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Abstract. This paper deals with the problem of minimal makespan scheduling in a two-
stage flowshop with parallel unrelated machines and renewable resources at the first stage 
and a single machine at the second stage. A heuristic for solving this problem is developed 
which combines a genetic algorithm with a column generation algorithm starting from a 
good feasible solution provided by a fast approximate algorithm. The results of a 
computational experiment show that the proposed heuristic requires almost three times less 
CPU time than the heuristic with a standard column generation algorithm, while producing 
the same quality solutions. 

1 Introduction 

This paper deals with the problem of preemptive scheduling in a flowshop with unrelated parallel 
machines and limited renewable resources. The objective is to minimize the makespan. A 
flowshop with parallel machines (FSPM is a system which consists of a set of two or more 
processing centers (processing stages) with at least one center having two or more parallel 
machines. A job in such a system consists of a sequence of operations processed at successive 
stages, and all jobs pass through processing stages in the same order. At a stage with parallel 
machines a job can be processed on any machine. The flowshops with parallel machines have 
received considerable attention from researchers during last years. However most literature in 
this area addresses problems with identical parallel machines and nonpreemptive jobs, and 
include among others [1,2,9,10,13,14]. A handful of papers concerns makespan minimization 
problem in the flowshop with parallel machines that are not identical [15,18]. Scheduling 
problems with additional renewable resource constraints have been widely investigated only for 
the one stage systems [16,17,19,4]. In the previous works [5,6] we have extended this research to 
the more general and encountered in real-life systems case, when a stage with additional 
renewable resources is a part of a multistage system.  

In this paper a new heuristic is developed for finding minimum makespan schedule in the 
two-stage flowshop with parallel unrelated machines and renewable resource constraints at the 
first stage and a single machine at the second stage. This heuristic combines a genetic algorithm 
(GA) with a column generation (CG) algorithm starting from a suboptimal solution. A CG 
algorithm is an iterative procedure which in successive iterations, solves linear programming 
(LP) problems each of which is of greater size than the previous one. Due to this fact, the 
computational effort needed for solving an LP problem at a single iteration, increases as the 



number of iterations grows. However, the number of iterations can be reduced when the CG 
algorithm starts from a suboptimal feasible solution. In this paper we propose a fast approximate 
algorithm which yields a good initial solution for the CG algorithm. The developed heuristic is 
tested as to its computation time and effectiveness in finding a minimum makespan flowshop 
schedule and compared with the heuristic using the standard column generation algorithm with a 
simple initial solution (proposed by the author in [5]).   

2 Problem Description 

The considered in this paper flowshop scheduling problem with parallel machines and additional 
resource constraints can be described as follows. There are n  preemptive jobs to be processed at 
two stages in the same technological order, first at stage 1 and then at stage 2. At stage 1 there are 
m  parallel unrelated machines, stage 2 has one machine. Jobs for their processing at stage 1, 
besides machines, require additional resources. There are l  types of renewable resources. A 
resource of type r (r=1,…,l) is available in an amount limited to Wr  units at a time. The total 
usage of resource r at any moment by jobs simultaneously executed on parallel machines cannot 
exceed the availability of this resource. Job j during its processing on machine i at stage 1 uses 
�ijr units of the resource of type r at every moment. At stage 1, a job can be processed on any of 
the parallel machines, and its processing times may be different on different machines. The 
processing time of job j (j=1,…,n) is equal to pij if it is executed on machine i (i=1,…,m) at stage 
1, and the processing time of job j at stage 2 is equal to sj. The objective is to find a feasible 
schedule which minimizes makespan, Cmax, which is equal to the maximum job completion time 
at stage 2.  

This problem is NP-hard in the strong sense since a simpler problem of preemptive 
scheduling in the two-stage flowshop without resource constraints with two identical parallel 
machines at one stage and one machine at another is NP-hard in the strong sense [12]. 

3 Heuristic 

The proposed in this paper heuristic for solving the considered problem proceeds in three steps. 
In the first step, a two-phase approximate algorithm creates a suboptimal solution to the resource 
constrained scheduling problem which occurs at stage 1. In the second step the solution obtained 
in the first step is employed as an initial solution in the CG algorithm which solves to optimality 
the resource constrained scheduling problem at stage 1 of the flowshop. The schedule at stage 1 
created by the CG algorithm is composed of a number of partial schedules.  In a partial schedule 
at most m jobs are assigned to m machines for simultaneous processing during some period of 
time so that resource constraints are satisfied at every moment. The makespan of the schedule at 
stage 1 does not depend on the ordering of the partial schedules but completion times of jobs 
depend on the order in which the partial schedules are executed. So, when we change the 
ordering of the partial schedules, completion times of jobs at stage 1 will change. On the other 
hand the makespan in the flowshop (which is equal to the maximum job completion time at stage 
2) depends on ready times of jobs at stage 2, which are equal to corresponding completion times 
at stage 1. So, the makeapan in the flowshop depends on the ordering of the partial schedules. In 
the third step of the heuristic, a GA is applied to finding a sequence of the partial schedules 
minimizing the makespan in the flowshop. For each partial schedule sequence generated in the 
search process a schedule at stage 2 is constructed using completion times of jobs at stage 1 



