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Abstract. The paper describes global optimization algorithm based on Stratified Covering.
Stratified means that feasible set is divided into M disjoint subsets of equal volume, and in
each subset N sampling points are uniformly generated. Covering concerns method of
uniform generation of points and means that sampling grid is the set of centers of N balls,
which cover in the finest manner the subset. An abridged description of optimal stratified
sampling and optimal covering algorithms containing only the essential of the methods is
presented. For the purpose of illustrating both the actual working and the potentialities of
the method, a set of computational results is presented.

1 Introduction

The simplest method of finding an extremum of function  f numerically given on a feasible
compact set X in n-dimensional space n is the Simple Monte Carlo Method (SMC Method)
called also the Independent Sample Method (IS Method). The calculations involve two steps.
The first one is the independent generation of N sampling points {x1,..., xN} uniformly distributed
on X. Next, the best of them is taken as a solution )(Nx . For minimization problem it means that
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and )(Nx  is the approximation of true minimizer x*. It is obvious that accuracy of
approximation depends on length N of the grid {x1,..., xN} = X(N) and on the way in which points
fill up the set X. The IS Method is the simplest one, but many examples showed that its
efficiency is rather moderate and there is a need for devising more efficient sampling scheme.

As mentioned above, two factors impact on grid efficiency: the length of sample N and its
uniformity. Let us discuss shortly influence of the first factor. Basing on simple probabilistic
considerations it is easy to show (e.g. [7]) that to obtain with given probability γ ∈ (0,1) the
solution )(Nx  with appropriately defined (volume) accuracy ε ∈ (0,1) we have to choose
number of samples N such that

]
ε)log(1
γ)log(1ceil[),(ε

−
−

=γN . (1)

Many different definitions of measures of filling quality (uniformity) exist in the literature.
When we think about point of the grid, xi, as center of a ball, B(xi,ρ) (in some metric ρ), it
seems that situation when points are arranged in such a way that union of equal balls with



minimal radius covers feasible set, X, is a good filling. The situation is referred as covering by
equal balls (with minimal radius). The next section gives formal definition and presents basic
properties of point set defined by coverings of this type.

2 Grids in Global Optimization, Uniformity Characteristic

Let ρ be a metric on n, feasible set X ⊂ n be compact and X(N) = {x1,..., xN} be N-element
grid in X. With each point of the grid we associate the ball of radius r with the center at xi
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Bearing in mind quoted above intuitive meaning of good filling, we define optimal grid,
X *(N), as grid producing covering with minimal radius δ(X, N)
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One of the commonly used uniformity characteristics of point set X(N) is its metric-
dispersion, defined as
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It is easy to observe that
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Another reason for the significance of metric-dispersion as a measure of uniformity is the
following property [3], [6], stated here in a little simplified version.

Theorem. Let ρ be a metric on n, a feasible set X ⊂ n be compact, a function f from n, be
Lipschitz-continuous on X with constant L ( f ∈ Lip(X, L)) and N be fixed.
Then
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In words: “the covering with minimal radius gives worst-case optimal N-element grid”.
It is interesting to know the dependence of lower bound of grid fitness defined by (2) on

grid length N. When feasible set X is a unit cube Kn , H. Niederreiter [3] proved that
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where VB is the volume of unit ball in ( n,ρ). It means that for plane with Euclidean metric
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so: δ(K2,10) ≥ 0.1784 and δ(K2,100) ≥ 0.0564. As we will see later, the real minimal radius
δ(K2,10) is only little greater than bound. For 3-dimansional space with Euclidean metric
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As expected, this bound decreases with increase of N slower than previous one.

3 Optimal Covering

When we adopt J. Kifer [2] worst case approach to assessing the efficiency of optimization
algorithm, it follows from presented theorem that minimax problem of devising optimal
sampling sequence is equivalent to the problem of finding optimal covering. But, is this new
problem solvable? The problem belongs to rather hard issues of discrete geometry, and the
positive answer to our question is restricted to special classes of covering problem. First
assumption is that feasible set X has simple structure. Particularly it is required that X is n-
dimensional cube. It is not restrictive assumption for our global optimization problem, because
we always can imbed original irregular feasible set in a suitable cube. With this assumption the
problem of optimal covering of interval is the simplest, and its solution is trivial. The next is
the problem of optimal covering of a square. In the sequel the essentials of algorithm solving
this problem are presented. The algorithm derives from theoretical prototype presented by S.A.
Brusov and S.A. Pijavski in 1970 [1]. Algorithm for n-dimensional cube was worked out also
[5], but its efficiency is still unsatisfactory and improvements are needed.

Before we present the essential of the algorithm we have to state some definitions.
Let ρ be Euclidean metric, K denotes the unit square, K = [0,1]×[0,1] ∋ x = (x1, x2) and X(N)

be a grid in K. The set D(xi ) of all points in K closer or equally distant to a point xi of X(N)
than to any other point of X(N), that is closed convex polygon
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is called the Dirichlet domain (its interior is recently known as Voronoi cell) for xi.

