
Multisequence Alignment as a new tool

for Network Traffic Analysis

Krzysztof Fabjański1, Adam Kozakiewicz1, Anna Felkner1, Piotr Kijewski1 and Tomasz
Kruk1

1 NASK, Research and Academic Computer Network: nask@nask.pl

Abstract

This article presents a multiple sequence alignment as a method used for problems
of motif1 finding [13] in network traffic collection. Based on multisequence align-
ment we will present two bioinformatics approaches for finding longest common
subsequence (LCS) [14] of network traffic signatures collection. The article starts
from presenting the description of pairwise alignment algorithms, goes through
the examples of its implementation and then comes to the part related to bioin-
formatics methods. At the end, some preliminary results concerning Center Star
method will be presented.

1 Introduction

When biologists discover a new gene, its function is not always apparent. The usual ap-
proach is to compare its structure with genes, whose function has already been identified.
Comparison (so-called alignment) of biological sequences is a basis for bioinformatics, a
science focused on theories, algorithms, computational techniques and statistical meth-
ods, with the goal of solving problems of biological data analysis. Bioinformatics draws
inspiration from may other branches of science and techniques it produces have often
interesting application outside of biology – including automatic voice and handwriting
recognition, but also in computing systems security. This paper focuses on methods
of defining the similarity between biological sequences and show, how similar methods
can be applied to the problem of recognition and characterization of computer network
threats.

Many modern Intrusion Detection Systems2 are combined with systems for automated
generation of network signatures such as Honeycomb [15]. Tool which joins functions of
IDS and automated signature creation system is known as an Early Warning System3.
Main problem concerning classification and identification of network flows is related to
extraction of common regions from network signatures sets [17] as it is shown in the
figure 1. This process is related to finding a longest common subsequence (LCS) [13] of
more then two strings. Longest common subsequence is a special subset of characters of

1Subsequent occurrence of a region in any other sequences.
2A piece of software that detects and logs any network anomalies.
3Main function of EWS is network traffic classification and potentially prediction and identification

of new Internet threats, as an example of such system we can consider ARAKIS [1].

GET / HTTP

||| | ||||

GET /a/a.HTM HTTP

||| | ||||

GET / HTTP/1.1

Figure 1. Longest common subsequence extraction.

the string Sk arranged exactly in the same order how they occur in the rest of sequences
form the set S. Formally, subsequence of a string Sk of a given length l can be written as
the sequence of individual characters Sk(1)Sk(2)Sk(3) · · ·Sk(l), where S(i) denotes the
single character on position i in string Sk. The longest common subsequence of a set of
strings is the common subsequence of the greatest possible length. Although, the task
of finding LCS of more then two strings can be solved using the technique of dynamic
programming [13, 22], the time complexity [11, 7] and space complexity of this solution is
unacceptable if the number of input strings is greater then tree. Therefore the dynamic
programing is used only as an element of bioinformatics methods, especially in alignment
of two sequences.

2 Sequence alignment

Sequence alignment is one of the most important problems in computational biology. It
is used for finding similarities in sets of sequences of DNA, RNA or amino acids. Apart
from finding highly conserved subregions4 in a set of strings, sequence alignment allows
us to reconstruct the evolutionary history of a taxa5.

2.1 Alignment of two strings

An alignment of two strings [12] S1 and S2 is obtained by insertion of spaces (gaps)
into S1 sequence and S2, and then placing one of the sequence above the other. To give
an example of alignment of two strings, we will use following sequences [18]:

– TAGTCCTCA

– TCCAGCCCCAGGA
After alignment they have following structure:

T--AGTCCTC-A---

TCCAG-CC-CCAGGA

Alignment of sequences allows us to find highly conserved subregions or embedded pat-
terns6. In order to extract common subsequence from the above alignment, we have
to construct the consensus string [13]. It is performed by extraction of the consensus
characters from each column of the alignment and then by concatenation of extracted
characters. In the place of a consecutive spaces in consensus string we are placing pipe

4Repetitive similar subsequences that occur in all strings from the set.
5A classification or group of organisms.
6Repetitive common subsequences that occur in all strings from the set.

symbols ”—”. As the result of those operation we will obtain the longest common sub-
sequence of given input strings:

T|AG|CC|C|A

Global: GTGTACICCAVAV

 G--TAC-CCA-AV

Local: GTGTACICC-AVAV

 --GTAC-CCAAV--

Figure 2. Global and local alignment.

