
Twin adaptive scheme for solving inverse problemsR. Schaefer1 and B. Barabasz2 and M. Paszy«ski11 Department of Computer Science,University of Science and Technology, Cracow, Poland,email: schaefer@agh.edu.pl, paszynsk@agh.edu.pl2 Department of Modeling and Information Technology, University of Science and Technology,Cracow, Poland, e-mail: barabasz@metal.agh.edu.plAbstract. The paper deals with a class of inverse parametric problems for whichthe energy function may be de�ned. The advanced multi-deme strategy thato�ers an adaptive accuracy is utilized for solving associated optimal control prob-lems. The direct problems necessary for �tness evaluation are computed by the
hp-adaptive Finite Elements. The new iterative strategy balances the error ofsolving the direct problem and the error of solving the optimal control problemin order to decrease the total computational cost. The concept of the strategy ispartially formally veri�ed (see Lemma 3.1 and 3.2), moreover the advantages inthe computational practice are mentioned.1 MotivationThe inverse parameter problems are frequently formulated as the optimal control onesin which we try to �nd the vector of parameters of the partial di�erential equationby minimizing the proper error function. The high computational cost of the errorfunction evaluation and its frequent multimodality make the inverse parameter problemsextremely heavy ones.The heuristic method well suited do solve such problems is the multi-deme HierarchicGenetic Strategy (HGS) [1], [8]. It o�ers the reasonable e�ciency by using the �exibleaccuracy of the search performed by various demes.Each evaluation of the error function that stands for the �tness in the HGS needs theapproximate solving of the direct problem (the boundary-value problem for the PDEs).One of the most e�ective method in this area is the hp-adaptive Finite Element Method(FEM) that may o�er up to the exponential decrease of the direct problem error withrespect to the hp approximation parameters (see e.g. [3]).Authors pretended in [4] the advantages of the common adaptation of the step lengthof the convex optimization method with the hp adaptation in solving direct problem. Thepaper extends this idea of common adaptation in HGS and FEM in order to decreasethe computational cost of solving inverse problems in case of multimodal error function.The class of inverse parametric problems for which the energy function may be de�nedis selected. The extended HGS/hp-adaptive FEM strategy (Algorithm 2) base on twomathematical results (Lemma 2, [4] and Lemma 2, Section 5 and the resulting equation11) that makes possible to balance the errors coming from the optimization method withthe relative error of solving direct problem.



2 Adaptive FEM technique for solving direct problemsThe hp adaptive FEM [9], [5] generates a sequence of meshes delivering the exponentialconvergence of the numerical error with respect to the problem size, expressed in terms ofthe number of degrees of freedom over the computational mesh. Since the computationalcost is the polynomial function of the problem size, then the hp adaptivity providesan exponential convergence of the numerical error with respect to the CPU time. The
Figure 1. The coarse mesh with p = 2 and �ne mesh with p = 3 on all elements edges, faces,and interiors. The optimal meshes after the �rst, second and third iterations. Di�erent shadingdenote di�erent polynomial orders of approximation.method starts from the arbitrarily selected initial mesh as in the example presented inthe most left part of Fig. 1. The polynomial order of approximation in this example wasuniformly set to p = 2 over all �nite elements edges, faces and interiors. The di�erentpolynomial orders of approximations are denoted on the pictures by di�erent shading.Note, that the polynomial orders of approximation may vary on elements edges andfaces, in particular we may have di�erent orders of approximations in both directionson element faces. The polynomial orders of approximation on element interiors are notdenoted in the pictures, but they may be di�erent in each of three possible directions.The minimum rule is enforced on the mesh. The polynomial orders of approximationon element faces is equal to the minimum of orders of adjacent interiors, as well as thepolynomial orders on edges are equal to the minimum of orders on adjacent faces.The method solves the problem on the initial mesh, called the "coarse" mesh, then themesh is globally hp re�ned. Each �nite element is broken into 8 child elements, and thepolynomial orders of approximation are uniformly raised by one, on each element edges,faces and interiors. The problem is solved again on the obtained "�ne" mesh, presentedin the second picture in Fig. 1. The relative error estimations for each �nite elementfrom the "coarse" mesh are utilized to generate new optimal mesh, presented in the thirdpicture in Fig. 1. Finite element with high relative are either h, p or hp re�ned. The hre�nement consists in breaking a �nite element into smaller child elements, in one, twoor three possible directions. The p re�nement consists in adjusting polynomial orders ofapproximation on some element edges, faces or interiors. The hp re�nement is a mix ofboth h and p re�nements. For more details on the algorithm selecting optimal h, p or hpre�nements, please refer to [9]. The optimal mesh becomes the coarse mesh for the nextiterations, and the entire procedure is repeated. The example of generated sequence ofoptimal meshes is presented in Fig. 1. The fourth and �fth pictures present the optimalmeshes generated in the second and third steps of the algorithm. Fot the the particularboundary value which was solved, the numerical error is reduced from 25% on the �rstmesh (presented in the �rst picture), through 15% on the second mesh (presented in the



