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Abstract. In this paper, a concept of directional mutations for phenotypic evo-
lutionary algorithms is presented. The proposed approach allows, in a very con-
venient way, to adapt the probability measure underlying the mutation operator
during evolutionary process. Simulated experiments confirms the thesis that pro-
posed mutation improves the effectiveness of evolutionary algorithms in the case
of the local as well as global optimization problems.

1 Introduction

Most applications of Evolutionary Algorithms (EAs) which use the floating point repre-
sentation of population individuals use the Gaussian mutation as a mutation operator
(cf. [1, 2]). A new individual is obtained by adding a normally distributed random value
to each entry of a selected parent. The choice is usually justified by the Central Limit
Theorem. Mutations in nature are caused by a variety of physical and chemical factors
that are not identifiable or measurable. These factors are considered as independent and
identically distributed (i.i.d.) random perturbations. The Generalized Central Limit
Theorem states that the only possible nontrivial limit of normalized sums of i.i.d. terms
is Lévy-stable, called also a-stable or just stable in the mathematical literature [3, 7, 14].
If the Lindeberg condition is obeyed, i.e., the first two absolute moments are finite, then
the a-stable distribution reduces to the Gaussian distribution.

The suggestion that the application of a-stable distributions other than the Gaussian
and the Cauchy distribution can be very attractive for evolutionary algorithms with the
floating-point representation of individuals was first introduced by Gutowski [4]. Such
an application of a-stable distributions to EAs based on the floating point representation
of individuals has been simultaneously presented and studied by two independent groups
of researches [5, 9]. Lee and Yao [5] apply the evolutionary programming algorithm with
non-isotropic a-stable mutations to a set of 14 global optimization problems. Obuchowicz
and Pretki [9] study the influence of some poorly known properties, called the symmetry
and surrounding effects, of non-isotropic a-stable mutations on the exploitation and
exploration abilities of EAs. In order to avoid negative influence of the above effects the
isotropic a-stable mutation is proposed [11].

Spherically symmetric distributions guarantee that there is no preferable direction in
the search space, which is a desired property especially at the beginning of the optimiza-
tion process. Moreover, this also means that the effectiveness of an optimization tech-
nique does not depend on a reference frame. This, in the evolutionary algorithms (EAs)



framework, was intensively studied by Obuchowicz [8]. An isotropic sampling strategy
is effective for the low-dimensional problems, but its efficiency drastically decreases for
large-scale problems [12]. Thus, many evolutionary algorithms are supplied with auxil-
iary heuristics which try to neutralize a negative influence of the dimensionality problem
[8, 13]. An intuitive idea of dealing with the problem is to adjust a probability measure
on the basis of information gained during the optimization process in order to calculate
the preferable directions of mutations [8]. Such a special class of the so-called directional
distributions is introduced in [12]. This new class gives an access to constructing new
techniques for adaptation probability measures in the mutation operator.

In this paper the phenotype evolution with mutations based on a-stable and direc-
tional distributions proposed in [12] is considered. Simulation experiments are carried out
in order to analyze the influence of algorithm exogenous parameters on its effectiveness
of the global optimum searching for a set of benchmark optimization problems.

The paper is organized as follows. In the next section the a-stable distributions and
isotropic multidimensional a-stable mutation are described as well as the concept of
directional distributions with rotational symmetry is introduced. In the third section the
description of a set of simulated experiments as well as compressed notes of observations
and remarks are presented. Finally, the last section concludes the paper.

2 Lévy-stable distributions

2.1 Characteristic function representation

The ch.f. (characteristic function) of the a-stable distribution is parameterized by a
quadruple (o, 8,0, 1) [14], where o (0 < a < 2) is a stability index (tail index, tail ex-
ponent or characteristic exponent), 8 (—1 < 8 < 1) is a skewness parameter, o (o > 0)
is a scale parameter and u is a location parameter. The lack of closed-form formulas for
probability density functions (pdfs) for all but three LSDs (Gaussian, Cauchy and Lévy
distributions) has been a major drawback in the use of a-stable distributions by prac-
titioners. Fortunately, there exist algorithmic formulas for simulating a-stable variables
as well as computer programs to compute a-stable densities, distribution functions and
quantiles [7].