We can distinguish two types of alignments:
– global alignment,

– local alignment.
Local alignment allows us to find small parts (local) of two sequences where there are some
similarities. Moreover, it makes no assumption about the whole length of the sequence
whether it should be similar or not. On the other hand, global alignment allows us to align
entire sequences. Each of those methods have some advantages and drawbacks. Global
alignment can be computed using Needleman-Wunsch [6] algorithm. This algorithm
gives us an optimal global alignment among explored all possible alignments and chooses
the one with the best score. Techniques related to scoring will be discussed later in
this paper. The main drawback of this algorithm is that the short and highly similar
subsequences may be missed in the alignment. It is caused due to the fact that the
rest of the sequence outweighs the small and highly similar regions. An alternative to
the global alignment algorithm is the Smith-Waterman [6] algorithm. This algorithm
allows us to determine the longest subsequence of the two sequences. Both algorithms
are widely used in alignment of DNA sequences and either global and local alignments
can be implemented using dynamic programing. Exemplary alignment using global and
local techniques is presented in figure 2.

2.2 Multiple sequence alignment

A multiple sequence alignment (MSA) [12] is a generalization of the pairwise align-
ment. Insertion of gaps is performed into each string so that resulting strings have equal
length. An exemplary optimal multiple alignment of four protein sequences [3]:

– AQPILLLV

– ALRLL

– AKILLL

– CPPVLILV
can look as it is shown below:

AWPILLLV

ALR-LL--

AK-ILLL-

CPPVLILV

Of course, there might exist more then one optimal alignment. Problem occurs when we
want to compute multiple alignment of many sequences (hundreds of sequences). In the
figure 3 [22] there is an exemplary computation process of an alignment of three

sequences. In fact, the whole problem of multiple sequence alignment is NP-complete.

Figure 3. Dynamic programming for three sequences.

Thus, many heuristics, probabilistic and other approaches have been developed. We can
divide those methods into eight groups7 [22]:

– iterative algorithms (Realigner,PRRP,SAGA),

– progressive algorithms (ClustalW,TCoffe [20]),

– motif searching algorithms (Dialign, Blocks, eMotif),

– probabilistic methods (HMMs, Gibbs-Sampling),

– Divide-and-Conquer algorithms (DCA,OMA),

– exact algorithms (MSA,COSA,GSA).

In this paper we present two methods for common subsequence extraction from the given
set of network signatures. First method uses an approximation algorithm and is known
as Center Star method [2]. Second method implements the progressive approach and is
known as ClustalW8 method. This article covers detailed description of both methods.
Both methods were slightly modified and adapted to our needs9.

3 Sequence alignment and its implementation

Sequence alignment is a useful tool for network threat recognition in intrusion detection
systems, automated threat signature generators and in malware analysis. To recognize a
threat it is necessary to compare the new, observed behavior with previously identified
or exemplary malicious behavior. The comparison is more useful, if it is not strict –
this facilitates the detection of variants of attacks (behaviors) or attempts at masking
the attack. Just like in bioinformatics problems, the main task is to find regularities,
repeating similar sequences in large datasets.

7In parentheses there were given some exemplary algorithms which implements those techniques.
8ClustalW is a general purpose multiple sequence alignment program for DNA or proteins.
9Different methods for scoring and distance calculation were used.

