Twin adaptive scheme for solving inverse problems

R. Schaefer! and B. Barabasz?> and M. Paszynski'

! Department of Computer Science,University of Science and Technology, Cracow, Poland,
email: schaefer@agh.edu.pl, paszynsk@agh.edu.pl
? Department of Modeling and Information Technology, University of Science and Technology,
Cracow, Poland, e-mail: barabasz@Qmetal.agh.edu.pl

Abstract. The paper deals with a class of inverse parametric problems for which
the energy function may be defined. The advanced multi-deme strategy that
offers an adaptive accuracy is utilized for solving associated optimal control prob-
lems. The direct problems necessary for fitness evaluation are computed by the
hp-adaptive Finite Elements. The new iterative strategy balances the error of
solving the direct problem and the error of solving the optimal control problem
in order to decrease the total computational cost. The concept of the strategy is
partially formally verified (see Lemma 3.1 and 3.2), moreover the advantages in
the computational practice are mentioned.

1 DMotivation

The inverse parameter problems are frequently formulated as the optimal control ones
in which we try to find the vector of parameters of the partial differential equation
by minimizing the proper error function. The high computational cost of the error
function evaluation and its frequent multimodality make the inverse parameter problems
extremely heavy ones.

The heuristic method well suited do solve such problems is the multi-deme Hierarchic
Genetic Strategy (HGS) [1], [8]- It offers the reasonable efficiency by using the flexible
accuracy of the search performed by various demes.

Each evaluation of the error function that stands for the fitness in the HGS needs the
approximate solving of the direct problem (the boundary-value problem for the PDEs).
One of the most effective method in this area is the hp-adaptive Finite Element Method
(FEM) that may offer up to the exponential decrease of the direct problem error with
respect to the hp approximation parameters (see e.g. [3]).

Authors pretended in [4] the advantages of the common adaptation of the step length
of the convex optimization method with the hp adaptation in solving direct problem. The
paper extends this idea of common adaptation in HGS and FEM in order to decrease
the computational cost of solving inverse problems in case of multimodal error function.
The class of inverse parametric problems for which the energy function may be defined
is selected. The extended HGS/hp-adaptive FEM strategy (Algorithm 2) base on two
mathematical results (Lemma 2, [4] and Lemma 2, Section 5 and the resulting equation
11) that makes possible to balance the errors coming from the optimization method with
the relative error of solving direct problem.



2 Adaptive FEM technique for solving direct problems

The hp adaptive FEM [9], [5] generates a sequence of meshes delivering the exponential
convergence of the numerical error with respect to the problem size, expressed in terms of
the number of degrees of freedom over the computational mesh. Since the computational
cost is the polynomial function of the problem size, then the hp adaptivity provides
an exponential convergence of the numerical error with respect to the CPU time. The
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Figure 1. The coarse mesh with p = 2 and fine mesh with p = 3 on all elements edges, faces,
and interiors. The optimal meshes after the first, second and third iterations. Different shading
denote different polynomial orders of approximation.

method starts from the arbitrarily selected initial mesh as in the example presented in
the most left part of Fig. 1. The polynomial order of approximation in this example was
uniformly set to p = 2 over all finite elements edges, faces and interiors. The different
polynomial orders of approximations are denoted on the pictures by different shading.
Note, that the polynomial orders of approximation may vary on elements edges and
faces, in particular we may have different orders of approximations in both directions
on element faces. The polynomial orders of approximation on element interiors are not
denoted in the pictures, but they may be different in each of three possible directions.
The minimum rule is enforced on the mesh. The polynomial orders of approximation
on element faces is equal to the minimum of orders of adjacent interiors, as well as the
polynomial orders on edges are equal to the minimum of orders on adjacent faces.

