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Abstract. This document describes possible application of MultiObjective Evolutionary 

Algorithms (MOEAs) to a problem of finding the most suitable vessel route taking into 

account changeable weather conditions and several navigational constraints. The paper 

includes a review of MOEA-specific techniques and presents a proposal of their utilization 

in a weather routing evolutionary algorithm.  

1 Introduction 

A problem of finding the most suitable vessel route taking into account changeable weather 

conditions and navigational constraints e.g. landmasses is referred to as a weather routing 

problem. Such a problem is mostly considered for ocean-going ships where adverse weather 

conditions may impact both, often contradictory, economic and security aspects of voyage. Most 

of recent scientific researches in weather routing focus on shortening the passage time or 

minimization of fuel consumption only. However, modern MultiObjective Evolutionary 

Algorithms offer a method of dealing with such contradictory goals utilizing a well-known 

concept of Pareto-optimal sets. 

One of the first weather routing approaches was a minimum time route planning based on 

weather forecasted data. Proposed by R.W. James in 1957 [3] an isochrone method, where 

recursively defined time-fronts are geometrically determined, was in wide use through decades. 

In late seventies based on the original isochrone method the first computer-aided weather routing 

tools were developed. Numerous improvements to the method were proposed since early 

eighties, with [2], [8] among others. Nonetheless, even the improved method has been displaced 

with time by genetic algorithms. Evolutionary approach as a natural successor of genetic 

approach has become popular in the last two decades and has been successfully applied to anti-

collision manoeuvre modelling [6]. Modern weather routing tools also utilize evolutionary 

algorithms instead of the deprecated isochrone time-fronts. However, due to multiobjective 

nature of weather routing it is recommended to introduce some state-of-the-art multiobjective 

methods to the process of route finding. 

This paper is organized as follows: section 2 presents a review of techniques utilized by 

MultiObjective Evolutionary Algorithms (MOEA) along with the basic concept of Pareto 

optimal sets. Section 3 describes a framework of weather routing evolutionary algorithm with 

possible MOEA extensions. Finally, section 4 summarizes the material presented. 



2 MOEA Review 

MultiObjective Evolutionary Algorithms (MOEA) have been growing in popularity since its 

inception in mid-1980s. In general, MOEAs extend the functionality of regular single-objective 

evolutionary algorithms providing a method of dealing with multiple and often conflicting 

criteria. However, one should be aware that “MOEA” term refers to some algorithmic framework 

rather than a specific ready-to-use solution or algorithm. Thus, already known MOEA techniques 

together with suitable design recommendations should be applied prior to building a 

problem-oriented multiobjective evolutionary application.  

2.1 MOEA Classification 

A decision maker is often involved with the final decision when a multiobjective problem is 

considered. It is simply because a single output solution should be chosen from a set of uniformly 

valid optimal solutions. From the decision maker’s point of view if improving in one objective 

results in detriment to the other, some compromise between the objectives is required. In result, 

the final solution of the multiobjective optimization problem consists of optimization and 

decision processes which interfere or follow each other. MOEAs are classified based on the order 

of optimization and decision processes. According to [7] there are three distinctive MOEA 

groups recognized, namely: 

− “a priori” preference, where the decision maker combines all the objectives into a 

single scalar function; 

− progressive preference, where the decision making and optimization processes 

alternate; 

− “a posteriori” preference, where the found set of Pareto optimal solutions is presented 

to the decision maker who selects the final solution from the set provided. 

Since the early 1990s, Pareto-based solutions have been the most extensively researched 

among the other MOEAs. Following the MOEA citation research presented in [7] it appears that 

the “a posteriori” approaches are the most popular nowadays. Thus, this paper focuses on the 

issues related to Pareto-based MOEA only. 

2.2 Pareto Optimality Concept 

In general, finding a solution in a multiobjective optimization problem is a complex task based 

on finding a trade-off between often incommensurable and competing objectives. The trade-off 

denotes that further improvement in one objective deteriorates the other. Thus, it is unlikely that a 

solution to a multi-objective problem would be a single optimal one, it is rather a set of equally 

optimal solutions. 

An underlying definition for Pareto-optimal sets is the notion of Pareto-dominance. A 

particular solution x is said to dominate a solution y if the former performs better than the latter 

for at least one objective and performs no worse than the latter in all the other objectives. 