3.1 Anomaly detection

One of the first applications of sequence alignment to intrusion detection is mentioned
in [8] – with explicit connection to bioinformatics. The authors focused on the problem
of detection of masquerading attempts, using logs of the acct tool in Unix systems as
input data. Masquerading detection involves a user signature – a sequence of commands
collected from the user, compared with the current session of this user. The main as-
sumption is that an intruder using another user’s account will behave in a different way
than the rightful owner of the account, and that this difference of issued commands
should be detectable. The paper proposes a method of aligning sequences of command
from the current session with the user signature using a modified version of the Smith-
Waterman algorithm. The result of the alignment, using a proposed scoring function,
is used to detect an intrusion. In the opinion of the authors a local alignment would
not be sufficiently effective, as a lot of potentially interesting data would be ignored.
Therefore, the authors have used a semi-global alignment. In this type of alignment only
the suffixes or prefixes of compared sequences are aligned. The scoring function rewards
matching commands, but does not penalize the existence of large, non-matching parts
of the signature. As in every anomaly detection method, an arbitrary threshold must be
chosen to separate a suspected intrusion from a normal, but slightly atypical session of
the original user – this threshold was found empirically. The best experimental results
show a 75.8% intrusion detection level with 7.7% of false positives. A full description of
the algorithm, the scoring function, data preparation method and analysis of results can
be found in [8].

Another method of intrusion detection, popular in the literature but rarely imple-
mented is system call monitoring – the system calls of processes are monitored and
compared to typical behavior of a given type of processes. Differences in behavior could
indicate a successful attack on the application, resulting in execution of potentially ma-
licious code. A recently proposed extension of this idea is based on evolutionary distance
between sequences, defined as the sum of costs of substitutions, deletions and insertions.
Instead of creating a model of the behavior of the monitored process, a ”replica” of the
process is created and executed in parallel. A difference in behavior of the two processes
may be a symptom of an attack. Since an effect of the same attack on two identical
processes on identical platforms must, by definition, be the same, diversification of repli-
cas is necessary. Thus, good candidates for a replica are the same process running on a
different platform (e.g. Windows instead of Linux), or even a different process with the
same functionality (e.g. a different WWW server) on a different platform. The authors
of the idea assume that even though the processes will use different system calls, the
function of those calls will be similar. It is possible to correlate different system calls
from different processes/platforms. A description of the method of computing the be-
havioral distance between processes and of the experimental results can be found in the
paper [9]. In the next paper [10] the authors used hidden Markov models for this task.

3.2 Threat signature generation

Bioinformatics are much more often mentioned in the literature on network threats
in the context of threat signature generation systems. This area of research has gained a
lot of attention in the recent years. New, unknown threats appear very often. They are
initially not recognized by the traditional intrusion detection systems based on threat

signatures, since a signature hasn’t been created yet. In this case a very useful tool is
an automatic system, capable of recognizing a new threat and generating its signature,
preferably without human intervention.

The first system to automatically generate threat signatures was honeycomb [16], a
plug-in for honeyd. While the system itself was not based on bioinformatics methods,
it did use some algorithms for detection of repeating similar sequences. The system
applied the Longest Common Substring10 algorithm to find common sequences of bytes
in different packets sent to the system. As the system was a part of a honeypot, all
incoming packets were by definition suspected to be part of an attack. Unfortunately,
the system did not scale well in real honeypot networks, it generated a lot of repeating
signatures and was completely useless against polymorphic attacks. Additionally, lack
of implemented signature management methods meant that with time it was difficult to
tell, which signatures (and attacks) are indeed new.

Honeycomb had many descendants, using different methods to recognize repeating
sequences in the data stream, using them as the basis for signature generation. However,
more advanced bioinformatics algorithms weren’t proposed until polymorphic attacks
were targeted. In a polymorphic attack there are, by definition, few constant substrings
(subsequences without gaps), common among all instances of the attack. Furthermore,
the longest such substring, if found, is not necessarily the best sequence describing the
attack.

