
Performance comparison of the AS and GTS algorithms for
weighted maximum leaf spanning tree problem

Paweł Czaderna1 and Konrad Wala2

Academy of Computer Science and Management, Bielsko-Biała, Poland
1 e-mail: pawel.czaderna@gmail.com , 2 e-mail: kwa@ia.agh.edu.pl

Abstract. In the paper the combinatorial model of the weighted maximum leaf spanning
tree problem of simple graph is presented. We give a detailed description of three
procedures of the neighbour trees generation to the basis one which are exploited during
the course of tree improving process realized by the classical simulated annealing and
genetic local search algorithm. Numerical results of improving processes for randomly
generated graphs are included.

1 Introduction

The weighted maximum leaf spanning tree problem (WMLSTP) is a known NP-hard (see [7])
combinatorial optimization problem (see [6]) concerned with finding the spanning tree of an
undirected, connected graph G, such that the sum of the weights of leafs is maximum. This
problem is a generalization of the maximum leaf spanning tree problem (MLSTP) first time
investigated by Dijkstra [6]. WMLSTP problem has many applications in the real world such
as transportation, communication, or location of some facilities like computers in the network
(see figure 1 for an example) or VLSI lay-out (see [1], [3], [4], [6], [8]).

Given an undirected and connected graph G = (V, E), where V denoted the set of vertices
with n = V > 0 and E the set of edges with E > n  1 and a real number w(j) for
each vertex j V called the weight of vertex j , the WMLSTP is formally defined as finding a
spanning tree T* on G , such that

*

()
() max { () : }

j L T
w T w j T is a spanning tree in G


 

is the maximum taken over all possible spanning trees of graph G , where L(T) = { i  V :
T(i) = 1 } is the set of leafs of the tree T , and for i  V : G(i) denotes a set of edges
adjacent to i in graph G , T(i) is a set of edges adjacent to i in the spanning tree T = (V,
E(T)), E(T)  E(G), in G, T(i)  G(i), the vertex i with T(i)= 1 is called a leaf (degree-
one vertex) of tree T .

The difference between problem WMLSTP and MLSTP, where the problem is to
maximize the leaf’s number L(T)  max, is displayed in figure 2. For graph from Fig. 2a)
the spanning tree with maximal weight of leafs equal 8 is displayed in Fig. 2c) whereas the tree
in Fig. 2b) has the weight of leafs equal 0 in spite of greater number of leafs than tree –
Fig.2c).

The paper is organized as follows: In section 2, the procedures for neighborhood tree
generation are presented and in section 3, the optimization algorithms are outlined. Section 4
contains computational results concerning performance of the AS and GTS algorithms. In the
last section the paper is concluded.

Figure 1. Example of the computer network.

Figure 2. The example of the WMLSTP problem solution.

2 Procedures for neighbour trees generation

The essential problem of the search process for better solution in neighborhood of the basic tree
is the way and cost of neighbour trees generation. One can apply “simple and cheep”
modification rules of the basic tree and bear the expenses of verification of the generated

structures as well as rejection or reparation of infeasible one. We chose the method of neighbor
tree generation, which consists in rejection some edges from the basic tree and than inserting new
in more costly but controlled way. In presented below procedures, the generation process of
neigbour trees is as follows: (i) randomly chosen edge or edges are removed from the basic tree,
(ii) obtained connected components T1, T2, ..., Tk of the basic tree are determined by the classical
DFS (depth-first search) algorithm of graph search, (iii) the components are jointed by the use of
the selected edges into new spanning tree.

On the ground of literature study (e.g., [1], [7]) and performed tests, we propose three
procedures of neighbor tree generation:

1-change procedure. Let V’ = {i  V: T(i) > 1} is the set of basic tree T vertices which
are not leafs. We calculate randomly, uniform probability distribution, a vertex i from set
V’, denotation used in the paper: i = random (V’), as well as, also randomly, edge {i, j}, where
j = random({k  N(i): {i, k}  T(i)}) and N(i) = { k  V : {i, k}  G(i) } is the set of
neighbour vertices of the vertex i . After removing the edge {i , j} from the basic tree one get
two disconnected components T1 and T2 of the basic tree T where identification of the
components vertices V(T1) , V(T2) , is performed by DFS algorithm in time O(n+mT). As the
number of tree edges equals mT = n1 thus the complexity of DFS is O(n). Next, the
procedure tests the spanning trees obtained by inserting, on the place of removed edge {i, j},
edges {i, v} where i  V(T1) , v V(T2) , v  j, and finally returns the best tree, i.e. the tree of
maximal leaf weight.