(ready times of jobs at stage 2 are equal to corresponding completion times at stage 1) and 
processing times at stage 2, and then the makespan in the flowshop is determined. The schedule 
in the flowshop consists of the schedule at stage 1 and the schedule at stage 2. 

3.1 Approximate Two-Phase Algorithm 
The idea of the proposed approximate algorithm is based on the two-phase method developed by 
Slowinski [17] for solving to optimality the problem of resource constrained unrelated machine 
scheduling with job resource requirements of 0-1 type.  

The approximate algorithm proposed in this paper produces a suboptimal solution to the more 
general problem of scheduling of parallel unrelated machines with arbitrary job resource 
requirements (resource requirements are arbitrary integers). This algorithm proceeds in two 
phases.  

In the first phase, the LP problem with relaxed resource constraints (resource constraints at 
every moment are replaced by the resource constraints over the time needed for finishing all 
jobs) is solved.  The time T needed for finishing all jobs is minimized. Besides T, the values of tij 
(i=1,...,m, j=1,...,n), where tij is the time during which job j is processed on machine i, are found.  

In the second phase, having the values of tij and T, a schedule which consists of a number of 
partial schedules is constructed by an iterative procedure. In successive iterations partial 
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current partial schedule length. The procedure stops when tij = 0 for each i and j. 

3.2 Column Generation Algorithm 
The theoretical basis of the CG technique has been provided by Dantzig and Wolfe in [3]. Using 
a column generation technique, we avoid the difficulty of explicitly generating all columns of a 
problem, which in our work correspond to all feasible partial schedules, by working with only a 
subset of the columns and adding new columns as needed (when they improve the solution). 
Such an approach was suggested by Gilmore and Gomory [7] for solving cutting stock problems.  

The CG algorithm is an iterative procedure which starts from an initial feasible solution and, 
in subsequent iterations, in turns generates a new column and solves a linear programming (LP) 
problem with all columns generated so far. Due to this fact, the size of the LP problem (and 
consequently the computational effort needed for solving this problem) at a single iteration 
increases as the number of iterations grows. The number of iterations in which a CG algorithm 
finds an optimal solution can be however reduced by improving the initial solution of the 
algorithm.  

In this paper we use the CG algorithm with a suboptimal initial solution for solving to 
optimality the problem of resource constrained preemptive scheduling of parallel unrelated 
machines which occurs at stage 1 of the considered flowshop. The suboptimal solution to this 
problem is provided by the approximate two-phase algorithm presented in Section 3.1. The 
details of the CG algorithm are presented in a previous paper [5].  



3.3 Genetic Algorithm 
In this paper, a GA finds the ordering of the partial schedules which provides the schedule for the 
two-stage flowshop with minimum makespan. 

A GA [11] starts with a population of randomly generated candidate solutions (called 
chromosomes). A chromosome is represented by a string of numbers called genes. Each 
chromosome in the population is evaluated according to some fitness measure. Certain pairs of 
chromosomes (parents) are selected on the basis of their fitness. Each of these pairs combines to 
produce new chromosomes (offspring) and some of the offspring are randomly modified. A new 
population is then formed replacing some of the original population by an identical number of 
offspring. The process is repeated until a stopping criterion is met.  

In this paper, a solution to the sequencing problem solved by the GA is coded as a single 
chromosome whose genes represent the indices of partial schedules. An initial population of 
chromosomes is randomly generated. The value of the objective function, which is equal to the 
makespan in the two-stage flowshop, is used to measure the fitness of a chromosome. For each 
partial schedule sequence (chromosome) generated in the search process, a schedule for the two-
stage flowshop is constructed and the makespan is calculated taking into account ready times and 
processing times of jobs at the second stage. As a selection method the binary tournament 
selection is used. The two-point crossover operator PMX [8] is applied to each pair of parent 
chromosomes with the probability Pcrs. The genes of each chromosome in the population are 
considered one by one, and the gene being considered swaps its value with another randomly 
generated gene of the same chromosome with the probability Pmut. The search process terminates 
when the best objective function value (makespan) found so far is not updated for a 
predetermined number of iterations.  