We define the following sets:
KV = {(0,0),(1,0),(1,1),(0,1)},
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Let point xi in X(N) be selected. The sets below are related to this point
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The system of equations describing point set VP (xi ) is quadratic (metric is Euclidean) and
direct formulae for its solution can be easily obtained.

Now it is easy to observe that vertices of D(xi) can be detected from set VP (xi) as points v
meeting conditions defining Dirichlet domain
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Having the set of vertices VD(xi) we can calculate the radius r(xi) of the circle, B(xi,r(xi)),
circumscribing D(xi) with center at xi as

                                                
1 Family of sets 
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gives, so called, Voronoi tessellation corresponding to the set X(N).



).,(maxarg)(),(max)(
)()(

i
xVDv

ii
xVDv

i xvxvxvxr ii ρ=ρ=
∈∈

The obtained system of circles 
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 clearly covers K, but circles have different

radii. Therefore the next step of algorithm consists in improvement of a starting grid X(k)(N) to
better one X(k+1)(N) with
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using appropriately defined perturbation of suitable chosen xi ∈ X(k)(N).
Due to lack of space we do not present details of choosing xi for shift and method of grid

improvement ensuring (3). For details we refer the reader to [1] or [5]. We point out only, that
method of improvement is based on linearization of distance increments and somewhat
complicated definition of feasible shifts set.

General-description of optimal covering algorithm
Initialization step. Choose integer N and initial grid X(0)(N) in K; set k := 0.
Main step. Repeat until stopping criteria satisfied.
With  X(N) = X(k)(N) for each xi in X(N) compute VD(xi) and r(xi).
Choose point p from X(N) to shift, and move it to new place p(k) in such a way that

r(p(k)) < r(p).
Set X(k+1)(N) = (X(N) \ {p}) ∪{p(k)} and k := k +1.

Algorithm described above in essentials was implemented in detail in cooperation with
M. Pysiak in MATLAB. Figure 1 shows graphic depictions of results obtained for N = 10 and

 
Figure 1. Voronoi tessellation and minimal covering radius for 10 sampling points of Sobol sequence

(left) and for calculated optimal covering (right).

Sobol quasi-random sequence as initial grid. The optimal covering was obtained after 1600
main iterations. So large number of iteration was caused by exceptionally poor choice of initial



grid. Gathered experience has showed that, when initial grid is more uniformly dispersed on
the square, the number of iterations considerably decrease.

The discussed example is interesting from another point of view. Basing on simple
considerations on symmetry of the ten-circle set I derived, probably the best covering.2 The
coordinates of this grid are showed in Table 1 together with those obtained by presented
algorithm.

Table 1. Comparison of coverings and minimal radii.

Optimal (?) covering Obtained covering

39/13/1 −=a Decimal expansion

(1/6,a) (0.16666666666667, 0.14088324360346) (0.1644, 0.1435)

(1/2,a) (0.5, 0.14088324360346) (0.4963, 0.1406)

(5/6,a) (0.83333333333333, 0.14088324360346) (0.8319, 0.1390)

(0,1/2) (0, 0.5) (0.0174, 0.5053)

(1/3,1/2) (0.33333333333333, 0.5) (0.3382, 0.5016)

(2/3,1/2) (0.66666666666667, 0.5) (0.6607, 0.4971)

(1,1/2) (1, 0.5) (0.9826, 0.4961)

(1/6,1–a) (0.16666666666667, 0.85911675639654) (0.1689, 0.8612)

(1/2,1–a) (0.5, 0.85911675639654) (0.5036, 0.8586)

(5/6,1–a) (0.83333333333333, 0.85911675639654) (0.8347, 0.8570)

39/26/1
)10,( 2
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0.218233512793084
ropt =

= 0.2186

Comparing figures in second and third column of Table 1 it is easy to conclude that output
of presented algorithm well coincides with optimal points even for so hard instances as these
with first coordinate on bounds of unit segment.

In the paper we use Optimal Covering Algorithm as a tool for generation of sampling
points in global optimization. Of course it can be used for solving plethora of different
problems. For example in the mobile communication, the problem of positioning the base-
stations and the assignment of transmission ranges such the entire given area is covered and
some fitness function dependent on distances between stations has to be minimized is in fact
optimal covering problem.

4 Stratified Covering Algorithm

At the end of Introduction we quote formula describing dependence of sampling sequence
length, N, on desired accuracy. The use of this formula needs explanation. It uses notions from

                                                
2 Obtained radius of covering is the same as computed in [4], where time consuming algorithm for optimal

covering is presented.



probability theory, hence accuracy used is, so-called, volume accuracy (measure). It means
that when we demand ε-accuracy with probability γ, in fact we demand that ratio of the
“volume” in which with probability γ optimal solution occurs to the “volume” of the whole
feasible set X equals ε. Usually we reason using the measure of “length” instead of “volume”;
therefore we ought to translate accuracy in “volume measure” to accuracy in “length measure”.
As we know for n-dimensional cube with length of edge α, volume equals αn. It means that for
feasible set which is hypercube, X = [a, b]n, a < b, when we intend to localize optimal solution
with accuracy 1/α of range b – a of each variable, we should put ε = (1/α) n.

