the quality of a path inversely proportional to the logarithm of the estimated trip
time. Additionally, with a probability ε the ant chooses a random neighbor and with the
probability 1− ε chooses a node according to the routing probabilities. This assures the
capability of the algorithm to adapt to the environmental changes (Sec. 3.2). A similar
technique is also proposed in [1].

An original approach to use the simulated annealing principles to assure exploration
in an ant algorithm was introduced in [11] and will be described closely in the following
section.

5.1 Annealed ant algorithm

In [11], the authors propose an annealed ant system approach to network routing.
The original ant algorithm is modified by adding an annealed strategy with a cooling
schedule to calculate the routing probabilities, which are then used to choose the ant’s
next hop by using Roulette wheel selection. The major strength of the proposed annealed
ant approach is that the routing probabilities follow the annealed strategy with a cooling
schedule.

Simulated annealing is a stochastic relaxation strategy used successfully to resolve
complex optimization problems. This technique allows the search to escape a local mini-
mum, because there is a nonzero probability to move temporarily toward a worse state in
order to move away from local extreme. In order to converge to a near global minimum
in the annealing process, a feasible cooling schedule is required. In [11] the following
scheme is used, previously proposed in [10]:

T (t) =
1

µ + 1

(

µ + tanh(wt)
)

T (t − 1) (12)

where w is a constant close to 1 and µ is also a constant. It is shown in [10] that the
proposed scheme results in a faster decrement speed than an exponential cooling scheme,
T (t) = αT (t − 1), α < 1.

The routing probabilities of choosing neighbor node n when being at node k and trav-
eling to destination d, are calculated according to the Boltzmann probabilities, namely

tk(d, n) =
e−Ek(d,n)/T

∑

n′∈Nk
e−Ek(d,n)/T

(13)

where

Ek(d, n) = −τk(d, n)αµk(d, n)β (14)

τk(d, n) is the pheromone intensity on path (k, n), which is inversely proportional to the
ants trip time from k to d via n, µk(d, n) is the visibility of node n from k and is inversely
proportional to the Euclidean length of the path (k, n), α and β are constants.

In numerical experiments there is no other traffic in the network, apart from ants,
therefore the situation is static. Two learning models are introduced: the Concentrated
Model in which all ants are initially concentrated in the source node and their task is to
find an efficient path to the destination node, and the Distributed Model, where all ants
randomly select the start nodes with at least one ant in the source node.

The authors show that the Concentrated Model assures better performance than the
Distributed Model and is able to find the efficient path faster. Moreover, the proposed
annealed system in the Concentrated Model found the optimal solution of the shortest-
path problem in all experiments.

The authors haven’t tested their approach in real network conditions, however we
believe that adding a cooling strategy to ant routing algorithms may be useful. Such
strategy would enable the algorithm to test more solutions at the initial stage of the
learning process, and therefore a near-optimal solution could be found. The cooling pro-
cess should be stopped at a degree assuring some exploration, even when the learning
process is completed, in order to preserve the algorithm’s ability to adapt to environmen-
tal changes. Moreover, introducing the annealing strategy in the initial faze of learning
would cause the ant routing algorithms to be more independent of initial conditions.

6 A novel Swarm Intelligence approach: the BeeHive algorithm

The BeeHive algorithm, proposed in [15], is a novel approach to adaptive routing, based
on the foraging principles of a honey bee colony. Contrary to the ant routing approach,
in BeeHive a hierarchy is introduced to the routing scheme. The algorithm consists of
two types of agents: short distance and long distance agents. The main task of both is
to explore the network and to evaluate the quality of the discovered paths. However, the
short distance agents have constrained travel range, namely they are allowed to make
only up to 7 hops from their source node. The long distance agents collect and propagate
information in the entire network. Such hierarchical model helps to minimize the routing
overhead and causes the algorithm to be better scalable.

The BeeHive network is subdivided into foraging zones, defined as the sets of nodes
around a given node, from which short distance agents can reach the given node. The for-
aging zones may overlap. Moreover, the network is viewed as a cluster of non-overlapping
foraging regions in which a node belongs to just one region only. Details of the foraging
regions formation process can be found in [15]. Each foraging region has a representative
node and its role is to launch long distance bee agents. Each node maintains the routing
information for all nodes within its foraging zone, and for representative nodes of the
foraging regions. If the destination of a packet does not lie within the foraging zone of a
node, then it is forwarded along a path leading to the representative node of the foraging
region containing the destination node.

During the start-up phase, the network is divided into foraging regions by the short
distance agents. During the normal phase, each non-representative node periodically
sends short distance agents to explore the network and the representative nodes launch
long distance agents. Each agent collects and carries path information while traveling. In
each visited node, the agent leaves the estimate of the time to reach its source node from

this node over the incoming link. All bee agents use priority queues in order to quickly
propagate information about efficient routes in the network. Each node must maintain
three routing tables: for reaching the nodes within its foraging zone, for reaching the
representative nodes of foraging regions, and the routing table providing mappings of all
possible destinations to foraging regions.

The next hop for a data packet is selected according to a stochastic policy:

tk(d, f) =

1
ok(d,f)+`k(d,f)

∑

n∈Nk

(

1
(ok(d,n)+`k(d,n)

) (15)

where ok(d, f) and `k(d, f) are the propagation and queuing delays, respectively, esti-
mated by the bee agents, for reaching destination d via neighbor f of node k and Nk is
the set of node’s k neighbors.