The method solves the problem on the initial mesh, called the "coarse" mesh, then the
mesh is globally hp refined. Each finite element is broken into 8 child elements, and the
polynomial orders of approximation are uniformly raised by one, on each element edges,
faces and interiors. The problem is solved again on the obtained "fine" mesh, presented
in the second picture in Fig. 1. The relative error estimations for each finite element
from the "coarse" mesh are utilized to generate new optimal mesh, presented in the third
picture in Fig. 1. Finite element with high relative are either h, p or hp refined. The h
refinement consists in breaking a finite element into smaller child elements, in one, two
or three possible directions. The p refinement consists in adjusting polynomial orders of
approximation on some element edges, faces or interiors. The hp refinement is a mix of
both i and p refinements. For more details on the algorithm selecting optimal h, p or hp
refinements, please refer to [9]. The optimal mesh becomes the coarse mesh for the next
iterations, and the entire procedure is repeated. The example of generated sequence of
optimal meshes is presented in Fig. 1. The fourth and fifth pictures present the optimal
meshes generated in the second and third steps of the algorithm. Fot the the particular
boundary value which was solved, the numerical error is reduced from 25% on the first
mesh (presented in the first picture), through 15% on the second mesh (presented in the



third picture), through 8% on the third mesh (presented in the fourth picture), down to
5% on the last mesh.

3 The relation between the objective function error and the
Finite Element Method error

Let us consider the direct problem defined by the abstract variational equation
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(1)
b(u,v)=1(v) YveV

obtained from the partial differential equation describing the sample physical phenomena.

In the above V is the proper Sobolev space, the ug is the shift of the Dirichlet boundary

conditions [3]. Functionals b and ! depend on the physical phenomena to be modeled.

They also depend on the inverse problem parameters d. If b is symmetric and positively

defined [7], the variational problem 1 is equivalent with the minimization one 2

{ u € ug+V

E (u) = b (u,u) — I (u) — min

(2)

where E (u) = b (u,u) — I (u) is the functional of the total energy of the solution.
The problem 1 may be approximated by using FEM with the finite dimensional sub-
space Vi, CV

Uh,p € Uy + Vh’p
(3)

b(tnp,vnp) =1 (vhp) Yonp € Vip.
The coarse mesh solution wuy, j, is found in the V3, space. The corresponding fine mesh
solution (I is found in the V%,p 41 space. The coarse mesh solution space is a subset
of the corresponding fine mesh solution space V}, ,, C V%,p 11, and both spaces are included

in the subsets of the space V of the solutions of the exact variational problem 1.
The inverse problem can be formulated as

Find de D : ’Jh,p (&) —J(d)

=l i (- (@) (@)
where d* denotes exact parameters of the inverse problem (exact solution of the vari-
ational formulation for these parameters is well comparable with experiment data), d
denotes approximated parameters of the inverse problem, D is a set of all admissible
parameters d, J (d*) = E (u(d*)) is the energy of the exact solution u (d*) of the vari-
ational problem 1 for exact parameters d*, Jy , (d) = E (un,p (d)) is the energy of the
solution up, p (d) of the approximated problem 3 for approximated parameters d.

The relative FEM error is defined by means of the energy norm difference between
the coarse and fine mesh solutions

errepn(d) = [Junp(@) =y @) - (5)

The energy norm involves the L? norm of the function and its first derivatives.



Objective function error is defined as the energy difference between the solution of
the approximated problem 3 for approximated parameter d and the exact solution of the
problem 1 for exact parameter d*, assumed to be equal to the energy measured during
the experiment

enp (d) = [Jnp(d) = J(d)]. (6)

In other words, the approximated parameter d is placed into the approximated formula-
tion 3, the solution of the problem up, p, (d) (which depends on d) is computed by FEM,
and the energy of the solution FE (up p (d)) is computed.

Lemma 3.1. (see Lemma 2 in [4])

1 2 "
e%7p+1 (d) < 5 Hu%erl (d) — Un,p (d)HE + |Jh’2” (d) -J (d )| ?
where
en o1 (d) = |Ja 0y (d) = J (d)

The objective function error over the fine mesh is limited by the relative FEM error
of the coarse mesh with respect to the fine mesh, plus the objective function error over
the coarse mesh.

