
The two-stage evolutionary-neuro computing approach 

for stochastic optimization problems 

Piotr Orantek
1
 and Tadeusz Burczyński 

1 , 2
 

1
 Department for Strength of Materials and Computational Mechanics,  

Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, e-mail: piotr.orantek@polsl.pl 
2
 Institute of Computer Modelling, Artificial Intelligence Department, 

Cracow University of Technology, Warszawska 24, 31-155 Kraków, e-mail: tadeusz.burczynski@polsl.pl 

Abstract. This paper is devoted to the application of the two-stage evolutionary-neuro 

approach for stochastic optimization problems. The algorithm is based on the stochastic 

representation of the data. Chromosomes are represented by multidimensional random 

vectors consisting of random genes in the form of independent random variables with the 

Gaussian density probability function. The stochastic optimization problem is repalced by 

deterministic one by evolutionary computing for vector genes consisting of mean values 

and standard deviations. In the first stage the EA is used. As the second stage in the 

presented approach the special local gradient method with neuro-computing is proposed. 

1 Introduction 

There are physical problems in which systems and processes have some uncertain parameters, 

e.g. materials properties, boundary conditions or geometry. The granular type of information 

about these parameters causes the necessity of using various models of uncertainty in the form of 

interval, fuzzy and  rough sets and the theory of probability. 

The concept of the interval and the fuzzy evolutionary algorithm and their applications in the 

optimization and identification problems have been considered in previous papers.  

In the present paper another form of granularity is analyzed - the probability approach to 

optimum design is considered. The parameters of systems and processes are modelled by random 

variables characterized by a probability density function. The classical approach to solution of 

such problems is based on stochastic programming [3].  

The new concept two-stage evolutionary-neuro computing approach is proposed. In the first 

stage the EA is used. As the second stage in the presented approach the special local gradient 

method with neuro-computing is proposed. The special multilevel artificial neural network for 

aproximation the stochastic problem is proposed. The gradient of the fitness function is 

cumputed due to the multilevel artificial neural network. 

 

 

 



2 The formulation of the stochastic optimization problem  

A general non-linear stochastic programming problem can be stated as follows: 

Find a random vector   

 
1 2( ) [ ( ), ( ),..., ( ),..., ( )]i nX X X Xγ γ γ γ γ=X  (1) 

 

which minimizes the objective function ( ) ( ( ))F Fγ γ= X  subject to the constraints 

( ) 0 , 1,2,...,j jP g p j m ≥ ≥ = X . 

If the problem is solved by the evolutionary approach, the vector ( )γX  is considered as the 

chromosome, where ( )iX γ , i=1,2,…,n, are random genes.  

A gene is represented by a random variable, which is a real function ( )i iX X γ= , γ ∈ΓΓΓΓ , 

defined on a sample space  ΓΓΓΓ  and measurable with respect to P: i.e., for every real number 
ix , 

the set { }: ( )i iX xγ γ <  is an event in F.  

The chromosome ( )γX  is a function (measurable with respect to P) which takes every 

element γ ∈ΓΓΓΓ  into a point nR∈x .  

The mean value of the chromosome ( )γX  is given as follows 
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is the mean value of the gene ( )
i

X γ   and  ( )
i i
p x  is the probability density function (PDF) of 

this gene [5].  

The matrix of covariance is given as follows: 

 ( ) ( )[ ] ( ) ( )
T

ij
k  = = − − K E X m X mγ γ  (4) 

where the covariance between ( )
i

X γ   and  ( )
j

X γ  is defined by: 
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where ( ),i jp x x  is the joint PDF of  ( )
i

X γ  and ( )
j

X γ  [5]. If  i j= , the covariance  is 

represented by a variance [5]. In the present paper the random chromosome 

1 2
( ) [ ( ), ( ),..., ( ),..., ( )]

i n
X X X Xγ γ γ γ γ=X   has an n-dimensional Gaussian distribution of the 

probability density function [5]. It is assumed that random genes are independent random 

variables. The joint probability density function is expressed by the probability density functions 

of single random genes as follows: 
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is the probability density function of the random gene ( )
i

X γ  . 