Mathematically, the concept of Pareto-optimality is defined as follows. Let us consider a 

multi-objective optimization problem with m decision variables and n objectives. Without loss of 

generality the optimization problem can be expressed as given by equation 1: 
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where x = {x1, x2, ..., xm} is a vector of decision variables and u ={u1, u2, ..., un} is a performance 

vector associated with an x vector. A particular solution x with associated performance vector u is 

said to dominate another solution y with performance vector v ( yx p ) if the performance 

vectors u and v meet the equations 2-3: 
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A solution Ω∈x is Pareto optimal with respect to Ω if and only if there is no such Ω∈'x  for 

which uv p  when (equations 4-5): 
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It must be stressed out, though, that the Pareto optimality is always considered with respect to the 

Ω set which is assumed to be equal to the entire decision variable space unless otherwise 

specified. A Pareto-front PF
*
 is a set of points in the problem’s criterion space corresponding to 

the Pareto-optimal set P
*
. Formal definitions of P

*
 (equation 6) and PF

* 
(equation 7) are provided 

by the following formulas: 
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In MOEA literature P
*
 and PF

*
 sets are sometimes referred to as Ptrue and PFtrue respectively. 

Further in the paper, if a solution x covers y it refers to the situation that x dominates y or these 

solutions are equal.  

2.3 Basic MOEA Techniques 

As mentioned earlier, MOEA should be considered rather as an algorithmic framework than as 

an explicit algorithm or solution.  In result, prior to MOEA implementation, it is necessary to 

gather information about basic MOEA techniques, their advantages, disadvantages and 

utilization possibilities. The core set of basic MOEA techniques according to [5], [7] and [9] is 

described in the following subsections. A few of the techniques are already known from 

single-objective evolutionary applications. 

Secondary population. Numerous MOEA publications ([5], [7], [9] among others) stress the 

importance of introduction a secondary population into MOEA design. Such a population is an 

additional population maintained throughout MOEA execution time, collecting all Pareto optimal 

solutions found so far during the search process. Its main goal is to preserve all desirable 

solutions throughout the generation process. In accordance with Pareto notation introduced in 

subsection 2.2, the secondary population is termed )(tPknown , where t denotes current generation 



number. Similarly, a current set of Pareto optimal solutions determined at the end of each 

generation with respect to the current MOEA generational population is termed )(tPcurrent .  It is 

assumed, though, that )0(knownP  is an empty set and knownP without t annotation stands for the 

final set of Pareto optimal solutions collected before MOEA termination. Several strategies of 

second population storage exist. The most obvious and commonly used is the strategy of adding 

)(tPcurrent to )(tPknown at the end of each generation t (equation 8): 

 

 )1()()( −= tPtPtP knowncurrentknown U  (8) 

The set of )(tPknown must be periodically checked against obsolete Pareto solutions as Pareto 

optimality should always be evaluated within current Ω set. The simplest policy does not assume 

explicit copying )(tPknown solutions back into the next population. However, other strategies 

exist where the secondary population participates in a tournament selecting next generations or is 

directly inserted into the next mating population. As suggested in [7], no secondary population 

strategy can be considered as the most useful or the most profitable for any particular purpose. 

Further discussion on the secondary population strategies can be found in [7]. 

Multiobjective ranking. Multiobjective evolutionary approach enforces that some 

transformation of the performance vector into a scalar fitness value is necessary. This 

transformation is achieved by means of a multiobjective ranking, often also referred to as Pareto 

ranking. In general, there are four basic ranking methods. All these methods are based on an 

assumption that preferred Pareto optimal solutions are ranked the same value whereas other 

solutions are assigned some less desirable rank value. 

A ranking technique proposed by Goldberg [1] assumes that the population at each 

generation is checked for nondominated solutions. All the solutions are given rank 0 and 

removed from the population. Then again nondominated solutions are found in the shrunken 

population, given rank 1 and removed from the population. This process continues with 

increasing rank value at each step until all solutions have been ranked. In result a series of 

nondominated fronts is created.  

