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Abstract. The paper deals with the identification of material constants in fibre-
reinforced laminates. The Evolutionary Algorithm is used as the global optimiza-
tion method. The gradient method supported by the Artificial Neutral Network
is used as the local optimization method. Material constants are presented in the
form of fuzzy numbers to model their uncertainty. Two types of laminates are
considered: simple and hybrid ones. Modal analysis methods are used to collect
data necessary for the identification process. The Finite Element Method in fuzzy
version is used to solve the direct problem for the laminates. Numerical examples
are attached.

1 Introduction

The aim of the paper is to identify material constants in multilayered, fibre-reinforced
laminates. Simple and hybrid laminates are considered. The material constants are
treated as non-deterministic ones due to the manufacturing process. Uncertainties are
introduced to reduce differences between real structures and their mathematical, ideal
model. The inaccuracies can be modelled by using different granularity models, e.g.
interval numbers, fuzzy numbers or in the stochastic way. The interval and fuzzy repre-
sentation of the design variables is used in the present paper.

Composite is a material built by joining at least two materials on the macroscopic
level. Composite usually consists of two permanently connected phases: i) the matrix,
playing the role of the binder; ii) the reinforcement. Multi-layered laminates are the
fibre-reinforced composites built of a specific number of stacked, permanently joined
plies. Laminates made of polymer matrices with carbon, graphite, glass, boron or aramid
fibers are the most typical ones. Plies in laminates are usually built of the same composite
material but the angles of fibers usually placed directionally in the specific ply can vary.
The main advantages of laminates, comparing with the isotropic materials are: i) the
high strength-weight ratio; ii) the easiness of tailoring the material by manipulating:
components material, stacking sequence, fibres orientation or layer thicknesses.

The cost of a laminate quickly increases as its strength rises. To ensure the high
strength of the laminate reducing its cost, one composes the laminate of more than one
material [1]. Typically, the exterior plies are made of the ”better” and more expensive
material, while the core of the laminate is made of the ”worse” and cheaper one.



Composites are anisotropic and non-homogenous materials. Multi-layered and fibre-
reinforced laminates can be usually treated as the 2-D orthotropic material with 4 inde-
pendent elastic constants: axial Young’s modulus E1, transverse Young’s modulus E1,
axial-transverse shear modulus G12 and axial-transverse Poisson ratio ν12 [8].

2 The Formulation of the Identification Task

The laminate elements are often manufactured individually or in short series. As a result,
it is necessary to perform non-destructive tests to identify their elastic properties. To
solve the identification problem it is required to measure the state fields’ values.

The identification problems belong to inverse ones which are mathematically ill-posed
[6]. The identification results strongly depend on the number of measurement data. To
reduce the number of sensors, the dynamic properties of laminates can be taken into
account and the modal analysis methods can be employed. The eigenfrequencies are
used as the measurement data.

An eigenvalue problem for a laminate plate of length a, width b and thickness h in
directions x, y and z, respectively, can be presented in the form [2]:

ρhω2w = D11w,xxxx + D16w,xxxy + 2(D12 + 2D16)w,xxyy + 4D26w,xyyy + D22w,yyyy (1)

where: w - deflection in the z direction; ω - eigenvalue vector; Dij - bending stiffness;
ρ - mass density.

The stiffness matrix for one lamina in in-axis orientation has the form:
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where:
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The relation between matrices Q and D is as follows:

Dij =
1
3

Np∑

k=1

(Qij)k(z3
k − z3

k−1) (4)

Each of elastic constants has the form of the interval or the fuzzy number. As a result,
the elements of the D matrix also have the form of the interval or the fuzzy numbers.

The identification problem is defined as the minimization of the objective function
with respect to the vector of the design variables x:

min : J(x) = min

[
n∑

i=1

(qi − q̂i)
2

]
(5)



where: x = (xi) - the design parameters; q̂i - measured values of a state fields; qi - values
of the same state fields for considered solution.