1-exchange procedure. Like in 1-change procedure, the procedure removes randomly
determined edge {i, j} in time O(n) and get two disconnected sets of vertices V(T1) and
V(T2). Next, the set of edges U = { {v,  }: (v  V(T1))  (  V(T2))  ({v,  }  E)} which
can connect the components T1 and T2 into one tree is determined and then the procedure
tests the spanning trees obtained by inserting, on the place of removed edge {i, j}, successively
the edges from the set U and finally, it returns the best spanning tree.

k-change procedure. Let V’= {i  V: T(i) > 1} is the set of basic tree T vertices
which are not leafs. Randomly, we determine the vertex i = random(V’) and than removing
all edges of the set T(i) we get the connected components T1, T2, ..., Tk , 2  k  n , of the
basic tree where the identification of the vertices of the components V(T1), V(T2), ..., V(Tk) is
executed in time O(n) by the DFS algorithm. Next, in time O(n), for  = 1, 2, ..., k , there are
randomly determine edges {i, j } connected the isolated vertex i with components T1, ..., T

, ..., Tk in neighbour tree where j = random (V(T)).
Let us notice that in case of equality T(i) = G(i) for i  V’ draw out by lot the 1-change

and k-change procedures produce again the same basic tree what can often happen in case of
sparse graph. In this case, it is worth to check the mentioned condition and break the
computations.

3 Optimization algorithms

In this paper we investigate the simulated annealing – based heuristic called SA as well as
genetic algorithm – based heuristic called GTS.

As a SA algorithm, we exploit classical one (see [2], [5]), described in figure 3, where the
basic tree improvement trial consists in application with probability 1/3 one of the three
function is to multiply temperature temp by some constant  < 1. Using this reduction, the

SA algorithm works a constant m trials of every step with a fixed temp , and after m trials
the temperature is reduced temp :=   temp .

Figure 3. Classical SA algorithm for WMLSTP problem.

As the GTS (Genetic Tabu Search) algorithm, we propose a modified genetic local search
algorithm where each solution, individual of the population, generated by crossover procedure
is improved by designed for WMLSTP randomized tabu search (RTS) instead of hill climbing
algorithm. The population of GTS consists only of feasible solutions that is of spanning trees
thus crossover operator and RTS algorithms have to generate only feasible descendents. The
steps of GTS algorithm are following:

Step 1: Generation and evaluation of the spanning tree population.
Step 2: Drawing, by roulette mechanism, two parent trees, T1 and T2 , from the

population.
Step 3: Generation the descendant tree T3 of parents T1 and T2 by crossover operator.
Step 4: Improvement of the tree T3 by RTS algorithm.
Step 5: The improved tree T3 replaced the worst population tree.
Step 6: If the stop criterion is not fulfilled go to Step 2.

Crossover operator determines the genetic material of parents T1 and T2 as the set-
theoretic sum of parents edges E(T1)  E(T2) and then successively choose the edges from
this set with probability proportional to the sum of edge incident vertices weight until
successor T3 is established(see figure 4 for an illustrative example).

Economize computation time; RTS algorithm exploits only 1-change and 1-exchange
procedures for better solutions search process. Let us underline that both of these procedures
have random components thus RTS algorithm does not locally improve the solutions but also
play the role of mutation operator. Iteration of the RTS algorithm consists in generation new
nieghbour spanning tree by means of one of 1-change or 1-exchange procedure chosen with ½
probability. The removed as well as the inserted edges, connected with generation new tree, get
the status tabu for definite tabu tenure iteration number (see figure 5 for the illustrative example,

1) Compute an initial spanning tree T (randomly or with the aid of constructive
heuristic) , select parameters: m,  and an initial temperature temp .

2) SA algorithm:
while temp is not too close to 0 do {
repeat m times {

select a neighbour tree Tneigh (with the aid of application with probability 1/3
one of the three procedures of neighbour tree generation)
if w(T)  w(Tneigh) then T := Tneigh

else generate a random number r uniformly in the range (0, 1);
if r < exp( (w(T) – w(Tneigh))/temp) then T := Tneigh

}
temp :=   temp (the cooling scheme);

 }

where: T : basic tree, 0.8    0.99 , m : trail number in one iteration (number of
trails with a fixed temperature temp)

where the 1-exchange procedure generates, in one iteration, better new tree than the basic one).
Obviously, in the process of removing and inserting edges realized by exploit procedures the tabu
edges are not taken into consideration.

Figure 4. Example of the crossover process where T1 �T2 stands for sum E(T1)  E(T2) .

Figure 5. Illustration of an iteration of the RTS algorithm.

4 Computational results

The performance of the SA and GTS algorithms was evaluated on a large set of randomly
generated test graphs for n = 25, 50, 75, …, 250 vertices. For each n 50 test graphs (20 grid,
10 cubic, 20 with random connections in graphs) were generated; for each test 10
optimizations were performed. Before each series of computational experiment tests a lot of
experimental work was done to adjust the algorithms parameters for particular graph vertices

We remove randomly edge {7, 10}

 randomly.

