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Abstract. In this paper we revise the Weismann’s idea of aging and death as
adaptive traits. First, we analyse the adaptation process to changing environment
of isolated populations (species) having different lifetime and show, that short
lifetime may have adaptive value at a population level. Next, we use a Markov
chain to model a competition between individuals in a finite population. We
derive a condition for equilibrium in the population and explain why the long-lived
individuals usually dominate the population. As far as the model reflects reality,
our conclusion is that though not impossible, it would require an extraordinary
environment for programmed death to be stable adaptive trait.

1 Introduction

Despite the ages of inquiry, the search for the ultimate answer to the fundamental ques-
tion of “Why do we age?” [7] is still ongoing. One of the first explanation of aging on the
ground of evolutionary theory was given by experimental biologist August Weismann in
1882 [2, 8]. Weismann’s original hypothesis, known also as ‘programmed death’ theory,
assumes that biological organisms evolved a specific death mechanism in order to main-
tain swift generation turnover, resulting in better adaptability to changing environment.
Programmed death presumably eliminates the old, “worn-out” members of a population,
making room and sparing resources for younger individuals. So rather than individ-
ual’s adaptive trait, it would be an altruistic trait, beneficial for the whole population
and allowing it to take advantage over some neighbor populations. So in general terms,
Weismann suggested, that aging and death by senescence are adaptive traits, evolved by
natural selection.

Later, Weismann himself discarded the programmed death hypothesis, long before
a systematic research questioned the viability of any group selection mechanisms, and
altruistic aging in particular. There are several arguments against the programmed death
[2, 6, 8]. The major one is that organisms in the wild quite seldom die due to their age
and more often causes are extrinsic, such as predation, infections or hunger. Thus, there
is a weak selection pressure exerting the “one more reason to die”. From the programmed
death it follows, that the age of the oldest organisms in the wild shall not significantly
differ from the age of the old organisms kept in some protected environment. Gavrilov



and Gavrilova [2] give an example of the chaffinch (Fringilla coelebs), which can live
for 29 years in captivity, but due to the extrinsic mortality, its mean lifespan in the
wild is about 18 months and only 0.1% of chaffinches survive to age 11. So either the
programmed death doesn’t have much opportunity to exercise in the wild or the death
in captivity isn’t programmed at all.

Another argument results from the analysis of statistical data on the age of death.
Programmed death predicts a sharp increase of mortality around some specific age, while
studies over many species reveal, that the curve of rate of death is smooth and monotonic,
without the expected peak. The last major argument comes from the evolutionary point
of view itself, as it questions the adaptive value of the premature death. If an individual
is poorly adapted, it will die in the one of many possible ways, but there is little point in
putting it to death on schedule if it’s well adapted. “The individual cost of programmed
death is sufficiently great and the group benefit sufficiently diffuse that quantitative
models that are based on multilevel selection do not support the evolution of ageing
programmes through these mechanisms” [8].

Since Weismann’s idea has been discarded, several other explanations of aging in
evolutionary perspective were proposed. Namely ‘mutation accumulation’ theory, ‘dis-
posable soma’ theory and the ‘antagonistic pleiotropy’ theory [7, 2, 8]. All the three
theories are not mutually exclusive, but they interweave and there is evidence support-
ing each of them, though counterexamples also can be found. In general, they assert
aging is a detrimental side effect and not adaptation.

Surprisingly, the Weismann’s idea of aging as an adaptation occasionally returns
and arguments in favour of the programmed death, or more generally ‘programmed
aging’, are adduced [9, 8]. Apart from mentioned benefits in the form of increased
adaptability at the population level, there is also possible role of aging in stabilizing
population dynamics, i.e. preventing overcrowding and local extinction [10] and reducing
the negative impact of epidemics [5]. The novel argument is that senescence contributes to
“organized” generation turnover and helps to maintain genetic diversity in a population.
Diversity, which is important for “genetic health” and which could be lost due to endless
reproduction of some well-fit, non-aging and dominant individuals [3]. The likelihood of
death as genetic adaptation was also suggested by Travis [11], reporting computational
results from a model of spatially structured population with localized dispersal.