On the basis of the preliminary computational experiment the following values of the genetic 
parameters which ensure a good performance of the algorithm were selected:  the size of a 
population was set at 20, Pcrs =0.8, Pmut =0.01, the number of iterations without any improvement 
of the best solution found so far was set at 500. 

4 Illustrative Example 

To illustrate the problem and the solution method we present the following example. Consider 
the case of the two-stage flowshop with 2 machines at stage 1 and a single machine at stage 2. 
The number of jobs n =10, the resource availability at any moment, W1=10. Job processing times 
and resource requirements are shown in Figure 1.  

Figure 2 presents two schedules for the first stage of the flowshop: (a) the suboptimal 
schedule created by the approximate algorithm, and (b) the optimal schedule provided by the CG 
algorithm starting from the suboptimal schedule depicted in Figure 2a. We can observe that the 
schedule provided by the CG algorithm contains 6 partial schedules with the same assignments 
of jobs to machines as the assignments created by the approximate algorithm.           

Figure 3 presents two flowshop schedules for this instance. Each flowshop schedule consists 
of the first stage schedule and the second stage schedule. The first stage schedules in Figures 3a 
and 3b are composed of the same 10 partial schedules. In each of the partial schedules at most 2 
jobs are processed simultaneously and the total resource usage does not exceed the resource 
availability, W1=10, e.g. in partial schedule S1 jobs 8 and 5 are processed simultaneously and use 
at every moment 1 and 8 units of the resource, respectively. The first stage schedules in Figures 



3a and 3b have the same length, but completion times of jobs in the first stage schedule in Figure 
3a are different from those in the first stage schedule in Figure 3b. For example, in Figure 3a, job 
7 completes its processing at stage 1 at 44 time units, and at 1 time units in Figure 3b. The 
processing of a job on the machine at stage 2 can be started after completing its processing at 
stage 1. The machine at stage 2 starts working when at least one job has completed its processing 
at stage 1 (before that, the machine of stage 2 remains idle). After all jobs finish their processing 
at stage 1, the machine at stage 2 works for at least the time needed for completing all jobs from 
the last partial schedule (the machines of stage 1 remain idle for that time). Besides, the machine 
at stage 2 remains idle while it is waiting for finishing processing a job at stage 1 (after it 
completes all jobs whose processing have been already finished at stage 1). For example in 
Figure 3a, the machine at stage 2 remains idle (does not work) when it is waiting for finishing 
processing job 10 at stage 1.  

Figure 3a presents the flowshop schedule with a randomly chosen sequence of the partial 
schedules. Figure 3b shows the schedule with the sequence of the partial schedules which was 
obtained by the GA so as to minimize the makespan in the flowshop. We can see that the 
shortening of the schedule achieved by the GA is significant. 

job processing times at stage 1 job processing times at stage 2 resource requirements at stage 1

machine machine machine
job 1 2 job 1 job 1 2

1 8 20 1 9 1 4 7
2 21 30 2 8 2 6 5
3 11 11 3 5 3 9 6
4 15 2 4 4 4 9 7
5 23 18 5 1 5 4 8
6 25 4 6 7 6 7 4
7 1 34 7 10 7 1 9
8 30 33 8 5 8 1 6
9 27 3 9 3 9 7 5

10 40 16 10 4 10 9 4

resource availability = 10  

Figure 1. Data for the illustrative example 

(a)
stage 1:

m1 8 2 8 1 2 1 7 1
m2 5 10 3 6 8 9 4 9 3 9

time
0 10 20 30 40 50 60

(b)
stage 1:

m1 8 2 8 1 7 1 1 8 2 8
m2 5 10 3 8 9 9 3 4 6 2

time
0 10 20 30 40 50 60  

Figure 2.  Schedules for the first stage of the flowshop. (a) A suboptimal schedule created by the two-phase 
approximate algorithm (b) An optimal schedule obtained by the CG algorithm starting from the suboptimal 

solution.    



(a)
p.sch.index: 1 2 3 4 5 6 7 8 9 10

stage 1:
m1 8 2 8 1 7 1 1 8 2 8
m2 5 10 3 8 9 9 3 4 6 2

stage 2:
m1 5 10 7 9 3 1 4 6 2 8

time
0 10 20 30 40 50 60 70 80 90

(b)
p.sch.index: 5 10 3 4 8 7 6 2 9 1

stage 1:
m1 7 8 8 1 8 1 1 2 2 8
m2 9 2 3 8 4 3 9 10 6 5

stage 2:
m1 7 4 3 9 1 10 6 2 5 8

time
0 10 20 30 40 50 60 70 80 90

 

Figure 3. The resulting flowshop schedules: (a) the schedule with a random sequence of the partial 
schedules, (b) the final schedule with the sequence of the partial schedules minimizing the makespan in the 

flowshop. 