A modification of the previous proposal was suggested by Fonseca and Fleming [5]. A rank 

assigned to the solution is based in this approach on the number of individuals by which the 

solution is dominated. As a result, all solutions with nondominated performance vectors receive 

rank 0. 

A simplified ranking scheme was proposed by Van Veldhuizen [7]. Here a rank value equals 

to either 0 or 1 depending on whether the solution is nondominated or not. Thus there is no 

further differentiation between dominated solutions. 

Another ranking policy was proposed by Zitzler and Thiele [9]. The twofold ranking policy 

incorporates information from the secondary population )(tPknown . During the first step each 

solution )(tPi known∈ is given a real value rank [0;1)∈is . The si number (equation 9), called 

strength, is proportional to the number of population members )(tPj ∈ for which ji p . Let n 

denote the number of individuals in t-th population P(t) covered by i and N denote the size of 

P(t), then: 
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Following procedure step assigns a ranking value rankj to each solution in the t-th population 

)(tPj ∈  calculated by summing the strengths of all solutions from the secondary population 

)(tPi known∈ that cover j. The final rank is increased by 1 to guarantee that solutions in the 

secondary population have better rank than those in P(t) (equation 10): 
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All presented ranking strategies differ in terms of computational complexity, which impacts 

MOEA’s total execution time. Detailed discussion on the best and worse case complexity can be 

found in [7]. Zitzler & Thiele approach, according to [7], involve some more overhead mostly 

due to utilization of the secondary population and additional comparisons required. Nonetheless, 

the last scheme is the only one that actively takes advantage of the secondary population 

technique.  

Niching and fitness sharing.  The term niching refers to the process of clustering in either 

solution-space or criterion-space. In this process clusters consist of groups formed by some 

individuals selected from the entire population. Niching is primarily aimed at finding and 

maintaining multiple optima. In result, this technique should assure a good spread of discovered 

solutions and prevent MOEA algorithm from being swamped by solutions with identical fitness. 

Fitness sharing is the most popular realization of the niching technique. It is based on an 

assumption that individuals in a particular niche share available resources. Thus, the more 

individuals are located in the vicinity of a certain individual, the more its fitness value is 

deteriorated.  The vicinity is most often determined by a distance measure d(i,j) and specified by 

niche radius σshare. The distance function d(i,j) operates either in solution-space (the parameters 

manipulated by the evolutionary algorithm) or criterion-space (the results corresponding to the 

chosen parameters), resulting in appropriate type of fitness sharing. 

The basic approach (known from the single-objective EA) to fitness sharing was presented by 

Goldberg in [1]. Most of its implementations follow the assumption that fitness sharing is applied 

only to equally ranked individuals. A niche count, factor that reduces individual’s fitness, is a 

sum of all values found by pairwise comparisons of the individual with all the other ones. 

Equation 11 is used to calculate a single niche count element. Required niche size is calculated 

by equation 12. A detailed discussion on various fitness sharing approaches is provided in [7].  
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where: 

 sh(d)  –  single contribution to the individual’s share count, 

 d  – distance over some norm (usually Euclidean distance), 



 σshare  – niche size, 

 α  – shaping parameter, 

 p  – number of decision variables within the solution x, 

 xk,max/min  – maximum/minimum value of k-th decision variable, 

 q  – required number of niches. 

Mating restrictions. The idea behind restricted mating is to prevent or minimize offspring, 

so-called lethals, created by recombination of chromosomes from different niches. Such 

individuals can lead to degradation of MOEA performance. To remedy the problem some 

restrictions to mating might be introduced providing a distance metric and a maximum distance 

value σmate for which mating is still permitted. The most popular solution for mating restriction is, 

according [5] and [7], introduction of the fitness sharing niche radius σshare into the problem and 

setting σmate=σshare. However, it is questioned ([7], [9]) whether such restriction policy is indeed a 

compulsory MOEA component, especially when there is no quantitative evidence of its benefits 

[7].  

3 A proposal of Weather Routing Evolutionary Algorithm with MOEA 

Extensions 

Criteria set. The weather routing criteria can be divided into two separate subsets, namely: 

− economic criteria subset; 

− safety criteria subset. 