In the following sections we reconsider the Weismann’s idea in a framework of arti-
ficial evolutionary models. In section 2 we refresh the famous Hinton and Nowlan’s [4]
experiment to show the existence of an optimal rate of generation turnover. Next, in
section 3 we construct even further simplified model of evolution and show that short
lifetime can be beneficial trait in isolated population, though it’s rather detrimental in a
mixed population of short- and long-lived “species”1. Finally, we derive a condition for
equilibrium between many co-existing species having different programmed lifetime and
verify this condition with simulation experiments.

2 The Hinton and Nowlan’s experiment revisited

In their famous experiment, Hinton and Nowlan [4] investigate the Baldwin effect, i.e.
the relationship between learning and evolution. Let’s briefly describe their model and

1We call them species, though the term ‘population’ shall refer to individuals of a single specimen.



see how it’s related to the problem of aging.
Let there be some target binary string of length l = 20 (that is environment) and a

population of P = 1000 individuals having a triallelic string genotype of matching length
l. The genotype’s alphabet is {0, 1, ?}, where 0’s and 1’s correspond to fixed alleles and
the ?’s are learnable. Each individual is initialized with some random string from the
uniform distribution of fixed and learnable alleles, so that initial frequencies of alleles
are 0.25, 0.25 and 0.5, respectively. The individual lives for T = 1000 time steps and
in every step it guesses a combination of learnable alleles. If the resulting bit string of
fixed and learned alleles matches the target string, then the individual obtain fitness value
f = 1+(l−1)n/T where n amounts to remaining lifetime. So individuals that didn’t guess
the target string get fitness 1 and those who guessed immediately get 20. Then follows a
reproduction and individuals are selected proportionally to their fitness (roullette wheel)
and recombined (one-point crossover). We introduce only a minor modification to the
original model by also applying a mutation, with probability pm = 0.005.

Hinton and Nowlan explain the model in more details and also consider its realistic
plausibility. We are not concerned with the mechanisms of learning — whether it’s
performed by a neural network or it has a form of some biochemical adaptation, like
perhaps in some microorganisms. The question we ask is if there is some optimal lifetime
T , resulting in the fastest adaptation to the environment? Figure 1 presents the results
of simulations averaged over 50 trials. Each curve along time (t axis) corresponds to
a different specimen or isolated population of individuals having their lifetime T fixed.
All the populations live for 216 time steps, so that species having the lifetime shorter
reproduce more frequently and vice versa. The number of generations a population lives
through is then 216/T .
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Figure 1. The course of adaptation of species having specific lifetime.

One could argue, that this comparison is biased toward short-lived species, as it
doesn’t take into account the possible discontinuity of learning due to reproduction and
the period of development. In additional experiments we assumed a constant “penalty
period” of 100 time steps for each generation. Such a penalty impacts mostly the short-
lived populations, reducing their learning effectiveness and slowing their adaptation.



The fitness “fore-front” shifts toward the longer-lived populations. The negative impact,
however, declines with increasing lifetime and the optimal lifetime appear not to shift
very far — from around 128 to 256 time steps.

3 Another model of evolution

We used the Hinton and Nowlan’s model to show, that adaptability doesn’t necessarily
increase monotonically with the lifetime and some optimum can be found. The model
was devised to investigate the Baldwin effect and takes the learning into account. Let’s
further simplify the model and reject learning, leaving the genetic adaptation only.

If we drop the learning and modify the fitness function slightly, what remains resemble
the one-max problem. Let there be target binary string of length l = 20 and so long the
genotypes of individuals. As before, extrinsic mortality is excluded and individuals are
assured to live for T time steps. The fitness is calculated as

f = (m/l)φ, (1)

where m denotes the number of alleles in a genotype matching the target and φ is
some selection pressure factor (exponent). The reproduction cycle lacks recombination.
Selection is proportionate and mutation acts at every locus with probability pm = 1/(2l).

