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Abstract. In the paper the combinatorial model of the weighted maximum leaf spanning 
tree problem of simple graph is presented. We give a detailed description of three 
procedures of the neighbour trees generation to the basis one which are exploited during 
the course of tree improving process realized by the classical simulated annealing and 
genetic local search algorithm. Numerical results of improving processes for randomly 
generated graphs are included. 

1 Introduction 

The weighted maximum leaf spanning tree problem (WMLSTP) is a known NP-hard (see [7]) 
combinatorial optimization problem (see [6]) concerned with finding the spanning tree of an 
undirected, connected graph  G, such that the sum of the weights of leafs is maximum. This 
problem is a generalization of the maximum leaf spanning tree problem (MLSTP) first time 
investigated by Dijkstra [6]. WMLSTP problem has many applications in the real world such 
as transportation, communication, or location of some facilities like computers in the network 
(see figure 1 for an example) or VLSI lay-out (see [1], [3], [4], [6], [8]). 

Given an undirected and connected graph  G = (V, E), where  V  denoted the set of vertices 
with n = V > 0  and  E  the set of edges with  E > n  1  and a real number  w(j)  for 
each vertex  j V  called the weight of vertex  j , the WMLSTP is formally defined as finding a 
spanning tree  T*  on  G , such that
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is the maximum taken over all possible spanning trees of graph  G , where  L(T) = { i  V : 
T(i) = 1 } is the set of leafs of the tree T , and for  i  V :  G(i)  denotes a set of edges 
adjacent to i  in graph G , T(i) is a set of edges adjacent to  i  in the spanning tree T = (V, 
E(T)), E(T)  E(G),  in G, T(i)  G(i),  the vertex  i  with T(i)= 1 is called a leaf (degree-
one vertex) of tree  T .   

The difference between problem WMLSTP and MLSTP, where the problem is to 
maximize the leaf’s number L(T )  max, is displayed in figure 2. For graph from Fig. 2a) 
the spanning tree with maximal weight of leafs equal 8 is displayed in Fig. 2c) whereas the tree 
in Fig. 2b) has the weight of leafs equal 0 in spite of greater number of leafs than tree –
Fig.2c).

The paper is organized as follows: In section 2, the procedures for neighborhood tree 
generation are presented and in section 3, the optimization algorithms are outlined. Section 4 
contains computational results concerning performance of the AS and GTS algorithms. In the 
last section the paper is concluded.



Figure 1. Example of the computer network.

Figure 2. The example of the WMLSTP problem solution.

2 Procedures for neighbour trees generation   

The essential problem of the search process for better solution in neighborhood of the basic tree 
is the way and cost of neighbour trees generation. One can apply “simple and cheep” 
modification rules of the basic tree and bear the expenses of verification of the generated 



structures as well as rejection or reparation of infeasible one. We chose the method of neighbor 
tree generation, which consists in rejection some edges from the basic tree and than inserting new 
in more costly but controlled way.   In presented below procedures, the generation process of 
neigbour trees is as follows: (i) randomly chosen edge or edges are removed from the basic tree, 
(ii) obtained connected components T1, T2, ..., Tk  of the basic tree are determined by the classical 
DFS ( depth-first search) algorithm of graph search, (iii) the components are jointed by the use of 
the selected edges into new spanning tree. 

On the ground of literature study (e.g., [1], [7]) and performed tests, we propose three 
procedures of neighbor tree generation: 

1-change procedure. Let V’ = {i  V: T(i) > 1}  is the set of basic tree T vertices which 
are not leafs. We calculate randomly, uniform probability distribution, a vertex   i  from set   
V’, denotation used in the paper: i = random (V’), as well as, also randomly, edge {i,  j}, where 
j = random( {k  N(i): {i, k}  T(i)} ) and  N(i) = { k  V : {i, k}  G(i) } is the set of 
neighbour vertices of the vertex  i . After removing the edge {i , j}  from the basic tree one get 
two disconnected components   T1  and  T2  of the basic tree T where identification of the 
components vertices V(T1) , V(T2) , is performed by DFS  algorithm in time  O(n+mT). As the 
number of tree edges equals  mT = n1 thus the complexity of DFS is O(n). Next, the 
procedure tests the spanning trees obtained by inserting, on the place of removed edge {i,  j}, 
edges {i, v} where  i  V(T1) , v V(T2) , v  j, and finally returns the best tree, i.e. the tree of 
maximal leaf weight. 