We may evaluate

[ Jnp(d) = J(d)] < |Jnp(d) = J(d)] +|J(d) = J(d")] (7)

Moreover, if we asume that the functional J is Lipschitz continuous with respect to
the parameters d, then |J(d) — J(d*)| < a|d — d*|. The next Lemma is necessary for
estimation of the first term in the above formula.

Lemma 3.2.

2| Jhp(d) — J(d)] = [[u(d) — upy(d)|]5

Proof:
2 |Jnp(d) = J(d)| = 2 |Bupp(d) — Eu(d)| =

) —

[b(un p(d), unp(d)) = 21(unp(d)) = blu(d), u(d)) + 21(u(d))| =

[b(un,p(d), unp(d)) — b(u(d), u(d)) + 21(u(d) — unp(d))| =
[b(un,p(d), unp(d)) = blu(d), u(d)) +2b(u(d), u(d) — unp(d
|b(un,p(d), unp(d)) = blu(d), u(d)) +2b(u(d), u(d)) = 2b(u(d), u
[b(un,p(d), unp(d)) + b(u(d), u(d)) — 2b(u(d), un,p(d))] =
[b(un,p(d), unp(d)) = b(u(d), un p(d)) + b(u(d), u(d)) = b(u(d), unp(d))| =
|=b(u(d) = unp(d), up,p(d)) + b(u(d) = unp(d), u(d))| =
[b(u(d) = unp(d), u(d) = unp(d))] = [[u(d) = unp(d)]]3,

Finally, we have the desired dependency between the inverse error and the FEM error

NI =
hp(d))] =
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The last term « |d — d*| is of the same degree as the Lipschitz constant « times the
accuracy of the HGS algorithm, which will be shown in the following sections. The
objective function error with respect to the fine mesh is limited by the relative FEM
error of the coarse mesh solution with respect to the fine mesh solution plus absolute
FEM error of the coarse mesh solutions plus the accuracy of the HGS algorithm.

4 The main idea of HGS

Hierarchic Genetic Strategy was introduced by Kolodziej and Schaefer (see [1], [8]).
Its main idea is running a set of dependent evolutionary processes in parallel. The
dependency relation has a tree structure with a restricted number of levels m. The
processes of lower order (close to the root of the structure) represent a chaotic search
with low accuracy. They detect the promising regions of the optimization landscape, in
which more accurate processes of higher order are activated. Populations evolving in
different processes can contain individuals which represent the solution (the phenotype)
with different precision achieved by binary genotypes of different length.

The strategy starts with the process of the lowest order 1 called the root. After a
fixed number of evolution epochs the best adapted individual is selected. We call this
procedure a metaepoch of the fixed period K. After every metaepoch a new process of
the order 2 can be activated. This procedure is called sprouting operation. Sprouting
can be generalized in some way to branches of a population’s tree of a higher order up
to m — 1. Sprouting is performed conditionally, according to the outcome of the branch
comparison operation.

The HGS genetic process is of the order j € {1,...,m} if the individuals from the
evolving population have genotypes of the length s; € N. The lengths of binary strings
used in various order processes satisfy the inequality 1 < s; <,...,< s, < +00. The
initial population for the new sprouted branch of the order j+1 < m contains individuals
with prefixes identical to the genotype of the best adapted individual in the process of
the order j. Suffixes of the length s;;1 — s; of these individuals are initialized randomly
(according to the uniform distribution).

The branch comparison operation in HGS is based on the prefiz comparison. The
operator acts on populations evolving in the processes of two consecutive orders j and
j+ 1. Let us assume that we distinguish the best fitted individual = from the branch of
the j*" order after some metaepochs. If there is at least one individual with the prefix of
the length s; identical to x among j + 1 order branches, then a new process of the order
7+ 1 is not activated.