In such a model, where the adaptation is genetic only, the advantage of fast gen-
eration turnover is obvious. The expected rate of adaptation of randomly initialized
population is inversely proportional to the lifetime of individuals, i.e. increase in mean
fitness ∆f ∝ 1/T . However, this is only true in the very early phase of adaptation. As
soon as the fitness rises above average, deleterious mutations come to dominate and the
fitness saturates.

Adaptation to the static target (environment) could be reformulated as an adaptation
to some permanently changing environment. Let there be some probability pr = 1/l
of mutation of the target string (i.e. in every time step every locus is mutated with
probability pr). Then adaptability becomes adaptation and differences among rates of
adaptation appear as differences in levels of adaptation. This is illustrated in Figure 2,
presenting results of simulations averaged over 100 runs. Different rates for each of the
species in the early phase of adaptation turn to stable fitness values.

Apparently, in this purely artificial and very simple model, populations of short-
lived individuals demonstrate their advantage. But a significant assumption here is that
populations are isolated. The picture changes quite radically if we assume the individuals
of different lifetime species are mixed within a single, finite population. What are the
conditions for equilibrium between competing species?

4 Employing a Markov chain

The model presented in the previous section can be described with a Markov chain (see
e.g. [1]). Most evolutionary algorithms has a Markov property since the next generation
usually depends only on the previous one, as in our case.

Consider some finite and fixed size population P consisting of n species, represented by
Si individuals each, i.e. P = {Si}i=1,...,n. Individuals of different species are identical,
except of their expected (programmed) lifetime Ti and presumed fitness fi. Let pi(t)
denote the frequency (proportion) of individuals of specimen i in the population.
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Figure 2. The course of adaptation to changing environment of isolated populations of indi-
viduals having specific lifetime Ti and for selection pressure φ = 1 (a), and φ = 16 (b).

The reproduction cycle doesn’t differ much from that described in section 3. In
every time step t individuals whose lifetime expired, get replaced by mutated copies
of individuals selected from the population. Selection is proportional to the fitness of
individuals, regardless of specimen, so that frequencies of species pi(t) may vary. At
any time step, the probability that individual having lifetime Ti dies is equal to 1

Ti

and

the probability it’s still alive is Ti−1
Ti

. Probability that individual of specimen i will be
replaced by individual of specimen j in the next step, given that individual i dies, is:

qj(t) =
pj(t)fj

∑n

i=1 pi(t)fi

.

Let consider the following Markov chain with n states, corresponding to the evolving
population (Fig. 3). The state i of the chain denotes individuals of specimen i, i.e. whose
lifetime is Ti. In every time step t, the state i can remain the same or switch to state j.
Probabilities of transition from i to j are given by:

mij(t) =







i is still alive
︷ ︸︸ ︷

Ti − 1

Ti

+

i dies, but is reselected
︷ ︸︸ ︷

1

Ti

· qj(t) for i = j

1

Ti

· qj(t)

︸ ︷︷ ︸

i dies and gets replaced by j

for i 6= j
.

Notice the transition matrix Mt = [mij(t)] depends on time, what means that Markov
chain is non-stationary. Having transition matrix Mt and initial distribution p0

j we can
produce frequencies pj(t) of individuals belonging to different species at any time step t:

pj(1) = p0
j , j = 1, . . . , n

pj(t + 1) =

n∑

i=1

pi(t)mij(t), j = 1, . . . , n, t = 1, 2, . . . (2)
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Figure 3. Markov chain corresponding to the evolving population, i-th specimen considered.

Let’s consider the simplest case, when we have only two species — the short-lived
Ss(fs, Ts) and the long-lived Sl(fl, Tl). We want to find the conditions on the fitness
function to keep the population in the equilibrium.