5 Computational Experiment 

A computational experiment was carried out to evaluate the performance of the proposed 
heuristic. The number of jobs was considered to be =n 10, 30, and 60, the number of machines, 
m , at stage 1 was set at 2 and 4. There was one additional resource type. Resource requirements 
were generated from U[1,9] (U[a,b] denotes the discrete uniform distribution in the range of 
[a,b]), whereas the resource availability was set at 10. Job processing times at stage 1 were 
generated from U[1,200] and U[1,400], job processing times at stage 2 were generated from 
U[1,100]. 

To evaluate the quality of the heuristic solutions we used the values of the relative percentage 
deviation of solutions from the lower bound on the optimal makespan:  

� = 100%x(Cmax�LB)/LB, 

where Cmax is the best makespan found by the algorithm, and LB is the lower bound on the 

optimal makespan defined as LB = max{LB1, LB2}, where LB1=� =
n
j js1 + }{min ,...,1,,...,1 ijnjmi p==  

and LB2= *
1C + }{min ,..,1 jnj s= , where *

1C  denotes the minimal makespan for the problem 

occurring at stage 1 (i.e. the minimum time needed to finish processing all jobs at stage 1). 
All programs for the algorithms presented in the paper were run on a 2.4 GHz Celeron 

Processor. The LP problems were solved using CPLEX optimizer. 
The results of a computational experiment are presented in Table 1. In this table, deviations, 

�, and CPU times are presented both for the new heuristic developed in this paper and for the 
heuristic with a standard column generation algorithm. In the standard CG algorithm, a simple 
initial solution was created so that each job was assigned to a machine on which it required the 
smallest time to be completed, and in each partial schedule only one machine worked. In column 
8 of Table 1, the ratio of the CPU time of the new heuristic to the CPU time of the heuristic with 



a standard CG algorithm,  algorithmCG  standard a with heuristic  theof  timeCPU 
heuristic new  theof  timeCPU =σ , is indicated. The numbers of 

iterations for the new CG algorithm and the standard CG algorithm are also shown.  

Table 1. Computational results 

  � (%)  CPU time (s)  Number of iterations 

n m 

Job 
processing 

times at  
stage 1  

New 
Heuristic 

Heu. with 
standard 
CG alg.  

New 
Heuris

tic 

Heu. with 
standard  
CG alg. �  

New CG 
alg 

Standard CG 
alg. 

10 2 U[1,200]  0.00 0.00  0.44 1.38 0.32  3 14 
  U[1,400]  2.33 2.33  0.72 1.53 0.47  9 15 
 4 U[1,200]  0.00 0.00  0.89 1.95 0.46  10 20 
  U[1,400]  0.00 0.00  1.04 1.75 0.59  13 18 

30 2 U[1,200]  0.00 0.00  2.69 8.24 0.33  34 85 
  U[1,400]  1.37 1.32  2.05 5.63 0.36  25 55 
 4 U[1,200]  0.00 0.00  3.09 7.78 0.40  36 69 
  U[1,400]  0.00 0.00  2.76 6.77 0.41  31 64 

60 2 U[1,200]  0.00 0.00  4.73 22.22 0.21  39 161 
  U[1,400]  0.73 0.73  6.26 23.03 0.27  66 166 
 4 U[1,200]  0.00 0.00  8.83 24.34 0.36  85 159 
  U[1,400]  0.00 0.00  7.86 25.72 0.31  73 166 
             

Average  0.37 0.37  3.45 10.86 0.37  68.67 116.00 
Job processing times at stage 2 were generated from U[1,100].  
 

From Table 1 we can see that, with respect to the CPU time, the new heuristic significantly 
outperforms the heuristic with a standard CG algorithm, and it produces the results of the same 
very good quality as the previous heuristic. 

The values of the ratio, �, vary from 0.21 (what means that the new heuristic is almost 5 times 
faster than the previous one) to 0.59 (what means that the new heuristic is almost twice faster 
than the previous one). We can observe that the ratio, �, decreases as the number of jobs grows, 
and tends to increase as the number of machines increases.   

6 Conclusions 

In this paper the heuristic combining a GA with a CG algorithm for solving the problem of 
scheduling in the two-stage flowshop with unrelated machines and resource constraints has been 
developed. An approximate algorithm has been proposed for generating a good initial solution 
for the CG algorithm. On the basis of the results of a computational experiment we can conclude 
that the proposed heuristic is able to produce very good quality solutions using much less 
computational effort than the heuristic with a standard column generation algorithm.  
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