For many years identification of a polymorphic attack using signatures expressed as
subsequences of the attack was thought impossible. Signature-based intrusion detection
systems were expected to disappear soon. However, in paper [19] it was shown, that
every polymorphic attack must contain constant, repeating values, allowing the attack to
successfully exploit a given vulnerability. Some constants are also required to use a given
protocol to communicate with the attacked application. Description of such an attack is,
therefore, possible, although difficult – a good description of the attack is neither a single
common substring, nor the longest common subsequence, which might contain too many
random individual characters. A local alignment is necessary to find a common region
in all variants of a polymorphic attack. This approach was suggested in the polygraph

system. It is a signature generation system, using information from another system to
identify suspect flows. Using a set of such flows a signature is created as a set of short
separate character sequences. For example, a signature for the Apache-Knacker exploit
was as follows (expressed as a regular expression):

GET .* HTTP/1.1\r\n.*:.* \r\nHost:.* \r\n.*:.*\r\nHost:.*\xFF\xBF.*\r\n

To find common characters for the flows the authors used a modified version of the
Smith-Waterman algorithm. The modification included rewarding continuous alignment,
since such signatures are less likely to cause false positives. Groups of characters were
rewarded, while gaps were penalized, where gaps are not only the maximal length of
subsequences matched with spaces, but also the maximal length of subsequences of non-
matching characters. The penalties were selected so that character sequences were more

10A different term than Longest Common Subsequence

likely to be aligned if their grouping is typical for a given protocol. In application this
would mean that different scoring functions for different protocols should be developed.

In the experiment, the system was tested on three real exploits – two for httpd servers
(the Apache-Knacker exploit and the ATPhttpd exploit) and one for BIND server (the
BIND-TSIG exploit). Clet, a well known tool for polymorphic attack generation was
used. It was found, that Clet had many weaknesses – in each variant of the exploit many
constant sequences were found. Since the goal of the experiment was to test the system
with the assumption of nearly perfect polymorphism, the code of the exploit was manually
changed using random values, leaving the sequences necessary for its functioning intact.
The signature generator based on the modified Smith-Waterman algorithm produced the
correct signature in all tests, giving 0.0008% false positives for Apache-Knacker, and 0%
for the BIND-TSIG exploit – verified against a test pool of “proper” traffic. Results for
the ATPhttpd exploit were not published. Only 3 samples of the exploit were necessary
to reach such a high level of precision. The generated signatures can be used in many
modern intrusion detection systems like snort.

Another approach to polymorphic worm detection was used in [24]. Like in the
previous case, common regions were searched for – using Gibbs sampling and creating
signatures based on the frequencies of individual characters. Gibbs sampling is also used
in bioinformatics to find motifs – unchanged by evolution regions in protein sequences.

4 Center Star method

As it was mentioned before, multiple sequence alignment is an NP-complete problem.
Presented method, Center Star, is an approximation way of multisequence alignment.
Thus, expected result can be, but does not have to be, an optimal multiple sequence
alignment. The Center Star method consists of three main steps. Before the three main
steps of the Center Star algorithm will be presented, there will be given the definition
of a distance between two sequences S1 and S2. In order to calculate the distance
of two sequences we have to compute the value of alignment of two sequences S1 and
S2

11. Usually, if we want to calculate the score of an alignment we have to define the
scoring matrix12 for each individual character from the alphabet. In this case

∑

′
=

{A,G,C, T, } [18].

d A G C T
A 1 0 0 0 0
G 1 0 0 0
C 1 0 0
T 1 0

0

Table 1. Scoring matrix for an alphabet
P

′ = {A, G, C, T, }.

Concerning two sequences S1 and S2 and the same sequences but with inserted spaces
S′

1
and S′

2
(alignment representation from section 2.1) of the length l we can easily

11We will use the example shown in the section 2.1.
12Sometimes we call it scoring scheme, scoring function or objective function.

calculate the value of alignment of S1 and S2 as a D(S1, S2) =
∑l

i=1
d(S′

1
(i), S′

2
(i)). In

order to calculate the distance between two sequences S1 and S2 we have to calculate the
difference dist(S1, S2) = l − D(S1, S2). In bioinformatics we can meet different scoring
schemes as well as different methods for distance calculation13.

Three steps of the Center Star method are as following:
1. Given a set of sequences S, find the Center sequence Sc ∈ S whose sum of pairwise

distances [21] to all other sequences is minimal min(
∑

Sj∈S dist(Sc, Sj). Note that

during this step we are computing all pairwise alignments14 in the set of sequences
S.