1-exchange procedure. Like in 1-change procedure, the procedure removes randomly 
determined edge {i,  j} in time O(n) and get two disconnected sets of vertices  V(T1)  and  
V(T2). Next, the set of edges   U = { {v,  }: (v  V(T1))  (   V(T2))  ({v,  }  E)} which 
can connect the components    T1  and  T2  into one tree is determined and then the procedure 
tests the spanning trees obtained by inserting, on the place of removed edge {i, j}, successively 
the edges from the set U and finally, it returns the best spanning tree.  

k-change procedure. Let  V’= {i  V: T(i) > 1}  is the set of basic tree T  vertices 
which are not leafs. Randomly, we determine the vertex  i = random(V’)  and than removing 
all edges of the set  T(i)  we get the connected components  T1, T2, ..., Tk , 2  k  n , of the 
basic tree where the identification of the vertices of the components  V(T1), V(T2), ..., V(Tk)  is 
executed in time  O(n) by the DFS algorithm. Next, in time O(n), for   = 1, 2, ..., k , there are 
randomly determine edges  {i, j } connected the isolated vertex  i  with components  T1, ..., T

, ..., Tk  in neighbour tree where  j = random (V(T )). 
Let us notice that in case of equality T(i) = G(i)  for  i  V’  draw out by lot the 1-change

and k-change procedures produce again the same basic tree what can often happen in case of 
sparse graph. In this case, it is worth to check the mentioned condition and break the 
computations.

3 Optimization algorithms 

In this paper we investigate the simulated annealing – based heuristic called SA as well as
genetic algorithm – based heuristic called GTS.

As a SA algorithm, we exploit classical one (see [2], [5]), described in figure 3, where the 
basic tree improvement trial consists in application with probability 1/3 one of the three 
function is to multiply temperature  temp  by some constant   < 1. Using this reduction, the 



SA algorithm works a constant  m  trials of every step with a fixed  temp , and after  m trials 
the temperature is reduced  temp :=   temp .

Figure 3.  Classical SA algorithm for  WMLSTP  problem.

As the GTS (Genetic Tabu Search) algorithm, we propose a modified genetic local search 
algorithm where each solution, individual of the population, generated by crossover procedure 
is improved by designed for WMLSTP randomized tabu search (RTS) instead of hill climbing 
algorithm. The population of GTS consists only of feasible solutions that is of spanning trees 
thus crossover operator and RTS algorithms have to generate only feasible descendents. The 
steps of GTS algorithm are following: 

Step 1:   Generation and evaluation of the spanning tree population.
Step 2:   Drawing, by roulette mechanism, two parent trees, T1 and T2 , from the 

population.
Step 3:   Generation the descendant tree T3 of parents T1 and T2 by crossover operator.
Step 4:   Improvement of the tree T3  by RTS  algorithm.
Step 5:   The improved tree T3  replaced the worst population tree.
Step 6:   If the stop criterion is not fulfilled go to Step 2.

Crossover operator determines the genetic material of parents T1 and T2 as the set-
theoretic sum of parents edges  E(T1)  E(T2)  and then successively choose the edges from 
this set with probability proportional to the sum of edge incident vertices weight until 
successor T3 is established(see figure 4 for an illustrative example).

Economize computation time; RTS algorithm exploits only 1-change and 1-exchange
procedures for better solutions search process. Let us underline that both of these procedures 
have random components thus RTS algorithm does not locally improve the solutions but also 
play the role of mutation operator. Iteration of the RTS algorithm consists in generation new 
nieghbour spanning tree by means of one of 1-change or 1-exchange procedure chosen with ½ 
probability. The removed as well as the inserted edges, connected with generation new tree, get 
the status tabu for definite tabu tenure iteration number (see figure 5 for the illustrative example, 

1) Compute an initial spanning tree  T  (randomly or with the aid of constructive 
heuristic) , select parameters: m,   and  an initial temperature  temp .