third picture), through 8% on the third mesh (presented in the fourth picture), down to5% on the last mesh.3 The relation between the objective function error and theFinite Element Method errorLet us consider the direct problem de�ned by the abstract variational equation
{

u ∈ u0 + V

b (u, v) = l (v) ∀v ∈ V
(1)obtained from the partial di�erential equation describing the sample physical phenomena.In the above V is the proper Sobolev space, the u0 is the shift of the Dirichlet boundaryconditions [3]. Functionals b and l depend on the physical phenomena to be modeled.They also depend on the inverse problem parameters d. If b is symmetric and positivelyde�ned [7], the variational problem 1 is equivalent with the minimization one 2

{

u ∈ u0 + V

E (u) = 1

2
b (u, u)− l (u) −→ min

(2)where E (u) = 1

2
b (u, u)− l (u) is the functional of the total energy of the solution.The problem 1 may be approximated by using FEM with the �nite dimensional sub-space Vh,p ⊂ V

{

uh,p ∈ u0 + Vh,p

b (uh,p, vh,p) = l (vh,p) ∀vh,p ∈ Vh,p.
(3)The coarse mesh solution uh,p is found in the Vh,p space. The corresponding �ne meshsolution u h
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,p+1 is found in the Vh
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,p+1 space. The coarse mesh solution space is a subsetof the corresponding �ne mesh solution space Vh,p ⊂ Vh
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,p+1, and both spaces are includedin the subsets of the space V of the solutions of the exact variational problem 1.The inverse problem can be formulated asFind d̂ ∈ D :
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|Jh,p (d)− J (d∗)| (4)where d
∗ denotes exact parameters of the inverse problem (exact solution of the vari-ational formulation for these parameters is well comparable with experiment data), ddenotes approximated parameters of the inverse problem, D is a set of all admissibleparameters d, J (d∗) = E (u (d∗)) is the energy of the exact solution u (d∗) of the vari-ational problem 1 for exact parameters d

∗, Jh,p (d) = E (uh,p (d)) is the energy of thesolution uh,p (d) of the approximated problem 3 for approximated parameters d.The relative FEM error is de�ned by means of the energy norm di�erence betweenthe coarse and �ne mesh solutions
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. (5)The energy norm involves the L2 norm of the function and its �rst derivatives.



Objective function error is de�ned as the energy di�erence between the solution ofthe approximated problem 3 for approximated parameter d and the exact solution of theproblem 1 for exact parameter d
∗, assumed to be equal to the energy measured duringthe experiment

eh,p (d) = |Jh,p (d)− J (d∗)| . (6)In other words, the approximated parameter d is placed into the approximated formula-tion 3, the solution of the problem uh,p (d) (which depends on d) is computed by FEM,and the energy of the solution E (uh,p (d)) is computed.Lemma 3.1. (see Lemma 2 in [4])
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.The objective function error over the �ne mesh is limited by the relative FEM errorof the coarse mesh with respect to the �ne mesh, plus the objective function error overthe coarse mesh.We may evaluate

|Jh,p(d)− J(d∗)| ≤ |Jh,p(d) − J(d)|+ |J(d)− J(d∗)| (7)Moreover, if we asume that the functional J is Lipschitz continuous with respect tothe parameters d, then |J(d)− J(d∗)| ≤ α |d− d
∗|. The next Lemma is necessary forestimation of the �rst term in the above formula.Lemma 3.2.