2. Having the Center sequence Sc chosen, create the multiple sequence alignment by
adding sequences one by one. Always align optimally with the current Center
sequence Sc.

3. Having the multiple sequence aligned, extract the consensus sequence from it and
replace all gaps with pipe symbols in order to mark separate subsequences occur-
rence, exactly as it was shown in section 2.1.

Concerning the second step of this method, the insertion of gaps is performed according
to specified rules. Positions of the gaps that were inserted during early alignments are
not changed as new sequences are added. On the other hand, adding gaps to pre-aligned
sequences is performed if needed. In the figure 4 consecutive steps of Center Star method
are presented [2].

Given:

1. ATTGCCATT

2. ATGGCCATT

3. ATCCAATTTT

4. ATCTTCTT

5. ATTGCCGATT

Step 1.

ATTGCCATT (1)

ATGGCCATT (2)

ATTGCCATT (1)

ATC_CAATTTT (3)

ATTGCCATT-- (1)

ATCTTC-TT (4)

ATTGCCATT (1)

ATTGCCGATT (5)

ATTGCC-ATT (1)

Step 2.

 SUBSTEP: MSA:

1. ATGGCCATT (2) ATTGCCATT

 ATTGCCATT (1) ATGGCCATT

2. ATC-CAATTTT (3) ATTGCCATT--

 ATTGCCATT-- (1) ATGGCCATT--

 ATC-CAATTTT

3. ATCTTC-TT (4) ATTGCCATT--

 ATTGCCATT (1) ATGGCCATT--

 ATC-CAATTTT

 ATCTTC-TT--

4. ATTGCCGATT (5) ATTGCC - ATT--

 ATTGCC-ATT (1) ATGGCC - ATT--

 ATC-CA - ATTTT

 ATCTTC - -TT--

 ATTGCC G ATT--

Insertion of gaps in

last substep forms

multiple sequence alignment

Step 3.
AT|TT

Figure 4. Presentation of an exemplary multiple sequence alignment using Center Star method.

5 ClustalW method

ClustalW method represents the progressive approach in finding multiple sequence align-
ment. This method consists of four main steps:

1. First step is exactly the same as for Center Star method. Using Needleman-Wunsch
algorithm for finding an exact pairwise alignment (see section 2.1) of two sequences

13The other way of calculating the distance is to divide the number of mismatches on non-gapped
positions by the number of non-gapped pairs.

14Pairwise alignment can be computed using Needleman-Wunsch algorithm.

we are computing the distance between all sequences from the set S. In this step
we are forming the distance matrix15 between all pairs of sequences from the set S.

2. Using Neighbor-Joining algorithm [23, 5, 25, 3] we designate the neighbor-joining
tree16. Having a guide tree computed we can calculate the pairwise alignments in
the order designated by this tree. Each alignment (sequence-sequence, sequence-
profile17, profile-profile) involves dynamic programming by the sum of pairs score
method.

3. The next step of this method is similar to the Center Star algorithm. Combining
the alignments starts from the most closely related group to the most distantly
related groups by going from the tip of similarity tree to the root of the tree.
During combining process, a rule ”Once a gap, always a gap”18 is preserved.

4. The last step is related to extraction of the consensus string and substitution of
gaps with pipe symbols from the computed multiple sequence alignment.

As an example of this ClustalW method we can refer to the figure 5.

Example - 5 sequences S1, S2, S3, S4, S5

S1

S2

S3

S4

S5

S2 S4 S1 S3 S5

creating similarity

tree with neighbor-joining

method

Alignment according

to the tree

Align most similar pair

Gaps to optimize alignment

Align next most similar pair

S1

S3

S2

S4

S1

S3

S2

S4

New gap to optimize

alignment of (S1,S3) with

(S2,S4) - alignment of profile-profile

Align next most

similar pair

Align the last most distantly

related group

New gap to optimize

alignment of (S1,S3,S2,S4)

with S5 - alignment of

profile-sequence

final multiple sequene alignment

S1

S3

S2

S4

S5

Step 1, 2.

Step 3.