Primary goal of the former is to assure that total costs of the voyage remains as low as 

possible. That is both passage time as well as fuel consumption should be minimized. Safety 

criteria are represented by vessel traffic intensity and degree of constraint violation. The higher 

traffic intensity the higher collision risk, thus this criterion is also to be minimized. Likewise, 

violation of safety constraint should be minimized, however some violations i.e. land crossings 

are unacceptable for a route. Unfortunately safety issues might be in contrary to the economic 

goals, especially when the shortest route crosses a high vessel traffic intensity area or land. Thus 

an equilibrium between economic and safety criteria is to be found resulting in possibly 

inexpensive and safe route. 

Having analyzed these facts a goal function for the evolutionary algorithm might be proposed 

as follows (equations 13-17): 
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where 

tr – passage time for the route [h], 



vfc – total fuel consumption for the route [t], 

itraff – vessel traffic intensity (dimensionless), 

pi – penalty imposed  when the i-th constraint is not met (dimensionless), 

ri – boolean value depicting whether the i-th constraint is not met (dimensionless). 

Constraints. All limitations to the problem domain in weather routing are purely navigational. 

Landmasses which cannot be crossed constitute the prime constraint. Even a small violation of 

the constraint results in a route unacceptable from navigational standpoint. Along with an 

assumption that land shore does not change its shape during a route execution this constraint is 

assumed static. However, other navigational constraints exist that do not fall into category of 

static ones, namely ice phenomenon and tropical cyclones. Available information about ice and 

cyclones is mostly derived from forecasted, that is probablistic, data. Moreover, both ice 

concentrations as well as a centre of a tropical depression change with time. Thus these 

constraints are assumed fuzzy dynamic. 

Chromosome structure. Values to be sought in weather routing are:  

− a set of waypoints given by their geographical coordinates; 

− velocity of the ship between any two consecutive waypoints, assumed constant on a 

sector between two waypoints. 

In order to suitably represent given vales a chromosome’s structure is proposed as follows. A 

chromosome is an ordered set of threesome values (xi; yi; vi) where (xi; yi) represent geographical 

coordinates (longitude, latitude) of i-th waypoint and vi represents ship’s velocity between 

(i-1)-th and i-th waypoint. The first element in a chromosome has its velocity value undefined. 

Initial population. Having determined all the basic routes, namely the orthodrome and isochrone 

route, it is possible to build the initial population for the weather routing evolutionary process. 

The population should consist of avg. 50 individuals, each being a random mutation of the basic 

routes. Also pure orthodrome and isochrone route should belong to the initial population. In 

addition to that, it is worth considering whether some other routes optimizing one of the other 

criteria (fuel consumption, vessel traffic intensity, degree of constraints violation) should also be 

included in the initial population.  

Specialized operators. There are several specialized “genetic” operator required, customized to 

the established chromosome structure. According to the description of route finding problems 

provided by Michalewicz ([4]), following operators will be implemented in the weather routing 

evolutionary algorithm: 

− crossing; 

− mutation; 

− insertion; 

− deletion;  

− smoothing; 

− exchange of sub-routes. 



Stop condition. In the end of each generation an increase of fitness function will be determined. 

Whenever the increase will be satisfactorily small (smaller than some ε value), the evolutionary 

process will be terminated. 

Additional applicable MOEA techniques. According to the review given in section 2, 

following MOEA techniques will be applied to the weather routing evolutionary algorithm: 

− secondary population with its basic strategy )1()()( −= tPtPtP knowncurrentknown U ; 

− multiobjective ranking by Zizler and Thiele, actively utilizing data from the secondary 

population; 

− criterion-space fitness sharing with Goldberg’s niche count. 

Mating restrictions is of arguable benefit to MOEA implementation [7], thus no such 

restrictions are planned to be introduced to the proposed algorithm.  

4 Summary   

This paper presents a review of available techniques taken from MultiObjective Evolutionary 

Algorithms (MOEAs). The MOEA techniques together with basic evolutionary approach are 

then applied to the problem of vessel route finding for changeable weather conditions, referred to 

as weather routing. Evolutionary algorithm for weather routing is presented along with selected 

MOEA techniques. Description provided refers to a proposal of the evolutionary algorithm for 

weather routing, not implemented yet. Yet conclusions and comments to the assumptions given 

should be presented when the algorithm is finally implemented. 
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