If 8 = 0, then non-skewed a-stable distributions, called the Symmetric a-Stable (Sa.S)
distribution, is obtained. Thus, Z ~ S,(0,0,u) = SaS(o, 1) (symmetric a-stable) can
be expressed by

Z=p+0X, (1)

where X ~ SaS(1,0) = SaS has standardized symmetric a-stable distribution. The
ch.f. of X is given by

¢(k) = exp (—[k[*). 2)

For @ = 1, it is a ch.f. of the Cauchy distribution C(0,1), and for o = 2, it becomes the
ch.f. of the normal distribution N (0, 1).

2.2 Multivariate isotropic a-stable distribution

The class of spherically symmetric distributions can be defined in a number of equiv-
alent ways [3]. The most applicable one seems to be the following. The random variable



X can be generated as a result of the decomposition
X = RU™, (3)

where R and U™ are called, respectively, the generating variate and the uniform base
of spherical distribution. If the generating variate R has Sa.S distribution, one says that
the random vector X ~ SaSU has isotropic multivariate symmetry ca-stable distribution.
Probably the simplest way to obtain the random vector uniformly distributed on the
surface of a unit sphere U™ is described by following formula:

Y
(n) _ 4)
vl (

where Y is an n-dimensional, normally distributed random vector N, (0, I,,) (where I,
stands for the identity covariance matrix of the order n).

2.3 Directional distribution

It can be proved [12] that the eficiency of an isotropic sampling strategy drastically
decreases for large-scale problems. This problem can be neutralized with help of a tech-
nique which is based on the so-called directional distributions. In the literature, several
classes of such distributions can be found [6], while for the need of evolutionary com-
putations, the class of the so-called rotationally symmetric distributions M seems to be
very attractive. The class M is usually parameterized by a pair {u, k}, where g is the
mean direction, and k stands for the concentration parameter. Therefore, the mutation
operator can be perceived as a two stage process: first the direction of mutation is chosen
according to M(pu, k), and then the phenotype of an individual is changed in this di-
rection by adding an one dimensional generate variable (in fact, heavy-tailed symmetric
a-stable distribution S,.5(c) is utilized [14] i.e.:

Tpy1 = Tk + Tdk, (5)

where r £ Xa.o = |9a5(0)], and dy, 4 M(p, k).

The direction distribution simulation process is summarized in the Tab. 1.

The concept of directional distributions presented in the previous section allows to
remove the above-mentioned problem. Naturally, the effectiveness of EAs with mutation
based on a class M(p, k) will depend at least on two factors: the correctness of estab-
lishing the mean direction of mutation p, and the value of the concentration parameter
K, which controls the dispersion around the mean direction. In fact, concentration pa-
rameter £ allows to obtain on one side an isotropic distribution on the sphere (k = 1),
and on the other side, a degenerate distribution at the mean direction (k£ = 0). The
idea of forcing mutation direction boils down to utilizing a traditional way of creating a
new individual (5). Since directional distributions, are parameterized by a pair {u, k},
then one must determine the strategy of adjusting their values. In the literature, several
techniques of adjusting p can be found [12]. In this work the approach proposed by
Obuchowicz [8] for the class of evolutionary algorithms known as Fvolutionary Search
with Soft Selection and Forced Direction of Mutation (ESSS-FDM):

pt= "L " L where (x')=

I(zt) = (== H)1I”



Table 1. Algorihtm to simulating directional distribution M, k)

Input data
p € R™ — mean direction
k € (0, 1] — concentration parameter
Output data
Y — pseudo-random vector of M(u, k) distribution
Algorithm
t= Zﬁ(”T*l, M) — 1, where 3(a,b) gives random number from Beta distribution

2
X HN(O,In_l)

Z — X/|IX]l2
Y — [V1—-t2Z7 4T
T7
Y « [I,, — vvT]Y where v = 7\|[[007,00,’-:;’11]]T—1ﬁ\2
is chosen.

3 Experiments

3.1 Experiments description

Evolutionary algorithms used in simulation experiments in this work are based on
a probably the simplest selection-mutation model of the Darwinian’s evolution. The
evolution is a motion of individuals in the phenotype space, called also the adaptation
landscape. This motion is caused by the selection and mutation process. Selection
leads to the concentration of individuals around the best ones, but mutation introduces
the diversity of phenes and disperses the population in the landscape. As a mutation
operator the directional mutation (5) based on the a-stable distribution is chosen and
the tournament selection is chosen as a reproduction process.

The above-described algorithm is controlled by six parameters: the population size
7 and the maximal number of iterations tp,x, the stability index «, the slope o and
the concentration x parameters for mutations, and the tournament size A for selection.
Parameters used in experiments are: o« = 0.5,1,1.5,2, ¢ = 0.1, k = 0.01,0.1,0.5, 1,
n =10, 20,40,80, A = 2,4,8.