The vector of the design parameters consists of identified elastic constants. The
sensor points are situated on the surface of the body. The fuzzy boundary-value problem
is solved by using the fuzzy finite element method (FFEM). In the fuzzy representation
the objective function is modified to the fuzzy form. In the case of the identification
problem the edges of the intervals:

JC(x) ∈ [
JC(x), JC(x)

]
(6)

are calculated as follows:
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The central values of the intervals are calculated as the mean values of both edges for
all α-cuts. The vector of the design variables x has the following forms:

• for a simple laminate:

x = (E1, E2, G12, ν12) (8)

• for a hybrid laminate:
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In the case of the hybrid laminate the densities of particular materials also have to be
identified. The superscripts in Equation (9) denote the material number.

To solve the identification task the optimization methods are used. To solve the global
optimization task and avoid problems with calculation of an objective function gradient
the Evolutionary Algorithm is used [3]. Evolutionary identification method was suc-
cessfully tested for the non-fuzzy (real-coding) laminates’ elastic constants identification
problems [4].

3 The Two-Stage Fuzzy Strategy

The main idea of the Two-Stage Fuzzy Strategy (TSFS) is to couple the advantages of:
gradient optimization methods, evolutionary optimization and artificial neural networks.
In the proposed method the fuzzy EA is used in the beginning to generate a cluster
(population) of fuzzy points. After this stage it is assumed, that the population of points
is situated in the contiguity of the optimum which is probably the global one. The
moment of the stopping of the EA is crucial and is discussed widely in [11].

In the next step the local optimization method (LOM) is employed to finish compu-
tations. In this stage a few the best points from the cluster are selected as a cloud of
points necessary in the second stage in which the local optimization method is used. The
sensitivity of the fitness function is approximated by means of the ANN.



3.1 The Fuzzy Evolutionary Algorithm

In the present paper the fuzzy version of the Evolutionary Algorithm (FEA) is used.
In the FEA the data representation, the evolutionary operators as well as the selection
procedure are the fuzzy ones [7]. Each chromosome represents one fuzzy solution. After
evaluation of the solution a fuzzy fitness function value of the chromosome is obtained.

The main difference between the Fuzzy Evolutionary Algorithm and the typical, real-
coding Evolutionary Algorithm is that the FEA works on fuzzy chromosomes consisting
of fuzzy genes [11].

The j-th fuzzy chromosome has the form:

chj(x) =
[
xj

1, x
j
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j
i , ..., x

j
N

]
(10)

where: N - the number of genes in chromosome.
Each gene represents one fuzzy number and each chromosome is a potential fuzzy

solution of the problem. Fuzzy numbers are subsets of the fuzzy sets, being convex and
normalized fuzzy sets with continuous membership functions [9].

As the standard representation of the fuzzy number can be inconvenient from the
fuzzy number arithmetic point of view, it is suitable to represent the fuzzy number x as
a set of the interval values [x;x] lying on the adequate α-cuts, as shown in Figure 1a.

Figure 1. a) The fuzzy gene structure in the FEA; b) trapezoidal, asymmetric fuzzy gene.

In this attitude it is necessary to apply the interval arithmetic operators for each
α-cut. Each gene in the chromosome is represented as a vector of the real values in one
of two forms:

• interval representation:
xj
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xj

i ;x
j
i

]
(11)

• fuzzy representation:
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where: cv(xj
i ) - the central value of a fuzzy number; ak(xj

i ), bk(xj
i ) - distances between the

central value and the left and right boundaries of the interval on k-th α-cut, respectively;
cm - the number of α-cuts.

In the present paper each gene can be represented as: i) an interval number, or ii) an
asymmetric, trapezoidal fuzzy number - each gene consists of 5 values (Figure 1b).



3.2 The Local Optimization Method

The proposed local optimization method (LOM) is a combination of the steepest
descent method and the ANN networks. The number of neurons in the input layer is
equal to the number of design variables of the fitness function. The output layer consists
of one neuron the output value of which plays role of the fitness function. The number
of neurons in hidden layers depends on the complexity of the fitness function.

The special multilevel ANN is used as the approximation tool of the fuzzy boundary-
value problem. Each level of the ANN corresponds with selected parameter of the fuzzy
number (Figure 2a).

Figure 2. The scheme of the multi-level neural networks: a) with no level interconnections; b)
with full level interconnections.