From the stationary distribution condition:

[ps, pl] ·

[
Ts−1

Ts

+ 1
Ts

· psfs

psfs+plfl

1
Ts

· plfl

psfs+plfl

1
Tl

· psfs

psfs+plfl

Tl−1
Tl

+ 1
Tl

· plfl

psfs+plfl

]

= [ps, pl],

the equilibrium condition appears to be Tlfl = Tsfs. This result clearly shows, that
short-lived individuals must be as many times more fit as they life is shorter if they are
to have equal chance to survive.

Similar condition can be derived in case of a mixture of n species, i.e. when P =
{Si(fi, Ti)}i=1,...,n. Suppose that [p1, p2, . . . , pn], pj > 0 is the stationary distribution:

n∑

i=1

pimij(t) = pj , j = 1, . . . , n,

what expands to:

p1
1

T1
·

pjfj
∑

i pifi

+ . . . + pj

(
Tj − 1

Tj

+
1

Tj

·
pjfj

∑

i pifi

)

+ . . . + pn

1

Tn

·
pjfj

∑

i pifi

= pj ,

and after some algebraic transformations we obtain equilibrium condition:

fj =
1

Tj

∑

i pifi
∑

i pi/Ti

, i = 1, . . . , n.

This condition is met, when

fiTi = const, i = 1, . . . , n. (3)

Then probabilities of survival among species are all equal and the proportions in the
population shall remain constant during the evolution.

When the condition (3) is not satisfied, some species, namely those maximizing fiTi,
take selection advantage over the other and the proportions evolve. Example simulation
results are shown in Figure 4. In case all the species have equal fitness (or the selection



pressure φ = 0 in eq. 1), the longest-lived specimen quickly dominates the population,
regardless of the initial distribution (still assuming pi > 0). The domination of species
maximizing fiTi value can be observed in Figure 4b.

Using a Markov chain to model the evolution of population consisting of many com-
peting species one can explain, why the long-lived individuals usually dominate the pop-
ulation. Despite they are less fit, the product of their fitness and lifetime is expected
to be still higher than those of short-lived individuals. Simulation results are shown in
Figure 5. Assuming the linear fitness function (φ = 1) and starting with a population
dominated by the short-lived individuals, the longest-lived individuals quickly dominate
the population, even though their fitness is lower. This may not be the case with a
nonlinear fitness function (φ > 1), where small fitness advantage resulting from swift
generation turnover translates into large selection advantage.
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Figure 4. Evolution of species proportions in the population with equal fitness (fi = 1, a) and with
the arbitrarily modified fitness values (b).
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Figure 5. Evolution of species proportions with fitness values fi identified experimentally (Fig. 2) for
φ = 1 (a) and φ = 16 (b).

5 Conclusions

Swift generation turnover induced by the short lifetime may result in better genetic adap-
tation of a population or specimen. But for the short lifetime to be stable adaptive trait



some conditions must be satisfied. Either the short lifetime must be altruistically shared
across the whole population and the population protected from a long-lived mutants or
invaders, or the fitness benefit resulting from the rapid generation turnover must be suf-
ficiently high. It might be quite difficult to give an example of the environment, where
organisms adapt so quickly, that increase in their fitness from generation to generation
is proportional to the inverse of their lifetime. This is reflected by the high nonlinearity
(φ = 16 in eq. 1) in the fitness function, required to promote the short lifetime. So the
trade-off between individual costs and the group benefits of the short lifetime is usually
determined by the former.

The model described in sections 3 and 4 is drastically simple. Among many other sim-
plifications we excluded the cost of reproduction, possible fitness benefits from learning
or the mutability of lifetime. As far as the model is realistically plausible, we conclude
that aging and the programmed death can not be precluded as adaptive traits. Theoret-
ical conditions we derived in section 4 to support this claim seem quite unrealistic, but
not impossible to satisfy. Perhaps there are environmental niches, where selection condi-
tions are sufficiently “nonlinear”, resembling the winner-takes-all rule, to foster adaptive
lifetime.
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