It can be seen that if the random genes ( )
i

X γ , i=1,2,…,n, are random independent Gaussian 

variables, two parameters: the mean value 
i

m  and the standard deviation 
i
σ  describe the 

probability density function. 



3 Evolutionary-neural strategy 

The main idea of the creating the stochastic strategy consists of two stages based on coupling 

the advantages of evolutionary and gradient optimization methods aided by neuro-computing. 

The evolutionary algorithms can find the global optimum, but it is very time consuming. 

The gradient methods can find the optimum precisely, but they need information about 

sensitivity to the objective function. 

The proposed strategy in the first stage uses some properties of the evolutionary algorithms 

(EA). Those algorithms are procedures to search the optimum in the feasible space of 

solutions. 

The EA generates a cluster of points in the feasible domain. The cluster is positioned 

closely to the optimum. There is a great possibility that the optimum is the global optimum.  

There is a risk that the points are located close to the more than one optimum. In this case 

the second stage (local  method) can work  unstably. It can be solved in a few ways [5]. 

In the second stage of the proposed strategy, several best points in this region are selected. 

Then, these points play the role of the cloud and as previously shown, the local method is 

beginning. This method is based on the gradient method, but the sensitivity analysis is 

evaluated by the neuro-computing. 

The special multilevel artificial neural network (RBF) is used as the approximation method 

of the stochastic problem. Each level corresponds with a selected moment of the stochastic 

number and is modeled as a simple perceptron. In presented approach the random variable is 

modeled using two moments, therefore the 2-levels neural network is assumed.   

The second stage of the two-stage strategy is a combination of the classical gradient 

method (the steepest descent method) and the RBF network. In order to perform the 

optimization process the special procedures to defined the stochastic gradient are proposed. 

Due to coupling the stochastic gradient with the special multilevel neural network, the local 

stochastic optimization gives promissing results. 

4 The evolutionary algorithm for stochastic programming 

Stochastic optimization problems emerge when some parameters of the objective function or 

constraints have probabilistic nature. The application of evolutionary algorithms to solve such 

problems requires some modifications of the traditional evolutionary approaches because 

chromosomes consist of random genes ( )
i

X γ , i=1, 2,…, n, described by moments, e.g. by the 

mean value 
i

m  and the standard deviation 
i
σ  in the case of Gaussian independent random 

genes. The mean idea of this algorithm is similar to the traditional evolutionary algorithm but all 

steps of the algorithm must be modified to the stochastic data and their moments. Each individual 

expresses a stochastic solution. Each solution is evaluated, and a stochastic value of the fitness 

function is obtained as the result. The next generation is constructed on the basis of better 

stochastic chromosomes of the previous generation. In this case the special types of relations are 

defined. Also the stochastic types of operators (mutation and crossover) are constructed. It can be 

observe that the next population in the stochastic evolutionary algorithm is better than the 

previous one. 

The stochastic problem is solved by using mathematical operations on moments (e.g. the 

mean value 
i

m  and the standard deviation 
i
σ , etc.). Therefore, the original stochastic problem is 

considered as an equivalent deterministic one. This technique is known very well in other 

problems, e.g. in solving the stochastic programming, stochastic differential equations, etc. 



Instead of the random chromosome ( )γX  one can consider a deterministic chromosome chr 

which consists of n-vector pars of genes =( , )
i i i

m σg , i=1,2,…,n  which corresponding to random 

variable ( )
i

X γ   
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In the more general cases the gene 
i

g  consists of more moments of random variable ( )
i

X γ . 

Due to the Gaussian distribution two moments are sufficient to describe random genes. 