The special kind of hierarchical nested encoding is used in order to obtain the search
coherency for branches of various degrees. Let us denote by s the genetic universum
composed of binary codes of the length s > 0, so Qg,,...,Qs,, stand for the binary
genetic universa of branches of degrees 1,...,m. Each universum is linearly ordered by
the relation induced by the natural order among integers represented by binary strings.
Moreover, for j = 2,...,m we can represent genetic spaces {1, in the following way:

QSj = {(wag)a w € Qsj;p 5 € Qijsj,1} . (9)

We describe the hierarchical nested encoding for D C R only. The natural general-
ization of this construction to D C RY, N > 1 may be found in [8].



We intend to define a sequence of meshes D, ,...,D,, C D C R so that #;, =
#D,,, j=1,...,m and a sequence of one-to-one encoding mappings code; : 25, — D,..
First, we arbitrarily define the densest mesh D, in D C R and the encoding code,, :
Qs,, — D, as a strictly increasing function. Next, we arbitrarily define the set of
selections ¢; : Qs — Q. s, 7 = 1,...,m—1 necessary for the construction of meshes

D,,,j=1,...,m— 1. Finally, we put
Drj = {codej+1(w, (;5]‘ (w)), w € Qsj} . (10)

The meshes and encoding of the lower order are defined recursively. Figure 2 below shows
the sample meshes D, , D,, and D,, C R in the case of s1 =2, so =3, s3 =5, ¢1(00) =
(bl(Ol) = ]-7 ¢1(10) = (bl(]-]') = 07 ¢2 = 01. .] - ]-7 LR m-1.

D. —o n

3 ]

e

SO S U

r

Figure 2. One dimensional nested meshes (D C R) for Hierarchical Genetic Strategy in the
case s1 = 2,82 = 3,83 = 5.

The Simple Genetic Algorithm defined (see Vose [6]) with the constant size p; pop-
ulations that depends only on the branch order j = 1,...,m is used for each branch
processing during metaepoch. Usually, larger population cardinality is set for lower or-
der branches (close to the root) and much smaller cardinality is set for higher order
branches and leafs. Additionally, the mutation rate p,, is set higher for the root and
main branches in order to strengthen the wide exploration of the admissible domain.

Two kinds of stop condition are applied in the HGS strategy. The first called branch
stop condition detects the lack of progress in the evolution process. It bases on the
information gathered by the branch process only and is utilized to stop and remove the
non-promising branches of the strategy. The second one, called global stop condition try
to encounter the situation in which the HGS could not find more local extremes. The
global information about the HGS searching progress is necessary in this case.

Let us assume for the sake of simplicity, that all HGS branches are processed in
the common shared memory, so that the information about the searching progress is
globally available. We assume moreover that the operations on the branch populations
during each metaepoch are performed exclusively by the branch processes. The separate
module continuously checks the global stop condition and sends the proper signal to the
branch processes if satisfied. Now we are ready to formulate the draft of the HGS branch
algorithm of the j*" order j = 1,...,m (see the Algorithm 1).

1: if j =1 then
2: initialize the root population PY;
3: end if



4: repeat

5: t— 0;

6: if global stop condition received then

7: STOP;

8: end if

9: for all i € P! do

10: compute f;(i);

11: end for

12: if branch__stop _condition then

13: STOP;

14: end if

15: perform selection with the fitness f;;

16: perform genetic operations;

172 if NOT (¢t mod K) then

18: distinguish the best fitted individual z* from P?;
19: if (NOT prefiz_comparision(xz*)) AND (j < m) then
20: sproute;

21: end if

22: end if

23: t—1t+1;

24: until (false)

Algorithm 1: Draft of the HGS branch algorithm of j*" order

5 The coupled direct-inverse adaptive algorithm

The HGS may be utilized to solve the parameter inverse problem 4 under consideration.
The searching domain D C R¥ is the N-dimensional brick of admissible parameters
where N stands for the number of independent parameters to be identified. The m-level
nested affine encoding is utilized. Populations of higher order represent the solution
with the higher accuracy, while the lower order ones deliver the worse approximation
of solutions. Note, that the distance J; between the nodes of the j* order mesh D,
represent the upper bound of the accuracy that is available for the search at this HGS
degree. The individual i € €2, represents the admissible solution d = code;(i) to the
inverse problem in the j*® order HGS process. The right-hand-side of the formula 8
informs us about the components, that affects the FEM error degree if the fitness in the
4t order process is computed.