2 |Jh,p(d)− J(d)| = ‖u(d)− uh,p(d)‖
2

EProof:
2 |Jh,p(d)− J(d)| = 2 |Euh,p(d)− Eu(d)| =

|b(uh,p(d), uh,p(d)) − 2 l(uh,p(d))− b(u(d), u(d)) + 2 l(u(d))| =
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EFinally, we have the desired dependency between the inverse error and the FEM error
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The last term α |d− d
∗| is of the same degree as the Lipschitz constant α times theaccuracy of the HGS algorithm, which will be shown in the following sections. Theobjective function error with respect to the �ne mesh is limited by the relative FEMerror of the coarse mesh solution with respect to the �ne mesh solution plus absoluteFEM error of the coarse mesh solutions plus the accuracy of the HGS algorithm.4 The main idea of HGSHierarchic Genetic Strategy was introduced by Koªodziej and Schaefer (see [1], [8]).Its main idea is running a set of dependent evolutionary processes in parallel. Thedependency relation has a tree structure with a restricted number of levels m. Theprocesses of lower order (close to the root of the structure) represent a chaotic searchwith low accuracy. They detect the promising regions of the optimization landscape, inwhich more accurate processes of higher order are activated. Populations evolving indi�erent processes can contain individuals which represent the solution (the phenotype)with di�erent precision achieved by binary genotypes of di�erent length.The strategy starts with the process of the lowest order 1 called the root. After a�xed number of evolution epochs the best adapted individual is selected. We call thisprocedure a metaepoch of the �xed period K. After every metaepoch a new process ofthe order 2 can be activated. This procedure is called sprouting operation. Sproutingcan be generalized in some way to branches of a population's tree of a higher order upto m− 1. Sprouting is performed conditionally, according to the outcome of the branchcomparison operation.The HGS genetic process is of the order j ∈ {1, . . . , m} if the individuals from theevolving population have genotypes of the length sj ∈ N. The lengths of binary stringsused in various order processes satisfy the inequality 1 < s1 <, . . . , < sm < +∞. Theinitial population for the new sprouted branch of the order j+1 ≤ m contains individualswith pre�xes identical to the genotype of the best adapted individual in the process ofthe order j. Su�xes of the length sj+1 − sj of these individuals are initialized randomly(according to the uniform distribution).The branch comparison operation in HGS is based on the pre�x comparison. Theoperator acts on populations evolving in the processes of two consecutive orders j and

j + 1. Let us assume that we distinguish the best �tted individual x from the branch ofthe jth order after some metaepochs. If there is at least one individual with the pre�x ofthe length sj identical to x among j + 1 order branches, then a new process of the order
j + 1 is not activated.The special kind of hierarchical nested encoding is used in order to obtain the searchcoherency for branches of various degrees. Let us denote by Ωs the genetic universumcomposed of binary codes of the length s > 0, so Ωs1

, . . . , Ωsm
stand for the binarygenetic universa of branches of degrees 1, . . . , m. Each universum is linearly ordered bythe relation induced by the natural order among integers represented by binary strings.Moreover, for j = 2, . . . , m we can represent genetic spaces Ωsj

in the following way:
Ωsj

=
{

(ω, ξ), ω ∈ Ωsj−1
, ξ ∈ Ωsj−sj−1

}

. (9)We describe the hierarchical nested encoding for D ⊂ R only. The natural general-ization of this construction to D ⊂ R
N , N > 1 may be found in [8].



We intend to de�ne a sequence of meshes Dr1
, . . . ,Drm

⊂ D ⊂ R so that #Ωsj
=

#Drj
, j = 1, . . . , m and a sequence of one-to-one encoding mappings codej : Ωsj

→ Drj
.First, we arbitrarily de�ne the densest mesh Drm

in D ⊂ R and the encoding codem :
Ωsm

→ Drm
as a strictly increasing function. Next, we arbitrarily de�ne the set ofselections φj : Ωsj
→ Ωsj+1−sj

, j = 1, . . . , m−1 necessary for the construction of meshes
Drj

, j = 1, . . . , m− 1. Finally, we put
Drj

=
{codej+1(ω, φj(ω)), ω ∈ Ωsj

}

. (10)The meshes and encoding of the lower order are de�ned recursively. Figure 2 below showsthe sample meshes Dr1
, Dr2

and Dr3
⊂ R in the case of s1 = 2, s2 = 3, s3 = 5, φ1(00) =

φ1(01) = 1, φ1(10) = φ1(11) = 0, φ2 ≡ 01. j = 1, . . . , m-1.
Dr

3

Dr
1

Dr
2Figure 2. One dimensional nested meshes (D ⊂ R) for Hierarchical Genetic Strategy in thecase s1 = 2, s2 = 3, s3 = 5.The Simple Genetic Algorithm de�ned (see Vose [6]) with the constant size µj pop-ulations that depends only on the branch order j = 1, . . . , m is used for each branchprocessing during metaepoch. Usually, larger population cardinality is set for lower or-der branches (close to the root) and much smaller cardinality is set for higher orderbranches and leafs. Additionally, the mutation rate pm is set higher for the root andmain branches in order to strengthen the wide exploration of the admissible domain.Two kinds of stop condition are applied in the HGS strategy. The �rst called branchstop condition detects the lack of progress in the evolution process. It bases on theinformation gathered by the branch process only and is utilized to stop and remove thenon-promising branches of the strategy. The second one, called global stop condition tryto encounter the situation in which the HGS could not �nd more local extremes. Theglobal information about the HGS searching progress is necessary in this case.Let us assume for the sake of simplicity, that all HGS branches are processed inthe common shared memory, so that the information about the searching progress isglobally available. We assume moreover that the operations on the branch populationsduring each metaepoch are performed exclusively by the branch processes. The separatemodule continuously checks the global stop condition and sends the proper signal to thebranch processes if satis�ed. Now we are ready to formulate the draft of the HGS branchalgorithm of the jth order j = 1, . . . , m (see the Algorithm 1).1: if j = 1 then2: initialize the root population P 0;3: end if