In presented algorithm the evolutionary operators concern to the random genes ( )
i

X γ  by 

modification of mean values mi and standard deviations σi. 
It is worth to stress some similarities between the proposed approach to the stochastic 

representation of the EA and the evolutionary strategies. 

For each vector gene =( , )
i i i

m σg  i=1,2,…,n, two kinds of constraints are imposed: 

  

 
min max

i i im m m≤ ≤  (9) 

  

 
min max

i i iσ σ σ≤ ≤  (10) 

 

where indices: min and max mean here the maximum and minimum values. 

The special stochastic kind of mutation, crossover and selection operators are applied. This 

algorithm is more detailed described in [5]. 

5 The artificial neural network 

Consider the artificial neural network with the radial activation functions (RBF).  The RBF 

for approximation the fitness function is used. The number of neurons in the input layer is equal 

to the number of design variables of the fitness function. In the output layer there is only one 

neuron, its output value plays the role of the fitness function.    

The number of neurons in the hidden layer depends on the degree of difficulty of the function. 

The output value of  i-th neuron in the hidden layer is expressed by: 
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where: i
kt – centrum of k-th radial function, i

kσ  – standard deviation of k-th radial function,  

ke  - input value of the neural network, N – number of inputs.  

The output value of the neuron in the output layer is computed as follows: 

 

 0

1

M

j j

j

E w e w

=

= +∑  (13) 

 

where: M – number of neurons, jw  - weigths.  

Computing of sensitivity to the radial activation function is very easy. The sensitivity to the 

output signal E of the RBF network in the some z input value ek is expressed by [8]: 
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5.1 The multilevel artificial neural network 

The special multilevel artificial neural network (Fig. 1) is used as the approximation tool of the 

stochastic problem. Each level corresponds with selected parameter of the random number and 

is modelled as a simple (RBF) perceptron.  

The number of the levels of multilevel neural network depends on the number of moments, 

which describe the random variable. In the present paper the random variable is describe using 

two moments: m and σ, therefore the number of level is equal to 2.     

All levels can be connected with each others (Fig.1). The sensitivities to the output signals 

of the multilevel network are expressed by formula (14). 

 
Figure 1. The scheme of multi-level neural networks. 

(a-all levels are connected with each others; b- all levels are separated) 

6 The local optimization method with neuro-computing 

The proposed local optimization method is  

a combination of the classical gradient method (the 

steepest descent method) and the multilevel RBF 

network. In the first step of the algorithm a set (cloud) of 

stochastic points in the function domain stochastic is 

generated.  

In order to perform the optimization process the 

network is constructed. The multilevel RBF network has 

architecture: (2/8/1).  The number of levels of neural 

network depends on the number of moments, which 

describe the random number. 

The starting number of training vectors is equal to 

3m, where m – number of random design variables of 

minimizing function. In each iteration of the 

optimization algorithm a few steps are performed 

(Fig.2). 

In the first step the set of training vectors of the 

network is created. In the first iteration the set is created 

on the basis of the cloud of points. The coordinates of 

points (moments) play the role of the input values of the 

network, the random fitness values in points play the role 

of output value of the network.  

Building the ANN

Creating 

the learning vectors

Learning the ANN

Local optimization

Verification the optimum

Optimum

Cloud of points

No

Yes

Exit ?

 
Figure 2. The schema of local 

optimization method 
In the second step the network is trained.  



In the next, third step, the optimization process is carried out. The gradient method (the 

steepest descent method) of optimization is used. The network as the fitness function 

approximation is used. The gradient formula (14) is employed in computation.

The special kind of the stochastic gradient is introduced. For a point, which is a result of 

optimization (found in step 3), the actual fitness function is computed. 

In the last step the stop condition is checked. In the case, in which the condition is true, the 

point is treated as the result of the optimization process. If this condition is false, this point is 

added to the training vector set and the next iteration is carried out (go to step 1). 