[ (@) = )]+ )~ wn (@) + a5 (1)

This information allows us to propose the extended version of the HGS strategy dedicated
for solving inverse problems, in which the fitness value is computed with the accuracy
adopted to the maximum accuracy offered by the HGS process of a particular order j.
The idea of this strategy is to balance the components of the FEM error given by the
formula 11 in order to decrease the computational cost of fitness evaluation, keeping the
accuracy of inverse problem solving on the assumed level. This approach is stressed in
the Algorithm 2. In particular we perform the hp adaptation of the FEM solution of the
direct problem while the ratio ”Té% is greater then the assumed Ratio which stands



for the parameter of this strategy. The above procedure is executed independently for
each individual i € P? at the evaluation step (see lines 10 - 17 in the Algorithm 2).

1: if j =1 then

2:  initialize the root population PY;

3: end if

4: repeat

5: t — 0;

6: if global stop condition received then

7 STOP;

8: end if

9: for allic P! do

10: solve the direct problem for d = code;(7) on the coarse and fine FEM meshes;
11: compute the relative FEM error errpga(d) according to the formula 5;
12: while errpgar(d) > Ratio ¢; do

13: execute one step of hp adaptivity;

14: solve the problem on the new coarse and fine FEM meshes;

15: compute the relative FEM error errpga(d) according to the formula 5;
16: end while;

17: compute f;(i) = |Jp p(d) — J(d*)| using the FEM mesh finally established;
18: end for

19: if branch__stop condition then
20: STOP;
21: end if
22: perform selection with the fitness f;;
23: perform genetic operations;

24:  if NOT (¢ mod K) then

25: distinguish the best fitted individual z* from P?;

26: if (NOT prefiz_comparison(z*)) AND (j < m) then

27: sprout;

28: end if

29: end if

30: t—1t+1;

31: until (false)

Algorithm 2: Draft of the HGS branch algorithm of j*" order with varying accuracy of
the fitness computation

6 Concluding remarks

e The proposed strategy allows for optimal balancing of the direct and inverse prob-

lem solution accuracy. Maintaining the optimal balance may significantly reduce
the computational cost of the inverse problem solution, keeping the optimal total
accuracy. The paper [4] showed the first test results in this direction. It contains
the optimal balance of errors: FEM and Hook-Jeeves procedures for searching the
CTE parameter in the SFIL process. The proposed strategy lead to significant
speedup of the solution process.



e Kotlodziej and Schaefer proved, that under some assumptions concerning the heuris-
tics (see Vose [6] for the SGA heuristic definition) of the SGA processes that define
the HGS strategy, it has the same ability of finding local extreme as the SGA pro-
cess used in the highest order branches (see e.g. Theorem 4.1 in [8]). They also
try to evaluate (see e.g. Hypothesis 1 in [8]) the efficiency of the HGS strategy
with respect to the single SGA process searching on the densest mesh D, . It
seems that the similar results may be obtained for the coupled HGS/hp-adaptive
FEM defined in the section. The main condition that have to be checked is the
proper tunning of the SGA processes of the consecutive orders 1,...,m in case of
the fitness computed with the varying accuracy.

e The presented version of the HGS/hp-adaptive FEM (see Algorithm 2) needs the
common RAM (shared memory computer environment) for implementation. It is
easy to re-designed this strategy to the message-passing environments. The agent-
oriented version of HGS is already designed and tested [2].

e The Algorithm 2 base on the assumed maximum accuracy forcing by the highest
order mesh D, . It is possible to relax this condition by using the conditional
sprouting operation with respect to the ratio of the inverse error in the total com-
putational error shown in 8.
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