
Non-Stationary Optimization with Multi-Population

Evolutionary Algorithm

JarosÃlaw Stańczak1 and Krzysztof Trojanowski2,3

1 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland,
email: stanczak@ibspan.waw.pl

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland,
email: trojanow@ipipan.waw.pl

3 Institute of Computer Science, University of Podlasie, Siedlce, Poland

Abstract. Non-stationary optimization of randomly changing environments is
a subject of unfading interest. In this paper we study application of multi-
population evolutionary algorithm to this problem. Presented algorithm works
with a set of sub-populations managed by the mechanism of exclusion coming
from the multiswarm version of particle swarm approach. The results show sig-
nificant improvement of the efficiency of the new algorithm in comparison with a
single population approach.

1 Introduction

Publication by Goldberg and Smith [8] in 1987 started exploration of a new research
area of a non-stationary optimization with heuristic techniques. This type of optimiza-
tion problems appears in the real world very often. It could be a problem of efficient
finding the shortest path from one point to another in the crowded streets of a big city
as well as a task of the continuous control of the parameters of the engine to keep it
working the most efficiently i.e. in the optimal conditions for varying requests of the
user. During two decades there appeared lots of publications concerning evolutionary
approach to this problem. Recently there are also publications where the heuristic ap-
proaches other than the evolutionary computation are applied. There are papers about
particle swarm (starting from 2000 e.g. [5]) or immune optimization algorithms (starting
from 1999 e.g. [7]). It is natural that some ideas move between heuristics and this way
new approaches are created. An example of such transfer of ideas is presented in this
paper. The presented algorithm employs mechanisms of multiswarm management in the
multi-population version of the evolutionary algorithm.

The paper is organized as follows. In Section 2 a brief description of the optimization
algorithm is presented. Section 3 presents some details of the selected testing environment
while Section 4 – the results of experiments performed with the environment. Section 5
concludes the presented research.

2 The multi-population evolutionary algorithm

As a main framework of our search engine a classic evolutionary algorithm was ap-
plied. The algorithm works with real valued vectors of coordinates of solutions in an
n-dimensional search space.

Evolutionary operators The algorithm is equipped with a suite of evolutionary op-
erators. Some of them were already tested for non-stationary optimization [13] while
the others are new in the suite however they are also known in the literature. The set
consists of the following operators:

• mutation, version one – replaces one of the values in the array of size n by the
value generated by an uniform random number generator of the range (−50%; 50%)
respectively to the selected value (rather small change of the value). A new value
of an l-th coordinate of a solution x is calculated as follows:

if U(0, 1) > 0, 5 then x′[l] = x[l] + U(0, hil − x[l]) · 0.05,

else x[l] = x[l] − U(0, x[l] − lol) · 0.05.

where: x[l] — the value of the l-th coordinate of the solution, x[l] — the value of
the l-th coordinate of the clone’s predecessor, lol,hil — lower and upper limit for
the l-th coordinate, i.e. x[l] ∈ [loi, hii], U(a, b) — uniformly distributed random
value from [a, b].

• mutation, version two – classic real valued mutation, calculated as follows:

x′[l] = x[l] + 0.5 ∗ N(0, 1) (1)

• mutation, version three – originates from clonal selection based algorithms, pre-
cisely from [6] where it was a component of opt-Ainet optimization algorithm. The
operator showed its efficiency for non-stationary optimization [15] and therefore
it was added to the suite. A new value of an l-th coordinate of a solution x is
calculated as follows:

x′[l] = x[l] + N(0, σl), (2)

σl = (rm/β) · (dom widthl/2) · exp(−f ′(x)). (3)

where: x[l] – a value of the l-th coordinate of x, N(0, 1) – a Gaussian random
variable of zero mean and σ = 1, rm – the mutation range (0 < rm ≤ 1), β – a
weight factor which for all our experiments was set to 1, dom widthl — a constant
value which is equal to the distance between the upper and the lower boundary
of the l-th dimension of the search domain, and f ′(x) is the fitness of the clone’s
predecessor normalized in [0,1]:

f ′(x) =
f(x) − fmin

(fmax − fmin)
, (4)

fmax = max
xj ,∀j∈{1,...|P |}

f(xj) and fmin = min
xj ,∀j∈{1,...|P |}

f(xj).