2) SA algorithm:
while  temp is not too close to 0  do { 
repeat  m  times {

select a neighbour tree  Tneigh (with the aid of application with probability 1/3 
one of the three procedures of neighbour tree generation)
if    w(T )  w(Tneigh )   then  T := Tneigh

else   generate a random number  r  uniformly in the range (0, 1);
if    r < exp( (w(T ) – w(Tneigh ))/temp)   then   T := Tneigh

}
temp :=   temp (the cooling scheme);

      }

where: T : basic tree, 0.8        0.99 , m : trail number in one iteration (number of 
trails with a fixed temperature temp )



where the 1-exchange procedure generates, in one iteration, better new tree than the basic one). 
Obviously, in the process of removing and inserting edges realized by exploit procedures the tabu 
edges are not taken into consideration.

Figure 4. Example of the crossover process where T1 �T2 stands for sum  E(T1)  E(T2) .

  
Figure 5. Illustration of an iteration of the RTS algorithm.

4 Computational results 

The performance of the SA and GTS algorithms was evaluated on a large set of randomly 
generated test graphs for  n = 25, 50, 75, …, 250  vertices. For each  n  50 test graphs (20 grid, 
10 cubic, 20 with random connections in graphs) were generated; for each test 10 
optimizations were performed. Before each series of computational experiment tests a lot of 
experimental work was done to adjust the algorithms parameters for particular graph vertices 

We remove randomly edge {7, 10} 

 randomly.

We generate a set of the edges U
=  {{5, 8}, {5, 9}, {5, 10},{6, 
9}, {6, 10}, {6, 11}} and choose 
the best:
insert  {5, 8}: w(T) = 12   
insert  {5, 9 }: w(T) =  14
insert  {5, 10}: w(T)  = 12 
insert  {6, 9 }: w(T)  = 15
insert  {6, 10}: w(T) = 12
insert  {6, 11}: w(T)  = 10

The best is w(T)  = 15, so we 
at last insert edge {6, 9} to 
the tree and we have new 
spanning tree. Edges: {7, 10}, 
{6, 9} are tabu.



number  n  well, where the main algorithms parameter, stop criterion, was established on the 
observation of the optimization process stagnation. During all computational experiments AS 
algorithm had the following constant parameters: initial temperature temp = 100, trial number  

Figure 6. Computational results.

m = 20 and GTS algorithm had only constant population size equal 20 whereas all others 
algorithm’s parameters were additionally tuning for each  n.  

 Figure 6 and 7 display mean values of all series of computer experiments where one series 
consist of 10*50*10 = 5000 optimization processes. The first column of the Fig. 6 diagrams 
present the percentage improvement of the objective function realized by investigated SA and 
GTS algorithms in proportion to best solution in the randomly generated initial population and 
the second column in proportion to the best solution determined by 90 constructive heuristics. 
Besides, the third column presents the improvement index of the SA and GTS algorithms 
where this index was calculated as the mean value of improvement indices of test graphs 
determined as follows. Let us recall that for each test graph 10 optimizations was executed 
thus we calculated the mean value of objective functions of trees obtained during these 
optimizations and the improvement index of test graph equals the division of the objective 
functions mean value by objective function of the best spanning tree determined by 90 
constructive heuristics for this graph. 

Figure 7 presents the diagram of mean CPU time value, in seconds, of all series of 
numerical experiments for AS and GTS algorithms as the function of vertex number  n. The 
numerical experiments were carried out on PC equipped with 1.5 GHz and 1 Gb processor.
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Figure 7. Mean time of computation

5 Conclusions 

Finally, let us summarize our experience from the executed computational tests:
 The success of solution improvement algorithm mainly depends on careful tuning of 

algorithm’s components and parameters.
 Algorithm’s parameters are function of problem size - number of graph vertices  n , 

e.g. we notice that the number iteration of RTS algorithm in GTS ought to be 
proportional to  n.

 When tested on benchmark problem instances, SA algorithm equipped with proposed 
three neighbour tree generation procedures as well as GTS algorithm with RTS 
algorithm proved capable of achieving good results both time expense and optimum 
seeking. 

 AS algorithm equipped with only two neighbour trees generation procedures 
computes unsatisfying solutions. Implementation in RTS algorithm all proposed 
neighbour trees generation procedures do not improve the GTS algorithm 
performance.
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