This method was tested for the real and fuzzy problems and results were satisfactory.

7 Example 

Consider the body Ω (Fig.3), bounded by boundary Γ. The material parameters of the body, 

shape and boundary conditions as the uncertain values can be considered. The aim of the 

identification problem is to find the stochastic parameters of mechanical structure.  

From the mathematical point of view, the identification problem is expressed as the minimization 

of the special stochastic function. 

                                                              
                 Figure 3. The elastic body                                  Figure 4. The 2-D elastic structure 

In the previous works (the real problem) the identification problem was expressed as the 

minimization of the displacement function: 

 

 ( ) ( )( ) ( )
2

1

ˆ, ,

n
i

i

f d

= Γ

= − − Γ∑∫ d x d x x xγ γ δ  (15) 

 

where: ( )d γ - the random measured physical quantity in sensor point 
i

x , ˆ ( )d γ - the random 

computed physical quantity in this same point for parameters generated by the evolutionary 

algorithm, n – number of sensor points, δ - Dirac function. The formula (15) can be transformed 

to the simpler form: 

 

 ( )2ˆ( ) ( )i i

i

f d d= −∑ γ γ  (16) 

 

where: ( )id γ - the random measured physical quantity, ˆ ( )id γ  - the random displacements 

physical quantity for the structure with the parameters generated by the evolutionary 

algorithm. 

The fitness function depends on measured physical quantity at sensor points. The sensor points 

are located on the surface of the body. The stochastic problem is solved using the stochastic finite 

element method (SFEM). 



The aim of the test is to find n=2 random loads: 1( )X γ  and 2 ( )X γ  (Fig.4). The actual 

stochastic parameters of the load 1( )X γ  is described by: 1 1 1=( , )m σg , where: 1m =20.0 [kN], 

and 1σ =0.16 [kN]. The actual stochastic parameters of the load 2 ( )X γ  is described by: 

2 2 2=( , )m σg  , where: 2m  =25.0 [kN], and 2σ =0.33 [kN]. The loads are independent random 

variables. The stochastic chromosome 1 2( ) [ ( ), ( )]X Xγ γ γ=X  is replaced by deterministic one 

containing moments of ( )iX γ  [ ] [ ]1 2 1 1 2 2; ( , );( , )m mσ σ= =chr g g . 

As the sensor points N=21 boundary nodes were selected. 

The following parameters of two-stage evolutionary-neuro computing approach in the 

interval case were assumed: population size: 30, number of generations: 50, probability of 

mutation: 0.2, probability of crossover 0.1, number of iteration of local method was equal to 

200.   

The 25 independent experiments were performed. The results (the worst, the average and the best 

one) are included in Table 1. 
 

Table 1. The found moments of the random loads 

 

The moments of random loads Results 

1m  [kN] 
1σ  [kN] 

2m  [kN] 
2σ  [kN] 

the worst 19.54 0.14 26.23 0.28 

average 20.06 0.16 25.86 0.33 

After 

SEA 

the best 20.01 0.16 25.09 0.32 

the worst 20.00 0.16 25.00 0.33 

average 20.00 0.16 25.00 0.33 
After two-stage evolutionary-

neuro computing approach 
the best 20.00 0.16 25.00 0.33 

Conclusions 

An effective two stage strategy based on the stochastic evolutionary algorithm and multilevel 

artificial neural networks has been presented. This approach can be applied in the optimization 

and identification problems.  

The optimum can be found in less number of iteration due to application of the multilevel 

neural network for local approximation of fitness function. In the some tests the time was 

decreased even to 56%.  

The future task is testing the influence of the parameters on the sensitivity to the algorithm: 

the parameters of the stochastic evolutionary algorithm and control parameters of the selection.  

In the general case uncertain conditions have the granular form. The models based on the 

rough sets, interval and fuzzy variables can be used. The granular evolutionary algorithm can 

be created as a general method for all described models. 
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