Eight benchmark functions are chosen for simulation experiments (dimensions n =
2,4,8,16):

e five unimodal functions: Sphere model, Generalized Rosenbrock’s, Schwefel’s 2.21,

Schwefel’s 1.2, Schwefel’s 2.22 functions;

e three multimodal functions: Ackley’s, Generalized Rastringin’s and Generalized
Griewank’s functions.



There have been 100 algorithm processing for each set of parameters (768 sets) for
each objective function (it gives over 630000 searching processes).

3.2 Results

Due to the limited length of this paper and large size of calculated results, which
are still in processed and analyzed, the result presentation will be restricted to a set of
observations and remarks.
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Figure 1. The mean number of iteration needed to locate the optimum with a given accuracy
vs. the concentration parameter and stability index; (a) 4D sphere function, n = 20, A = 8,
success: fitness lower than 0.05; (b) 4D Rastringin’s function, n = 20, A = 4, success: fitness
lower than 0.5, most algorithms runs for & = 2.0 do not localize optimum in tmax = 15000
iterations. Results averages over 100 algorithms runs for each set of parameters.

Dependency on the concentration parameter x — unimodal cases: The main
conclusion, which can be formulated basing on all results for unimodal functions (Figu-
re 1(a) presents results for the sphere model), is that the worst result of the local opti-
mization problem are obtained for extreme values of k = 0.01, 1.0. In the case of k = 0.01
the direction of mutation is too close to the promising direction . In fact the mutation
is done almost exactly in one dimension. In the case of Kk = 1.0 we randomly choose
direction with the uniform distribution over the unit sphere. For all considered fitness
functions, obtained results point at £ = 0.1 (from the set x = 0.01,0.1,0.5,1.0) as the
best measure of the dispersion of mutation direction. This result is independent, almost
without exceptions, on adjusting other input parameters.

Dependency on the concentration parameter x — multimodal cases: Unlike
the unimodal case, some correlation between the concentration parameter x and stability
index « can be observed (fig. 1(b)). In the case of low values of «, the efficiency of the
evolutionary search is higher for the highest value of xk = 1.0, i.e. when the direction
is chosen with uniform distribution over the unit sphere. This relation reverses with
increasing «. If heavy tails of mutation distributions becomes smaller then the mutation
have to be much closer to the promising direction p. Unfortunately, most algorithms



runs for « = 2.0 do not localize optimum in a given limit of maximum iterations (¢tyax =
15000 for each multimodal function). In the case of generalized Grewiank’s and Ackley’s
functions algorithms with a = 0.5 either find global optimum in several iterations or do
not find it at all in a given limit of time.
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Figure 2. The mean number of iteration needed to locate the optimum with a given accuracy
vs. the concentration parameter and landscape dimension; (a) sphere function, o = 1.0, n = 40,
A = 8, success: fitness lower than 0.05; (b) Rastringin’s function, o = 1.0, n = 20, A = 4, success:
fitness lower than 0.5. Results averages over 100 algorithms runs for each set of parameters.

Dependency on the searching space dimension n: Application of the directional
distribution with middle values of the concentration parameter (v = 0.1,0.5) to the
mutation operator increases the algorithm effectiveness in problems of the local as well
as the global optimum localization (fig. 2). The disproportion between this effectiveness
for these values of the concentration parameter and their extreme values of (k = 0.01,1.0)
rapidly increases with the increasing searching space dimension. This conclusion is right
for unimodal as well as multimodal fitness functions considered.

Dependency on the stability index a — unimodal cases: Algorithms convergence
to the local optimum points increases with the decreasing value of . The dispropor-
tion between slopes of convergence curves decrease with increasing the concentration
parameter x and the space dimension. But, the accuracy of te local optimum point lo-
calization possesses the opposite relation. Algorithms with higher values of a converge
to the optimum slower but localize it with better precision (fig. 3(a)). This fact is almost
independent on the concentration parameter x and confirms the existence of, so called,
surrounding effect described in [9].