We generate a set of the edges U
= {{5, 8}, {5, 9}, {5, 10},{6,
9}, {6, 10}, {6, 11}} and choose
the best:
insert {5, 8}: w(T) = 12
insert {5, 9 }: w(T) = 14
insert {5, 10}: w(T) = 12
insert {6, 9 }: w(T) = 15
insert {6, 10}: w(T) = 12
insert {6, 11}: w(T) = 10

The best is w(T) = 15, so we
at last insert edge {6, 9} to
the tree and we have new
spanning tree. Edges: {7, 10},
{6, 9} are tabu.

number n well, where the main algorithms parameter, stop criterion, was established on the
observation of the optimization process stagnation. During all computational experiments AS
algorithm had the following constant parameters: initial temperature temp = 100, trial number

Figure 6. Computational results.

m = 20 and GTS algorithm had only constant population size equal 20 whereas all others
algorithm’s parameters were additionally tuning for each n.

 Figure 6 and 7 display mean values of all series of computer experiments where one series
consist of 10*50*10 = 5000 optimization processes. The first column of the Fig. 6 diagrams
present the percentage improvement of the objective function realized by investigated SA and
GTS algorithms in proportion to best solution in the randomly generated initial population and
the second column in proportion to the best solution determined by 90 constructive heuristics.
Besides, the third column presents the improvement index of the SA and GTS algorithms
where this index was calculated as the mean value of improvement indices of test graphs
determined as follows. Let us recall that for each test graph 10 optimizations was executed
thus we calculated the mean value of objective functions of trees obtained during these
optimizations and the improvement index of test graph equals the division of the objective
functions mean value by objective function of the best spanning tree determined by 90
constructive heuristics for this graph.

Figure 7 presents the diagram of mean CPU time value, in seconds, of all series of
numerical experiments for AS and GTS algorithms as the function of vertex number n. The
numerical experiments were carried out on PC equipped with 1.5 GHz and 1 Gb processor.

SA GTS

0

5

10

15

20

25

30

35

40

45

50

55

60

Column 1 Column 2 Column 3

Index of the algorithm

Q
ua

lit
y

of
 t

he
 a

lg
or

ith
m

 (
%

)

Figure 7. Mean time of computation

5 Conclusions

Finally, let us summarize our experience from the executed computational tests:
 The success of solution improvement algorithm mainly depends on careful tuning of

algorithm’s components and parameters.
 Algorithm’s parameters are function of problem size - number of graph vertices n ,

e.g. we notice that the number iteration of RTS algorithm in GTS ought to be
proportional to n.

 When tested on benchmark problem instances, SA algorithm equipped with proposed
three neighbour tree generation procedures as well as GTS algorithm with RTS
algorithm proved capable of achieving good results both time expense and optimum
seeking.

 AS algorithm equipped with only two neighbour trees generation procedures
computes unsatisfying solutions. Implementation in RTS algorithm all proposed
neighbour trees generation procedures do not improve the GTS algorithm
performance.

Bibliography

[1] Ahuja R.K., Orlin J.B., Sharma D., Multi-exchange neighborhood structures for the
capacitated minimum spanning tree problem. Working Paper, University of Florida,
2001. Submitted for publication.

[2] Czaderna P., Wala K., Simulated annealing in maximization of the leafs weight of
spanning tree (in Polish). Automatics No 143, The Silesian University of Technology
Press, Gliwice 2006.

25 50 75 100 125 150 175 200 225 250

0

5

10

15

20

25

30

35

40

45

50

55

60

65

SA alg. GTS alg.

The size of the problems

M
ea

n
tim

e
of

 c
om

pu
ta

tio
n

[3] Fernandes L.M., Gouveia L., Minimal spanning trees with a constraint on the number of
leaves. European J. of Operational Research, Vol.104, pp. 250-261, 1998.

[4] Fujie T., An exact algorithm for the maximum leaf spanning tree problem. Computer &
Operations Research 30, 1931-1944, 2003.

[5] Kirkpatrick S., Gellat P.D., Vecchi M.P., Optimization by simulated annealing. Science
220 (1983), 671-680.

[6] Loryś K., Zwoźniak G., Approximation algorithms for Maximum-leaf Spanning Tree for
cubic graphs. Mohring R. and Raman R. (Eds), ESA 2002, LNCS2461, pp. 686-698,
Springer-Verlag 2002.

[7] Lu H., Ravi R., The power of local optimization: Approximation algorithms for
Maximum-leaf Spanning Tree - Proceedings of the Thirtieth Annual Allerton Conference
on Communication, Control and Computing, pp. 533-542, 1992.

[8] Lu H., Ravi R., A near-linear-time approximation algorithms for Maximum-leaf
Spanning Tree. Journal of Algorithms, Vol. 29, No 1, pp. 132-141, 1995.