• mutation, version four – same as in version three, but works for all cells in the
vector.

• mutation, version five – inversion of some randomly chosen sub-vector the whole
vector representing multi-dimensional solution.

If the value of any of the coordinates after mutation x[l] is out of the domain then
the remainder of x[l] and dom widthl is evaluated: x[l] = x[l] mod dom widthl.

Operators efficiency evaluation rules In the algorithm a method of dynamic se-
lection of operators was applied, as described in [10, 11, 12]. The method is based on a
general rule that the more improvement of the fitness value of an individual is obtained,
the larger is the growth of the value of the quality factor assigned to the operator that
caused the improvement. The quality factors are assigned to the individuals i.e. each
of the individuals possess its own set of factors. Probabilities of operators’ selection are
obtained using simple normalization of quality factors and each individual selects one
operator in one iteration according to its own experience. The factors are modified every
time the operator works on the selected individual. They are increased when the modi-
fication is successful, i.e. an offspring is better than the parent, and decreased when the
modification fails. The same operator can have (and usually has) different evaluations at
different individuals. For more details about the dynamic selection the reader is referred
to [13].

The only difference between the selection published in [10, 11, 12] and the selection
applied in the research presented below lies in the way of calculation of the quality factors
for the operators in a solution. In the presented approach we applied a new method called
TD(λ). The method is based on machine learning and reinforcement learning as well. An
individual is an agent which role is to select and call one of the evolutionary operators.
When the selected i-th operator is applied it can be said that an agent performs action
ai leading to a new state si which in our case is a new solution. Agent receives rewards
and penalties respectively to the quality of the new state. The aim of the agent is to
perform the actions which give the highest long term discounted cumulative reward V ∗.

V ∗ = max
Π

V Π, V Π = EΠ{
∞∑

k=0

γkrt+k+1} (5)

where:
• Π – represents strategy of the agent,

• V Π – represents discounted cumulative reward obtained using strategy Π,

• EΠ – represents expected value of the reward when using strategy Π,

• γ – represents discount factor,

• k – represents following time steps,

• t – represents current time
For evaluation of the optimal strategy Π the following formula is applied:

V (st+1) = V (st) + α[rt+1 + γV ∗(st+1) − V (st)] (6)

where:
• V (st) – is a quality factor or discounted cumulative reward,

• V ∗(st+1) – estimated value of the best quality factor (in our experiments we take
the value gained by the best operator)

• α – is a learning factor

• γ – is a discount factor

• rt+1 – represents the reward for the best action which is equal to the improvement
of the quality of a solution after execution of the evolutionary operator

• t – current moment in time.

In the presented experiments the values of α and γ were set to 0.1 and 0.2 respectively.
The selection was based on the set of additional experiments where each possible pair of
values for α and γ from 0 to 1 with step 0.1 was tested (11 steps each parameter).

Selection At the beginning of our research we tested a set of selection methods to find
the most efficient one. We did tests with tournament, niching, deterministic, histogram
and mixed selection. All of them were tested with a single population of individuals
and the obtained results were not satisfying. A real improvement was obtained when we
turned to a multi-population management of the set of solution. The selected method of
population management is based on the idea of Exclusion [1].

In our approach the population is divided into a set of sub-populations. The number
of subpopulation is constant during the process of search. However there are mech-
anisms which eliminate some of the sub-populations and introduce another ones. To
guarantee distribution of the subpopulation over the search space the exclusion mech-
anism eliminates sub-populations which are located too close to each other. When the
populations are too close, most probably they occupy the same optimum. In such a
case one of them is eliminated and a new subpopulation is generated from scratch. Any
two sub-populations are too close if for the two best individuals from the compared sub-
populations the distance for at least n coordinates is closer than the defined threshold
ρ. If so the sub-population with the better solution stays unchanged while the another
one is exchanged by a set of randomly generated individuals. Every m iterations of the
search process all the populations were tested if they were too close and if the respective
conditions were satisfied the mechanism of exclusion was executed.