The number of the levels of multilevel neural network depends on the number of
α-cuts. All levels can be interconnected (Figure 2b).

In the first stage of the LOM a cloud of fuzzy points is generated in the function
domain. The optimization process is performed by means of the ANN. After training the
ANN, the optimization process is performed by means of the gradient method (steepest
descent method). The ANN output value is used as the approximation of the fitness
function value. The special kind of a fuzzy gradient is introduced. For all edges of the
fuzzy values the real sensitivities are calculated. Each parameter of the fuzzy number
can be modified on the basis of such information.

As the last step the termination condition is checked. If it is true, the point from the
previous step becomes a result of the optimization process, otherwise the considered point
is added to the training vector set and the next iteration is carried out. The proposed
local optimization method was successfully tested for the non-fuzzy problems [10].

4 Numerical examples

4.1 Identification of the Simple Laminate

A rectangular simple laminate plate made of the glass-epoxy is considered(Figure 3a).
Each ply has thickness h=0.002m. The stacking sequence of the laminate is: (0/45/90/-
45/0/90/0/90)s. The plate FEM model consists on 200 4-node plane finite elements. The
identified elastic constant values are: E1=3.86e10MPa, E2=8.27e9MPa, G12=4.14e9MPa,
ν12=0.26. The first 10 eigenfrequencies of the plate are taken into account in the identi-
fication procedure.



Each chromosome chj(x) in population consists of 4 genes. Each gene xi is a fuzzy
number represented by 2 α-cuts (trapezoidal, asymmetrical fuzzy number) and described
by 5 (non-fuzzy) values. The parameters of the FEA are: the number of chromosomes:
pop size = 100; the number of generations: gen num = 400; arithmetic crossover prob-
ability: pc = 0.2; gaussian mutation probability: pm = 0.4.

The number of iterations of the local method (second stage) is 1000.

Figure 3. The laminate plate: a) shape and dimensions; b) hybrid laminate - materials location.

The variable ranges, actual values and results after the first stage (FEA) and after fin-
ishing computations using the local optimization method (LOM) are collected in Table 1
for the 1st α-cut and in Table 2 for the 2nd α-cut.

Table 1. The simple laminate - 1st α-cut.

E1 E1 E2 E2 ν12 ν12 G12 G12

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]
Min 1.92E10 1.92E10 4.20E9 4.20E9 0.190 0.190 0.97E9 0.97E9
Max 5.08E10 5.08E10 10.80E9 10.80E9 0.410 0.410 8.03E9 8.03E9

Actual 3.82E10 3.90E10 8.23E9 8.31E9 0.257 0.263 4.10E9 4.18E9
After FEA 3.90E10 3.96E10 8.11E9 8.45E9 0.268 0.277 4.17E9 4.22E9
After LOM 3.82E10 3.90E10 8.23E9 8.31E9 0.257 0.263 4.10E9 4.18E9

Table 2. The simple laminate - 2nd α-cut.

E1 E1 E2 E2 ν12 ν12 G12 G12

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]
Min 1.92E10 1.92E10 4.20E9 4.20E9 0.190 0.190 0.97E9 0.97E9
Max 5.08E10 5.08E10 10.80E9 10.80E9 0.410 0.410 8.03E9 8.03E9

Actual 3.84E10 3.87E10 8.25E9 8.28E9 0.259 0.261 4.12E9 4.15E9
After FEA 3.92E10 3.95E10 8.16E9 8.23E9 0.262 0.277 4.17E9 4.20E9
After LOM 3.84E10 3.87E10 8.25E9 8.28E9 0.259 0.261 4.12E9 4.15E9

4.2 Identification of the Hybrid Laminate

A rectangular hybrid laminate plate of dimensions presented in Figure 3a) is con-
sidered. Each ply has thickness h=0.002m. The stacking sequence of the laminate is:
(0/15/-15/45/-45)s. The plate FEM model consists of 200 4-node plane finite elements.
The first 10 eigenfrequencies of the plate are considered.



The external plies of the laminate are made of material M1, the core plies are made
of the material M2 (Figure 3b). The material properties are collected in Table 3.