Step 4.
LCS

Dendogram

Figure 5. Presentation of an exemplary multiple sequence alignment using the ClustalW
method.

15Sometimes called similarity matrix.
16Unrooted tree, when root is placed at the midpoint of the longest chain of consecutive edges we will

obtain a guide tree or similarity tree.
17Profile for multiple alignment specifies for each column the frequency that each character appears

in the column [13].
18That is, once a gap is entered into the alignment, it will always remain in that alignment, and all

sequences added subsequently will also receive that gap.

6 Evaluation

Both presented methods give as a result the multiple sequence alignment. Both methods
do not guarantee that the multiple sequence alignment obtained during calculation will
be an optimal solution. Center Star method gives at most twice the score of the optimal
multiple alignment of the set of sequences S [13, 2]. Complexity of both methods is
approximately the same. For both methods first step of the algorithms requires

(

j
2

)

O(n2)
time, where j is the number of sequences in the set S. Step 2 and 3 of the Center
Star method requires O(j2l) time, assuming that l is an upperbound on the length of
the sequences in the MSA. Time complexity of the steps 2, 3 and 4 of the ClustalW
method mainly depends on the way of construction of the guide tree. Time complexity
of Neighbor-Joining algorithm is O(n2) [4]. The ClustalW method, apart from giving
the multiple sequence alignment, provides also the clusterization mechanism. The guide
tree computed during 2 step of the ClustalW algorithm provides us the mechanism for
hierarchical clusterization. Concerning the figure 5 and the similarity tree, we can treat
it as a dendogram where internal nodes (profiles) represent the sequences from the set S.
Going higher and higher in the hierarchy of the dendogram we are grouping sequences
into bigger and bigger collections.

6.1 Preliminary results of the Center Star method

The Center Star method was fully implemented in C++. In order to implement the
distance matrix the Standard Template Library’s (v3.3) vector of vector class was used.
All tests where performed on real dataset taken form the Arakis database. A distance
between two sequences was calculated using formula described in section 4 (number of
mismatches on non-gapped positions was divided by the number of non-gapped pairs).
All results are presented in table 2. Tests where executed on the Intel(R) Xeon(TM)
CPU 3.00GHz with 2075808 kB of the total memory. Compiler used for compilation was
g++ (v4.1).

Number/Length DM time LCS time Total time
72/600 262.83 0.01 262.84
6/2500 17.53 0.00 17.53
304/300 1150.36 0.04 1150.40
18/300 6.07 0.00 6.07
50/450 64.58 0.00 64.58

Table 2. Preliminary results of the Center Star method.

First column of the table presents input dataset, number of signatures and their
average length. Second column gives results concerning time of the process of distance
matrix creation (DM time). The third column shows run-time of the last phase of the
Central Star method. It gives us time of common subsequence extraction from the
multiple sequence alignment. The last column presents total run-time of the Center Star
method. All results are given in seconds. As it is shown, run-time complexity of the
Center Star method heavily depends on the process of distance matrix creation. The
greater the number of input signature, the greater run-time of the algorithm. The same
is with average length of the input signatures. The greater the length of the signatures,

the greater time required to compute consecutive pairwise alignment and in consequences
greater the run-time of the distance matrix creation process. Quality of the extracted
common subsequence was fair. Extracted common subsequence was compared with the
super signature (pseudo longest common subsequence) from the Arakis database. In
some cases, the quality of the extracted common subsequence obtained with Center Star
method was even better then quality of the super signature.

7 Conclusion

To sum up, ClustalW and Center Star algorithms have some advantages and disadvan-
tages. One of the biggest drawback of both algorithms is that the run-time complexity
is very high. On the other hand, the whole task is an NP-complete problem, so we can-
not expect better run-time complexity. ClustalW as well as Center Star method can be
modified in order to decrease the run-time complexity. In Center Star method instead
of finding all pairwise alignment, we can take a randomly selected sequence from the set
S and compute all pairwise alignments of it with the rest of sequences. As a result we
would omit the process of choosing the Center sequence, which involves computation of
all pairwise alignments in the set of network signatures. This improvement leads to the
better time complexity, but on the other hand it will result in worse common subsequence
extraction. In our case better time complexity is more important than worse common
subsequence extraction. Extraction of the common subsequence during pre-processing
phase should be performed in online mode. On the other hand clusterization of already
created signatures (process of common subsequence extraction) might be performed in
offline mode.