It is worth to note that except for exclusion yet another mechanism of sub-populations’
management suitable to transfer to evolutionary algorithms called Anti-Convergence was
proposed in [1]. Anti-Convergence protects against convergence of sub-populations which
is a negative phenomenon since such sub-populations are not resistant to changes in
the environment. The performed action is simple: in case of convergence of all the
populations the worst one is exchanged by a set of randomly generated individuals.
We did also some preliminary tests with this mechanism but in opposite to the results of
particle swarm approach presented in [1] the results obtained with evolutionary algorithm
decreased when this mechanism was employed. Therefore we did not use this in our
research.

Except for the exclusion mechanism described above there is no interaction between
sub-populations. Each of them is treated as an independent self-governing population
which is not influenced by any of the neighbors. The implemented process of evolution
in a single sub-population is based on the classic idea of parents and offspring. The
individuals have successors and the number of successors of an individual is proportional
to the fitness function value for this individual respectively to the mean fitness of the
entire sub-population. The offspring solutions are gathered in a set and when the set
is complete i.e. when all the parent solutions generated their offspring the replacement
starts. Those of the solutions from a set of parents are replaced by the solutions from

the set of offspring for whom the fitness of the offspring is better. This deterministic
method of succession looks like very primitive however for the proposed sub-population
management and non-stationary optimization tasks showed to be the most efficient.

3 Test case and applied measures

For our tests we selected the MPB [3, 9] generator as the most known of the generators
of randomly changing testing environments. In MPB the landscape is build of a set of
unimodal functions individually controlled by the parameters allowing to create different
types of changes. The parameters of the MPB were set exactly the same as specified in
the publicly available web page [2] for scenario 2. The fitness landscape was defined for
the 5-dimensional search space with boundaries for each of dimensions set to 〈0; 100〉.
For such a domain there exist a set of moving peaks which vary their height randomly
within the interval 〈30; 70〉, width within 〈1; 12〉 and position by a distance of 1 every 10
iterations of the search process.

In the performed experiments the offline error, oe measure [3, 4] of obtained results
was used. The returned value represents the average deviation from the optimum of the
fitness of the best individual evaluated since the last change of the fitness landscape.
Formally:

oe =
1

Nc

Nc∑

j=1

1

Ne(j)

Ne(j)∑

k=1

(f∗
j − f∗

jk) (7)

where:
Nc is the total number of changes of the fitness landscape in the experiment, Ne(j) is
the number of evaluations of the solutions performed for the j-th state of the landscape,
f∗

j is the value of optimal solution for the j-th landscape and f∗
jk is the best value found

among the ones belonging to the set from fj1 till fjk where fjk is the value of the fitness
function returned for its k-th call performed between the j-th and (j + 1)-th change in
the landscape.

During the process of search the offline error can be calculated in two ways: in one of
them the error is evaluated from the beginning of the experiment while in another one
– the value of offline error starts to be evaluated only after some number of changes in
the fitness landscape. This second way is advised in the literature as saddled with the
less measurement error caused by the initial phase of the search process (for extended
discussion on the possible influence of the initial phase on the results obtained for MPB
the reader is referred to [14]). Therefore, just this way was applied in our tests.

To make a possibility of comparisons with results published by other authors the
number of evaluations between subsequent changes is similar and equals approx. 5000.
During a single experiment the fitness landscape changed 110 times (however for the first
10 changes the error was not evaluated). Every experiment was repeated 50 times and
the mean is presented in the Figures.

4 Results of experiments

Our experiments can be divided into three stages. In the first stage we wanted to check
if the verification of the closeness criterion should have to be based on the full set of

coordinates. In this stage we did two groups of experiments where we observed the
values of offline error obtained for different numbers of dimensions checked to verify the
closeness of any two sub-populations and for different numbers of sub-populations. The
criterion of closeness was satisfied if for any n of 5 dimensions the coordinates of compared
solutions were in a closer distance than the selected threshold ρ where n changes from 1
to 5. We did tests for two values of ρ: for 0.05 and for 0.04. The results are presented in
Figure 1.