Dependency on the stability index a — multimodal cases: The exploration abil-
ities are characterized by more complicated tendencies. Algorithms with extreme values
of @ = 0.5,2.0 (and the fixed slope parameter ¢ = 0.1) have troubles with the global
optimum localization at all in the limit of iterations ty.x = 15000. The best results are
obtained for @ = 1.0 (the Cauchy distribution) and « = 1.5 (slightly worse in this case).
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Figure 3. The best fitness in the population vs. iterations for (a) Rosenbrock’s function (n = 40,
A=4, k=05, a =0.5 - solid line, = 1.0 — dotted line, &« = 1.5 — dashed line, a = 2.0 —
dash-dott line), and (b) Grewiank’s function (n = 20, A = 2, k = 0.1, the curve on the top for
t = 15000 represents process with a = 2.0, next ones — @ = 1.5 and o = 0.5, and o = 1.0 on the
bottom). Results averages over 100 algorithms runs for each set of parameters.

The disproportion between algorithms’ effectiveness for a = 1.0 and o = 1.5 rapidly
increases with the increasing searching space dimension (fig. 2(b)). Usually, like in the
unimodal case, algorithms with higher values of « converge to the optimum slower but
localize it with better precision (fig. 3(b)).It is important do notice, that the influence
of « selection on the global optimum localization seems to be more significant that in
the case of k adjusting. Distinct from the pair of parameters (o, o), which adjustment
processes are strongly correlated [10], processes of the selection of the best possible values
of the pair (o, k) is supposed to can be separated, because of slight correlation between
these two parameters.

4 Conclusions

In this paper, the general concept for the adaptation of a probabilistic measure in a
mutation operator of phenotypic EAs is considered. The proposed approach is based on
the directional distributions which are parameterized by the mean vector and concen-
tration parameter. Simulated experiments confirms the thesis that proposed mutation
improves the effectiveness of evolutionary algorithms in the case of the local as well as
global optimization problems. It also provides an access to construction of more sophis-
ticated techniques which aim at improving effectiveness of evolutionary algorithms for
high-dimensional problems.



Bibliography

[1] T. Béack, D.B. Fogel and Z. Michalewicz, (Eds.). Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing and Oxford University Press, NY, 1997

[2] 1. Karcz-Dulgba. Asymptotic behaviour of a discrete dynamical system generated
by a simple evolutionary process. Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 1,
pp.79-90, 2004.

[3] K.-T. Fang, S. Kotz, and K.-W. Ng. Symmetric Multivariate and Related Distribu-
tions. Chapman and Hall, London, 1990.

[4] M. Gutowski. Lévy flights as an underlying mechanism for a global optimization algo-
rithm. Proc. 5th Conf. Evolutionary Algorithms and Global Optimization, Jastrzebia
Gora, Poland, Warsaw University of Technology Press, 2001, pp. 79-86.

[5] Ch.Y. Lee, and X. Yao. Evolutionary Programming Using Mutations Based on the
Lévy Probability Distribution. IFEE Transactions on FEvolutionary Computation,
Vol. 8, No. 1, pp. 1-13, 2004.

[6] K.V. Mardia, and P. Jupp. Directional Statistics. John Willey and Sons Ltd., 2nd
edition, 2000.

[7] J.P. Nolan. Stable Distributions, Models for Heavy Tailed Data, Springer—Verlag,
Berlin Heidelberg, 2003

[8] A. Obuchowicz. Evolutionary Algorithms in Global Optimization and Dynamic Sys-
tem Diagnosis. Lubuskie Scientific Society, Zielona Géra 2003.

[9] A. Obuchowicz, and P. Pretki. Phenotypic Evolution with Mutation Based on Sym-
metric a-Stable Distributions. Int. J. Appl. Math. Comput. Sci., Vol.14, No.3, 2004,
pp-289-316.

[10] A. Obuchowicz, and P. Pretki. Evolutionary algorithms with a-stable mutations.
Proc. IEEE 4th International Conference on Intelligent Systems Design and Applica-
tion - ISDA 2004. Budapest, Hungary, 2004, CD-ROM

[11] A. Obuchowicz, and P. Pretki. Isotropic Symmetric a-Stable Mutations for Evo-
lutionary Algorithms. Proc. IEEE Congress on Evoutionary Computation CEC 05,
Edinbourgh, UK, pp.404-410.

[12] P. Pretki, and A. Obuchowicz. Directional distributions and their application to evo-
lutionary algorithms. Lecture Notes in Artificial Intelligence: Artificial Intelligence
and Soft Computing - ICAISC 2006, Vol. 4029, 2006, pp.440-449.

[13] G. Rudolph. On Correlated Mutations in Evolution Strategies. Proc. 2nd Int. Conf.
Parallel Problem Solving from Nature, Brussels 1992.

[14] G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Processes. Chap-
man & Hall, New York, 1994.