Bibliography

[1] Arakis. www.arakis.pl.

[2] Bioinformatics multiple sequence alignment. homepages.inf.ed.ac.uk/fgeerts/
course/msa.pdf.

[3] Multiple alignment: heuristics. www.bscbioinformatics.com/Stu/Dbq/clustalW.
pdf.

[4] Neighbor joining. http://www.cs.tau.ac.il/∼rshamir/algmb/98/scribe/html/lec09/
node23.html.

[5] The neighbor-joining method. http://www.icp.ucl.ac.be/∼opperd/private/neighbor.
html.

[6] Sequence alignment. http://helix.biology.mcmaster.ca/721/outline2/node37.html.

[7] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common
subsequence algorithms. In String Processing Information Retrieval, 7th Interna-
tional Symposium, SPIRE’00, La Coruna, Spain, 27-29 September 2000, Proceed-
ings, pages 39–48, Washington, DC, 2000. IEEE Computer Society.

[8] Scott Coull, Joel Branch, Boleslaw Szymanski, and Eric Breimer. Intrusion de-
tection: A bioinformatics approach. In Proceedings of the 19th Annual Computer
Security Applications Conference, page 24, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[9] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance for intrusion
detection. In In Proceedings of the 8th International Symposium on Recent Advances
in Intrusion Detection (RAID 2005), 2005.

[10] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance measurement
using hidden markov models. In In Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID 2006), 2006.

[11] Ronald I. Greenberg. Bounds on the number of longest common subsequences, 2003.

[12] D. Gusfield. Efficient method for multiple sequence alignment with guaranteed error
bounds. Report CSE-91-4, Computer Science Division, University of California,
Davis, 1991.

[13] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

[14] Dan Hirschberg. A linear space algorithm for computing common subsequences.
Communication of the ACM, 18:341–343, 1975.

[15] Christian Kreibich. Honeycomb. Automated signature creation using honeypots -
http://www.icir.org/christian/honeycomb/index.html.

[16] Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion detection
signatures using honeypots. In Proceedings of the Second Workshop on Hot Topics
in Networks (Hotnets II). Cambridge Massachusetts: ACM SIGCOMM, Boston,
November 2003.

[17] Christian Kreibich and Jon Crowcroft. Efficient sequence alignment of network traf-
fic. In IMC ’06: Proceedings of the 6th ACM SIGCOMM on Internet measurement,
pages 307–312, New York, NY, USA, 2006. ACM Press.

[18] Paolo Pin Matteo Barigozzi. Multiple string alignment. 2003.

[19] James Newsome, Brad Karp, and Dawn Song. Polygraph - automatically generat-
ing signatures for polymorphic worms. In SP ’05: Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pages 226–241, Washington, DC, USA, 2005.
IEEE Computer Society.

[20] C. Notredame, D.G. Higgins, and J. Heringa. T-coffee: A novel method for fast and
accurate multiple sequence alignment. J Mol Biol, 302(1):205–17, 2000.

[21] S. W. Perrey, J. Stoye, V. Moulton, and A. W. M. Dress. On simultaneous versus
iterative multiple sequence alignment. Materialien/Preprints 111, Universität Biele-
feld, Forschungsschwerpunkt Mathematisierung – Strukturbildungsprozesse, 1997.

[22] Knut Reinert. Introduction to multiple sequence alignment. Algorithmische Bioin-
formatik WS 03, pages 1–30, 2005.

[23] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Mol Biol Evol, 4(4):406–25, 1987.

[24] Yong Tang and Shigang Chen. Defending aagainst internet worms: A signature-
based approach. In Proceedings of the 24th Annual Conference IEEE INFOCOM
2005, March 2005.

[25] Zhiping Weng. Protein and dna sequence analisys be561, 2005. Boston University.