 5 10 15 20 25 30 35 40 45 50 1

 2

 3

 4

 5
 4
 6
 8

 10
 12
 14
 16
 18
 20

Offline error for MPB scenario 2

 6
 5.5
 5

 4.5
 4

 3.5
 3

num. of sub-populations

num. of compared dimensions

 5 10 15 20 25 30 35 40 45 50 1

 2

 3

 4

 5 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Offline error for MPB scenario 2

 6
 5.5
 5

 4.5
 4

 3.5
 3

num. of sub-populations

num. of compared dimensions

Figure 1. Offline error for different numbers of dimensions checked to verify the closeness of
any two sub-populations vs. numbers of sub-populations for two values of closeness threshold:
ρ = 0.05 (top) and ρ = 0.04 (bottom)

In the second stage we observed the influence of the closeness threshold on the offline
error for different numbers of sub-populations. The results from the first stage allowed us
to select the best number of coordinates used to verify the closeness of any two population.
The number was set to 3. The results are presented in Figure 2.

In the third stage we selected the number of 25 sub-populations and for such a number
of sub-populations we compared the value of offline error obtained for different values

 5 10 15 20 25 30 35 40 45 50 0.01

 0.02

 0.03

 0.04

 0.05 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Offline error for MPB scenario 2

 2.95
 2.9
 2.85
 2.8
 2.75
 2.7

num. of sub-populations

closeness threshold

Figure 2. Offline error for different values of closeness threshold ρ vs. number of sub-populations
for the rule of closeness where for just 3 of the five dimensions of the search space the distance
between coordinates is checked.

of closeness threshold ρ and for different numbers of dimensions checked to verify the
closeness of any two sub-populations. The results are presented in Figure 3.

 1
 2

 3
 4

 5 0.01

 0.02

 0.03

 0.04

 0.05

 0.06 2

 3

 4

 5

 6

 7

Offline error for MPB scenario 2

 2.95
 2.9
 2.85
 2.8
 2.75
 2.7

num. of compared dimensions

closeness threshold

Figure 3. Offline error for different values of closeness threshold ρ vs. different numbers of
dimensions checked to verify the closeness of any two sub-populations for a set of 25 sub-
populations

The three stages of the experiments presented above allowed us to find the optimal
set of parameters’ values (of course the set is as optimal as precise was the search through
the domain of the possible parameters’ settings). For the selected set of values i.e. for
ρ = 0.05, 25 sub-populations, and for 3 coordinated checked to verify the closeness of the
sub-populations we did a single experiment where the current value of offline error was

monitored during the search of process. The series of 50 runs of this experiment took
941,8 sec for the Pentium III 790MHz with RedHat 9.0. The observed changes in the
offline error in a single experiment are presented in Figure 4.

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000

iterations

Offline error for MPB scenario 2

Figure 4. Offline error evaluated at subsequent changes of the fitness landscape. Evaluation
was started after the 10-th change in the landscape. Key parameters settings: ρ = 0.05, 25
sub-populations, 3 coordinated are checked to verify the closeness of the sub-populations. Final
value of the offline error: 2.66

5 Conclusions

The main goal of this work was further research in the field of evolutionary optimization
of non-stationary tasks. The results show that almost all the components of the algo-
rithm should be fitted to this very specific type of optimization. Among them the most
important role plays appropriate population management. The empirical results showed
that co-evolutionary approach with a simple deterministic selection in sub-populations
and the mechanism of exclusion of populations being too close is the most efficient.
Mechanism of exclusion introduced additional parameters necessary to tune like number
of dimensions to check or closeness range.