4: repeat5: t← 0;6: if global_stop_condition received then7: STOP;8: end if9: for all i ∈ P t do10: compute fj(i);11: end for12: if branch_stop_condition then13: STOP;14: end if15: perform selection with the �tness fj ;16: perform genetic operations;17: if NOT (t mod K) then18: distinguish the best �tted individual x∗ from P t;19: if (NOT prefix_comparision(x∗)) AND (j < m) then20: sproute;21: end if22: end if23: t← t + 1;24: until (false)Algorithm 1: Draft of the HGS branch algorithm of jth order5 The coupled direct-inverse adaptive algorithmThe HGS may be utilized to solve the parameter inverse problem 4 under consideration.The searching domain D ⊂ R
N is the N -dimensional brick of admissible parameterswhere N stands for the number of independent parameters to be identi�ed. The m-levelnested a�ne encoding is utilized. Populations of higher order represent the solutionwith the higher accuracy, while the lower order ones deliver the worse approximationof solutions. Note, that the distance δj between the nodes of the jth order mesh Drjrepresent the upper bound of the accuracy that is available for the search at this HGSdegree. The individual i ∈ Ωsj
represents the admissible solution d = codej(i) to theinverse problem in the jth order HGS process. The right-hand-side of the formula 8informs us about the components, that a�ects the FEM error degree if the �tness in the

jth order process is computed.
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+ αδj (11)This information allows us to propose the extended version of the HGS strategy dedicatedfor solving inverse problems, in which the �tness value is computed with the accuracyadopted to the maximum accuracy o�ered by the HGS process of a particular order j.The idea of this strategy is to balance the components of the FEM error given by theformula 11 in order to decrease the computational cost of �tness evaluation, keeping theaccuracy of inverse problem solving on the assumed level. This approach is stressed inthe Algorithm 2. In particular we perform the hp adaptation of the FEM solution of thedirect problem while the ratio errF EM

δj
is greater then the assumed Ratio which stands



for the parameter of this strategy. The above procedure is executed independently foreach individual i ∈ P t at the evaluation step (see lines 10 - 17 in the Algorithm 2).1: if j = 1 then2: initialize the root population P 0;3: end if4: repeat5: t← 0;6: if global_stop_condition received then7: STOP;8: end if9: for all i ∈ P t do10: solve the direct problem for d = codej(i) on the coarse and �ne FEM meshes;11: compute the relative FEM error errFEM (d) according to the formula 5;12: while errFEM (d) > Ratio δj do13: execute one step of hp adaptivity;14: solve the problem on the new coarse and �ne FEM meshes;15: compute the relative FEM error errFEM (d) according to the formula 5;16: end while;17: compute fj(i) = |Jh,p(d)− J(d∗)| using the FEM mesh �nally established;18: end for19: if branch_stop_condition then20: STOP;21: end if22: perform selection with the �tness fj ;23: perform genetic operations;24: if NOT (t mod K) then25: distinguish the best �tted individual x∗ from P t;26: if (NOT prefix_comparison(x∗)) AND (j < m) then27: sprout;28: end if29: end if30: t← t + 1;31: until (false)Algorithm 2: Draft of the HGS branch algorithm of jth order with varying accuracy ofthe �tness computation6 Concluding remarks
• The proposed strategy allows for optimal balancing of the direct and inverse prob-lem solution accuracy. Maintaining the optimal balance may signi�cantly reducethe computational cost of the inverse problem solution, keeping the optimal totalaccuracy. The paper [4] showed the �rst test results in this direction. It containsthe optimal balance of errors: FEM and Hook-Jeeves procedures for searching theCTE parameter in the SFIL process. The proposed strategy lead to signi�cantspeedup of the solution process.



• Koªodziej and Schaefer proved, that under some assumptions concerning the heuris-tics (see Vose [6] for the SGA heuristic de�nition) of the SGA processes that de�nethe HGS strategy, it has the same ability of �nding local extreme as the SGA pro-cess used in the highest order branches (see e.g. Theorem 4.1 in [8]). They alsotry to evaluate (see e.g. Hypothesis 1 in [8]) the e�ciency of the HGS strategywith respect to the single SGA process searching on the densest mesh Drm
. Itseems that the similar results may be obtained for the coupled HGS/hp-adaptiveFEM de�ned in the section. The main condition that have to be checked is theproper tunning of the SGA processes of the consecutive orders 1, . . . , m in case ofthe �tness computed with the varying accuracy.

• The presented version of the HGS/hp-adaptive FEM (see Algorithm 2) needs thecommon RAM (shared memory computer environment) for implementation. It iseasy to re-designed this strategy to the message-passing environments. The agent-oriented version of HGS is already designed and tested [2].
• The Algorithm 2 base on the assumed maximum accuracy forcing by the highestorder mesh Drm
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