The BeeHive algorithm is able to deliver the same or better performance than AntNet,
but with significantly smaller routing tables, processing complexity and control overhead.
We believe that the BeeHive algorithm may help to increase the scalability of adaptive
routing algorithms, without loosing their good performance.

7 Conclusions

We made a comprehensive survey of ant algorithms for fixed telecommunication net-
works. The AntNet algorithm has been chosen as a base ant routing algorithm for
packet-switched networks and the most interesting and promising approaches were de-
scribed in the context of AntNet’s modifications. We proposed a classification scheme of
AntNet modifications and extensions, and the impact of each modification on the routing
efficiency was reported. We also describe a novel approach to network routing, namely
the BeeHive algorithm.

A variety of algorithms described in this review prove that Swarm Intelligence methods
can be successfully applied to solve the routing problem in telecommunication networks.

Acknowledgments

This work has been supported by Warsaw University of Technology Research Program
grant.

Bibliography

[1] B. Baran, R. Sosa, “A new approach for AntNet routing”, Ninth International Confer-
ence on Computer Communications and Networks, Las Vegas, NV, USA, pp. 303-308,
2000.

[2] J. A. Boyan, M. L. Littman, “Packet Routing in Dynamically Changing Networks:
A Reinforcement Learning Approach”, Advances in Neural Information Processing
Systems, volume 6, pp. 671-678, Morgan Kaufmann Publishers, Inc., 1994.

[3] P. Choi, D. Yeung, “Predictive q-routing: a memory-based reinforcement learning
approach to adaptive traffic control”, Advances in Neural Information Processing
Systems 8, pp. 945-951, 1996.

[4] G. Di Caro, M. Dorigo, “Two ant colony algorithms for best-effort routing in data-
gram networks”, Proceedings of the Tenth IASTED International Conference on Par-
allel and Distributed Computing and Systems (PDCS98), IASTED/ACTA Press, An-
heim, pp. 541-546, 1998.

[5] G. Di Caro, M. Dorigo, “Ant Colonies for Adaptive Routing in Packet-Switched
Communications Networks”, Proceedings of PPSN V - Fifth International Conference
on Parallel Problem Solving from Nature, Amsterdam, Holland, LCNS 1498, Springer-
Verlag, pp. 671-683, 1998.

[6] M. Dorigo, V. Maniezzo, A. Colorni, “Positive feedback as a search strategy”, Tech-
nical Report 91-016, Politecnico di Milano, Dipartimento di Elettronica, 1991.

[7] M. Dorigo, G. Di Caro, “AntNet: Distributed Stigmergetic Control for Communica-
tions Networks”, Journal of Artificial Intelligence Research 9, pp. 317-365, 1998.

[8] M. Gadomska, A. Pacut, “Performance of Ant Routing Algorithms When Using
TCP”, Applications of Evolutionary Computing, LNCS 4448, Springer-Verlag, pp.
1-10, 2007.

[9] R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz, “Ant-based load balancing
in telecommunications networks”, Adaptive Behavior, 5(2), pp. 169-207, 1996.

[10] Jzau-Sheng Lin, “Image vector quantization using an annealed Hopfield neural net-
work”, Optical Engineering, Vol. 38, pp. 599-604, 1999.

[11] Shao-Han Liu, Jzau-Sheng Lin, Zi-Sheng Lin, “A shortest-path network problem
using an annealed ant system algorithm”, Proceedings of the Fourth Annual ACIS
International Conference on Computer and Information Science (ICIS05), Washing-
ton, DC, USA, pp. 245-250, 2005.

[12] A. Pacut, M. Gadomska, A. Igielski, “Ant-Routing vs. Q-Routing in Telecommuni-
cation Networks”, Proceedings of the 20-th ECMS Conference, Bonn, Germany, pp.
67-72, 2006.

[13] Azadeh Soltani, M.-R. Akbarzadeh-T, M. Naghibzadeh, “Helping ants for adaptive
network routing”, Journal of the Franklin Institute, pp. 389-403, 2006.

[14] F. Tekiner, F. Ghassemlooya, S. Al-khayattb, “The Antnet Routing Algorithm -
Improved Version”, Proceedings of the Communication Systems, Networks and Digital
Signal Processing Conference, Newcastle, UK, pp. 416-419, 2004.

[15] H. F. Wedde, M. Farooq, Y. Zhang, “BeeHive: An effcient fault-tolerant routing
algorithm inspired by honey bee behavior”, In Ant Colony Optimization and Swarm
Intelligence, LNCS 3172, Springer-Verlag, pp. 83-94, 2004.

[16] H. F. Wedde, M. Farooq, “A performance evaluation framework for nature inspired
routing algorithms”, Applications of Evolutionary Computing, LNCS 3449, Springer-
Verlag, pp. 136-146, 2005.

[17] H. F. Wedde, M. Farooq, “A comprehensive review of nature inspired routing algo-
rithms for fixed telecommunication networks”, Journal of Systems Architecture, pp.
461-484, 2006.

[18] Lu Yong, Zhao Guang-zhou, Su Fan-jun, “Adaptive swarm-based routing in com-
munication networks”, Journal of Zhejiang Univ. SCIENCE, 5(7), pp. 867-872, 2004.