Another component of the algorithm to rebuild was a set of evolutionary operators
allowing quick and precise following the changing optimum. Performed experiments
confirmed necessity of careful selection of modification operators: leaving those which
introduce the most valuable modifications and avoiding those which generate less valuable
modifications and thus simply waste calls of fitness function evaluation. The set of the
operator needed appropriate management strategy of use of them. The proposed strategy
is based on the methods applied in the reinforcement learning.

Finally there was created an algorithm equipped with strong adaptive abilities which
follows the varying optimum quickly and with respectively low level of the offline er-
ror. We hope that with a further research of the population management and selection
methods in the algorithm the current level of efficiency can be yet improved.

Bibliography

[1] T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence in dy-
namic environments. IEEE Trans. on Evolutionary Computation, 10(4):459–472,
2006.

[2] J. Branke. The moving peaks benchmark. URL: http://www.aifb.uni-karlsruhe.de/
∼jbr/MovPeaks/movpeaks/.

[3] J. Branke. Memory enhanced evolutionary algorithm for changing optimization
problems. In Proc. of the Congress on Evolutionary Computation, volume 3, pages
1875–1882. IEEE Press, Piscataway, NJ, 1999.

[4] J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, 2002.

[5] A. Carlisle and G. Dozier. Adapting particle swarm optimization to dynamic en-
vironments. In Proc. of the Int’nal Conf. on AI (IC-AI 2000), volume I, pages
429–434. CSREA Press, 2000.

[6] L.N. de Castro and J. Timmis. An artificial immune network for multimodal function
optimization. In Proc. of the Congress on Evolutionary Computation, volume 1,
pages 699–674. IEEE Press, Piscataway, NJ, 2002.

[7] A. Gaspar and P. Collard. From GAs to artificial immune systems: Improving
adaptation in time dependent optimization. In Proc. of the Congress on Evolutionary
Computation, volume 3, pages 1859–1866. IEEE Press, Piscataway, NJ, 1999.

[8] D. E. Goldberg and R. E. Smith. Non-stationary function optimisation using genetic
algorithms with dominance and diploidy. In Genetic Algorithms and Their Applica-
tions: Proc. of the 2nd Int’nal Conf. on Genetic Algorithms (ICGA-2), pages 59–68.
Lawrence Erlbaum Associates, 1987.

[9] R. W. Morrison and K. A. De Jong. A test problem generator for non-stationary
environments. In Proc. of the Congress on Evolutionary Computation, volume 3,
pages 1859–1866. IEEE Press, Piscataway, NJ, 1999.

[10] J. Mulawka, J. Stańczak, and B. K. Verma. Genetic algorithms with adaptive prob-
abilities of operators selection. In Third Int’nal Conf. on Computational Intelligence
and Multimedia Applications (ICCIMA’99), pages 464–468. IEEE Computer Soci-
ety, 1999.

[11] J. Stańczak. Algorytm ewolucyjny z populacja̧ ’inteligentnych’ osobników. In Proc.
of the 4th National Conf. on Evolutionary Computation and Global Optimisation,
pages 207–218. Warsaw Univ. of Technology Publishing House, 2000.

[12] J. Stańczak. Biologically inspired methods for control of evolutionary algorithms.
Control and Cybernetics, 32(2):411–433, 2003.

[13] J. Stańczak and K. Trojanowski. Properties of selection methods applied to non-
stationary optimization tasks. In Proc. of the 7th National Conf. on Evolutionary
Computation and Global Optimisation, pages 171–180. Warsaw Univ. of Technology
Publishing House, 2004.

[14] K. Trojanowski. B-cell algorithm as a parallel approach to optimization of moving
peaks benchmark tasks. Accepted for publication at the Int’nal Conf.: 6-th Com-
puter Information Systems and Industrial Management Applications, CISIM 2007,
EÃlk, Poland, June 28 - June 30, 2007.

[15] K. Trojanowski and S. T. Wierzchoń. B-cell algorithm for non-stationary optimiza-
tion. In Advanced Computer Systems, Proc. of ACS/CISIM Conf., volume 1, pages
53–64. Publishing House of Szczecin Univ. of Technology, 2006.