In our 2-dimensional case it means, that for “length accuracy” 1/α = 10–4 , ε = 10–8 and for
probability γ = 0.01 formula (1) gives N = 1 005 034. To generate randomly more than million
points is possible, but it seems that at present and in near future to find optimal covering by
million circles is impossible.

Classical way out of this difficult situation is to use combination of stratified sampling and
clustering. We follow this way.

In the sequel, for the sake of simplicity, we assume that in considered optimization
problem feasible set is a square, X = [a, b]n, a < b, and minimized function f is continuous. The
generalization to feasible set with any shape is straightforward.

Below we shall describe in simplified form proposed global optimization algorithm based
on Stratified Covering.

Simplified-description of stratified covering algorithm
Initialization step. Choose length of basic sample, N. Compute (import) optimal covering
X*(N) of unit square. Choose number of each level strata, R. Divide square X into M = R 2

equal sub-squares MmCm ,...,1,)1( = .
Set S (1) = M , and k := 1.
Main step. Repeat until stopping criteria satisfied. When stop, adopt current x  as
approximation of true minimizer.

With )(( ,...,1, kk) SmCA mm ==  rescale X*(N) to bounds of Am , and XAm(N), m = 1,...,S(k), be the
grid obtained.
Evaluate function f  in all points of k-level grid )(1

( NXAG Sm mU (k)
k)
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Using adopted measures based on evaluations of f , identify Q promising sub-squares, i.e.,
squares where perhaps minimum lies, and {S1,...,SQ} be the set of sub-squares obtained.
Divide each sub-square Sq into M sub-subsquares, and 1)k1)k +

⋅
+ ((

1 ,..., MQCC be the set of sub-
subsquares obtained.
Set )(minarg xfx

Gx (k)∈
= , set S(k+1) = Q⋅M  and k := k +1.

Different modifications of this prototype algorithm are possible, and we leave them to
readers’ invention. The key issue is a way in which sub-squares will be counted to promising
ones.

In order to illustrate the functioning of the method, we present computational result on one
small test problem, which optimal solutions are known beforehand. The so-called Himmelblau
test was chosen. It consists in finding all minimizers of the function
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In fact, Himmelblau test is the problem of fining solution of the system of quadratic
equations:
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The system has perhaps four real solutions (one obvious is (3,2)) and as a consequence
function f  has potentially four global minima with value 0.

We assume, that initial square is rather large: X = [–100,100]×[–100,100].
Before we present obtained results we calculate number of samples guaranteeing according

to formula (1), length accuracy 0.01 (what means in the case that ε = 2.5⋅10–9 ) with probability
0.9. It equals near billion, exactly 921 034 042 points. And how it will be looking for stratified
covering algorithm?

For computational test the following figures for main parameters of the algorithm were
chosen:

– length of basic sample N = 9;
– covering generated by optimal covering algorithm

X*(9) = {(0.167, 0.833) (0.5, 0.833) (0.833, 0.833) (0.167, 0.5)
 (0.5, 0.5) (0.833, 0.5) (0.167, 0.167) (0.5, 0.167) (0.833, 0.167)};

– number of each level strata R = 8;
– maximal number of steps T = 8.

Left part of figure 2 depicts contours of minimized function together with underlying
parabolas.

 
Figure 2. Contour plot of Himmelblau function near extrema (left) and iterations of quasi-Newton

minimization (right).

It really has four minima and its shape with four basins of attraction makes it troublesome
for gradient algorithms, what depicts right part of figure 2 where iterations of MATLAB
fminunc function that uses BFGS quasi-Newton method of optimization are presented. To
find all minima the starting points for multistart search have to be carefully selected because
for gradient methods basin of attraction of minimum M, (3,2), is greater than others are.

Table 2 shows solutions obtained using implemented trial version of stratified covering

M



algorithm. Their accuracy is very high, although during 26 iterations function was evaluated
only in 26⋅(8⋅8⋅9) = 14 976 points.

Table 2. Test problem solution.

Point Function value × 10–10

(3.58442755937577, –1.84812693595886) 0.3662467076998

(2.99999947547913, 1.99999963045121) 0.1637786514753

(–3.77931174039840, –3.28318794965744) 2.1547638875875

(–2.80511790513992, 3.13131369352341) 0.5690748832914

In view of the result obtained, where the proposed algorithm performed efficiently, we
believe that further research will lead to construction of the algorithm which be fast and robust
and can be used to solve complicated, practical problems.

Moreover, when the problems with 3-dimensional coverings will be overcome the area of
application will be widened to optimization problems with three variables.
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