Table 3. The hybrid laminate - material parameters.

Material E1 [GPa] E2 [GPa] ν12 G12 [GPa] ρ [kg/m3]
M1 181 10.3 0.28 7.17 1600
M2 38.6 8.27 0.26 4.14 1800

Each of 10 genes xi is a interval number represented by 2 (non-fuzzy) values. The
parameters of the FEA are: the number of chromosomes: pop size = 100; the number
of generations: gen num = 1200; arithmetic crossover probability: pc = 0.2; gaussian
mutation probability: pm = 0.4.

The number of iterations of the local method (second stage) is 2500. The variable
ranges, actual values and results after the first stage (FEA) and after finishing computa-
tions using the local optimization method (LOM) are collected in Table 4 for the material
M1 and in Table 5 for the material M2.

Table 4. The hybrid laminate - material M1.

E1 [MPa] E1 [MPa] E2 [MPa] E2 [MPa] ν12 ν12

Min 1.52e10 1.52e10 4.20e9 4.20e9 0.190 0.190
Max 15.08e10 15.08e10 15.80e9 15.80e9 0.410 0.410

Actual 3.82e10 3.90e10 8.23e9 8.31e9 0.257 0.263
After FEA 3.74e10 4.12e10 8.21e9 8.22e9 0.273 0.278
After LOM 3.82e10 3.90e10 8.23e9 8.31e9 0.257 0.263

G12 [MPa] G12 [MPa] ρ [kg/m3] ρ [kg/m3]

Min 0.97e9 0.97e9 0.97e3 0.97e3
Max 8.03e9 8.03e9 3.03e3 3.03e3

Actual 4.10e9 4.18e9 1.80e3 1.81e3
After FEA 4.01e9 4.54e9 1.85e3 1.89e3
After LOM 4.10e9 4.18e9 1.80e3 1.81e3

Table 5. The hybrid laminate - material M2.

E1 [MPa] E1 [MPa] E2 [MPa] E2 [MPa] ν12 ν12

Min 1.52e10 1.52e10 4.20e9 4.20e9 0.190 0.190
Max 25.08e10 25.08e10 25.80e9 25.80e9 0.410 0.410

Actual 18.00e10 18.20e10 10.00e9 10.04e9 0.277 0.283
After FEA 17.20e10 18.26e10 9.87e9 10.36e9 0.273 0.284
After LOM 18.00e10 18.20e10 10.00e9 10.04e9 0.277 0.283

G12 [MPa] G12 [MPa] ρ [kg/m3] ρ [kg/m3]

Min 0.97e9 0.97e9 0.97e3 0.97e3
Max 8.03e9 8.03e9 3.03e3 3.03e3

Actual 7.10e9 7.18e9 1.60e3 1.65e3
After FEA 7.00e9 7.43e9 1.60e3 1.69e3
After LOM 7.10e9 7.18e9 1.60e3 1.65e3

5 Final Conclusions

The application of the Two-Stage Fuzzy Strategy for the simple and laminates‘ elas-
tic constants identification has been presented. The strategy is a combination of the



Evolutionary Algorithms (AEs), the Artificial Neural Networks (ANNs) and the Local
Optimization Methods (LOMs). The global optimization method in the form of the EA
is used as the first step and then computations are finished by the local method. The
ANN is employed to approximate the fitness function and the fitness function gradient.

The identified values and the fitness function are in the form of fuzzy or interval
numbers. The strategy gives positive results for simple and hybrid laminates and can
be applied for more complicated structures. If the number of data obtained from the
eigenfrequencies is not sufficient it is also possible to use modal data from the frequency
response of the structure. This attitude significantly reduces the number of sensor points
comparing with static measurements (like strains or displacements).

For many real problems the computation of the fitness function by means of the finite
element method is the most time-consuming part of calculations. It can be significantly
reduced by means of the distributed computations [5].
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[5] W. Beluch and T. Burczyński. Distributed evolutionary algorithms in identification
of material constants in composites. In KAEIOG 2004, pages 1–8, 2004.

[6] H.D. Bui. Inverse Problems in the Mechanics of Materials: An Introduction. CRC
Pres, 1994.
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